كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18938
التقييم : 35320
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845  Empty
مُساهمةموضوع: كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845    كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845  Emptyالأحد 24 سبتمبر 2023 - 3:17

أخواني في الله
أحضرت لكم كتاب
Ultra-precision High Performance Cutting
Report of DFG Research Unit FOR 1845
Ekkard Brinksmeier , Lars Schönemann
Editors  

كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845  F_f_m_10
و المحتوى كما يلي :


Contents
Introduction to Ultra-Precision High Performance Cutting 1
Lars Schönemann
Diamond Milling with Multiple Cutting Edges 11
Lars Schönemann, Oltmann Riemer, and Ekkard Brinksmeier
Ultra-Precision High Speed Cutting 43
Daniel Berger, Lars Schönemann, Oltmann Riemer,
and Ekkard Brinksmeier
Electromagnetic Ultra-Precision Linear Guide 75
Rudolf Krüger, Benjamin Bergmann, and Berend Denkena
Spindle Balancing for Ultra-Precision High Speed Cutting 107
Timo Dörgeloh, Nasrin Parsa, Christian Schenck, Oltmann Riemer,
Ekkard Brinksmeier, and Bernd Kuhfuss
Ultra Precision High Performance Axis Control 147
Per Schreiber, Johannes Hochbein, Benjamin Bergmann,
Christian Schenck, Bernd Kuhfuss, and Berend Denkena
Achievements and Future Perspectives for Ultra-Precision High
Performance Cutting . 171
Lars Schönemann
ixList of Contributors
Daniel Berger MAPEX Center for Materials and Processes, University of
Bremen, Bremen, Germany;
Leibniz Institute for Materials Engineering IWT, Bremen, Germany
Benjamin Bergmann Institute of Production Engineering and Machine Tools
IFW, Leibniz University Hannover, Garbsen, Germany
Ekkard Brinksmeier Leibniz Institute for Materials Engineering IWT, Bremen,
Germany;
MAPEX Center for Materials and Processes, University of Bremen, Bremen,
Germany
Berend Denkena Institute of Production Engineering and Machine Tools IFW,
Leibniz University Hannover, Garbsen, Germany
Timo Dörgeloh Leibniz Institute for Materials Engineering IWT, Bremen,
Germany
Johannes Hochbein Bremen Institute for Mechanical Engineering bime and
MAPEX Center for Materials and Processes, University of Bremen, Bremen,
Germany
Rudolf Krüger Institute of Production Engineering and Machine Tools IFW,
Leibniz University Hannover, Garbsen, Germany
Bernd Kuhfuss Bremen Institute for Mechanical Engineering bime and MAPEX
Center for Materials and Processes, University of Bremen, Bremen, Germany
Nasrin Parsa Bremen Institute for Mechanical Engineering bime and MAPEX
Center for Materials and Processes, University of Bremen, Bremen, Germany
Oltmann Riemer Leibniz Institute for Materials Engineering IWT, Bremen,
Germany;
MAPEX Center for Materials and Processes, University of Bremen, Bremen,
Germany
xiLars Schönemann Leibniz Institute for Materials Engineering IWT, Bremen,
Germany;
MAPEX Center for Materials and Processes, University of Bremen, Bremen,
Germany
Christian Schenck Bremen Institute for Mechanical Engineering bime and
MAPEX Center for Materials and Processes, University of Bremen, Bremen,
Germany
Per Schreiber Institute of Production Engineering and Machine Tools IFW,
Leibniz University Hannover, Garbsen, Germany
xii List of ContributorsAcronyms
42CrMo4 heat treatable steel type 1.7225/AISI 4140/42CrMo4
AE acoustic emission
AFM atomic force microscope
AlMg3 aluminium 3.3535/EN AW-5754/AlMg3
AlMg5 aluminium 3.3555/EN AW-5019/AlMg5
ARM advanced RISC machines
ASPE The American Society for Precision Engineering
CCLD constant current line drive
CEEMD complementary ensemble empirical mode decomposition
CHR control parameter calculation method according to Chien,
Hrones and Reswick
CIRP The International Academy for Production Engineering
(French: Collège International pour la Recherche en
Productique)
CNC computer numerical control
CPU central processing unit
CuNi18Zn19Pb1 nickel silver CuNi18Zn19Pb1
CUPE Cranfield Unit for Precision Engineering
CuZn30 brass 2.0265/EN CW505L/CuZn30
CuZn39Pb3 brass 2.0401/EN CW614N/CuZn39Pb3/MS58
CuZn40Pb2 brass 2.0402/AISI CW617N/CuZn40Pb2
DoF degrees of freedom
EtherCAT ethernet for control and automation technology
euspen The European Society for Precision Engineering and
Nanotechnology
FEM finite element method
FF feed forward
FFT2 two-dimensional fast Fourier transformation
FOR1845 German research unit (“Forschungsgruppe”) No. 1845 Ge
germanium
xiiiHFIM high-frequency-impulse-measurement
HPC high performance cutting
HSC high speed cutting
HSM high speed machining
IPC industrial PC
IR infrared
IS input shaping
JL jerk limitation
JSPE The Japan Society for Precision Engineering
LED light emitting diode
LiPo lithium-ion polymer
LLNL Lawrence Livermore National Laboratory
MBSM motion band sub-model
NiP electroless nickel/nickel phosphorous
OFHC oxygen-free high conductivity
PEM predictive error method
PI proportional-integral controller
PID proportional-integral-differential controller
PLC programmable logic controller
PSoC programmable system on a chip
PWM pulse width modulation
RBSM residual band sub-model
RFM radio frequency module
RISC reduced instruction set computer
S355J2(+N) low-alloy steel 1.0577/AISI A738/S355J2(+N)
Si silicon
SSD sub surface damage
TCP tool center point
TP1 sub-project (German: “Teilprojekt”) 1 of the FOR1845 on
“Ultra-precision milling with multiple diamond cutting inserts”
TP2 sub-project 2 of the FOR1845 on “Ultra-precision high-speed
milling”
TP3 sub-project 3 of the FOR1845 on “Electromagnetic
ultra-precision linear guide”
TP4 sub-project 4 of the FOR1845 on “Balancing of spindles for
ultra-precision high speed milling”
TP5 sub-project 5 of the FOR1845 on “Model-based toolpath
correction for ultra-precision machining”
UDB universal digital block
UP ultra-precision
UP-HPC Ultra-Precision High Performance Cutting
USM ultrasonic motor
WLI white light interferometer, a specific type of a coherence
scanning interferometer
X40Cr14 stainless steel type 1.2083/AISI 420/X40Cr14
xiv AcronymsX5CrNi18-10 high-strength steel 1.4301/AISI 304/X5CrNi18-10
ZnS zinc sulfide
ZnSe zinc selenide
ZV zero vibration
ZVD zero vibration derivative
Acronyms xvSymbols
D
y lm mean profile height deviation
a ° angle of first unbalance mass for rotary redistribution
a nm mm-1
K-1
coefficient of thermal expansion
b ° angle of second unbalance mass for rotary redistribution
vact ° angular spacing of actuators
d m magnetic air gaps
Da ° difference in clearange angle of two tools
Dd nm depth difference of machined cutting marks
Dc ° difference in rake angle angle of two tools
Dℎel nm differential elastic springback of a grain
DL
max nm maximum thermal expansion at elevated temperature
DLmin nm minimal required thermal expansion for tool setting
DL nm thermal expansion of a beam
Dqpos lm vector of position offsets on q
Dr
fly lm difference in fly-cut radius of two tools
Ds lm difference in tool spur/track of two tools
DT K temperature difference
Dt s time interval
DT
max K maximum allowed temperature difference above ambient
DTmin K minimal temperature difference for a specific expansion
η - thermal absorption
c ° rake angle angle of a tool
c ° rotation angle of the USM
j W m−1
K−1
thermal conductivity
k nm wavelength of IR-LED
k
c Hz cut-off frequency used in filters
x Hz rotational frequency
x rad s−1 angular velocity of the rotor
u ° half-angle of IR-LED
/ ° effective angle of the resultant force
/AB ° phase shift of travelling waves in the ultrasonic motor
U
e mW total radiant flux of IR-LED
(continued)
xvii(continued)
q gmm−3 density
f - damping ratio
A lm2 surface area
A - system matrix of state space model
A m, (bi-directional) positioning accuracy (ISO 230-2)
here lm
a nm gain parameter for CHR method (a = kL/T)
a
e lm width of cut
AE
max Mv acoustic emission signal amplitude
A1, A2 - input shaping gains
A
max lm2 cross section of the tool plunging into the material while cutting
a
max ms−2 acceleration limit
a
max ms−2 acceleration limit
a
p lm depth of cut, infeed
B - input matrix of state space model
C JK−1 heat capacity
c ms−1 propagation velocity of radio frequency signals (3  108 ms−1)
C - output matrix of state space model
cH - coherence shock response spectrum
c
p J kg−1
K−1
specific heat capacity
d mm diameter of a fly-cutter
D N/(m/s), damping matrix of the system model
Nm/
(rad/s)
dc
nm critical depth of cut
dS m position signals of the air gap sensors
E Nm−2 Young’s modulus
eiRj lrad inclination error around j-axis for i-movement
eiTj lm straightness error in j-direction for i-movement
e
p gmm permissible specific unbalance
F N resultant force
f0 Hz carrier frequency of the RFM module
f lm (lateral) feed
f−3dB Hz frequency at −3 dB (bandwidth frequency
FA N actuator force
fc Hz commutation frequency of the ultrasonic motors
Fc
N cutting force
F
c,∞ N constant cutting force at infinite speed
F
c,var N variable value of cutting force according to Ben Amor
f0 Hz Doppler shift
Ff
N feed force
Fi N force of i-axis
F
imp N impulse force
FM N magnet pulling force
Fn
N normal force
Fp
N passive force
fs Hz sample rate
Fu
N centrifugal force
G mm s−1 balancing grade

cu,max lm maximum undeformed chip thickness
(continued)
xviii Symbols(continued)
H(f) lm N−1 shock response spectrum
HV N mm−2 Vickers hardness
i A coil currents of the electromagnets
ibal - balancing iteration
Ie
W sr−1 radiant intensity of IR-LED
If
A forward current of IR-LED
j ms−3 jerk
JA - Jacobian matrix for the actuators
JS - Jacobian matrix for the air gap sensors
k Nm−1 (dynamic) stiffness
here Nm
lm−1
K N m−1, stiffness matrix of the system model
Nm rad−1
Kc
MPa√m fracture toughness
kc
GPa specific cutting force
KD N sm−1 derivative feedback gain
KI N m−1 s−1 integral feedback gain
KP N m−1 proportional feedback gain
Kp
nm proportional gain of of thermal actuator controller
Ku
nm ultimate gain of thermal actuator plant model
L0 mm base length of a beam
L
c km effective contact length (cumulated)
L s delay time for CHR method
lk mm contact length in milling
ln
mm balance mass vector for rotary redistribution
l
wp mm workpiece length
M kg mass matrix of the system model
M m, (bi-directional) repeatability (ISO 230-2)
here lm
m kg mass
Mi Nm torque of i-axis
mi kg balancing masses
m
p kg permissible residual unbalance mass
m
r kg rotor weight
Mu
Nm torque generated by the USM
m
u kg unbalance mass
nact - number of actuators
n min−1 spindle speed
P kg parameter vector
P1 nm summation of low-frequency parts of the FFT2
P2 nm lm−1 summation of high-frequency parts of the FFT2
pij kg feed forward parameters axis i to axis j
P
n - commutation pulses sent to the ultrasonic motor
P_ W power of heat source (i.e. Laser or LED)
PV lm peak-to-valley
q m, generalized coordinate vector
rad
Q N, generalize force vector
Nm
Qff N vector of generalized force offsets
(continued)
Symbols xix(continued)
Q J heat input
Q mm3
min−1
material removal rate
qn lm generalized coordinate in n of levitation guide
Qset N vector generalized set-point forces
qz_tol N allowance for qz
r mm radial distance for calculation of Doppler shift
rb ° cutting edge radius
rc
mm correction radius
r
e lm nose radius of a tool
rfly mm fly-cut radius
ri mm balancing radii
Rkin nm kinematic roughness (for optics usually in nanometers)
R m, (bi-directional) mean positioning error (ISO 230-2)
here lm
R2 - coefficient of determination
s lm raster spacing
S1, S2, mm2 contact areas in schematic model of contact geometry
S
eq between tool and workpiece according to Yan et al.
SA - signal for first travelling wave motor
S
a nm arithmetic mean height (areal)
SB - signal for second travelling wave motor
Sp2p lm peak-to-peak value
S
q nm mean quadratic height (areal)
Sstd lm standard deviation
Sz nm maximum height (areal)
t s time
T0 s oscillation period
Ta
°C actuator temperature
t
acc s acceleration time
T s time constant for CHR method
tdec s deceleration time
tfade s oscillation fading time
tf ns fall time of IR-LED to zero
theat s heating time
theat,
rev
s heating time per revolution
Ti s integral time of thermal actuator plant model and/or controller
tk
ls contact time in milling
t
res s residual time
t
r ns rise time of IR-LED to full power
Ts
s shaping delay
ttotal s time per line for exemplary workpiece
U g mm measured unbalance vector
Uc
g mm counterbalance
Uf V forward voltage of IR-LED
u - input vector
U g mm residual unbalance
v ms−1 relative spindle speed
v
c mm min−1 cutting speed
v
c m min−1 critical cutting speed
(continued)
xx Symbols(continued)
vf mm min−1 feed velocity
vHG m min−1 Speed limit, at which the variable part of the cutting force has
decreased by 86.5%, according to Ben Amor
V mm3 volume
vrot m ms−1 rotational speed (circumferential speed)
Vs
V supply voltage of the USM
vset ms−1 set-point velocity
w mm width of the thermal actuator
west - window size
w - set-point value
x - state vector
x_ - state vector derivative
y - output vector
zac m acceleration distance
zdec m deceleration distance
zfade m oscilation fading distance
zres m residual distance
€zset m s−2 set-point acceleration in z


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845
رابط مباشر لتنزيل كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Ultra-precision High Performance Cutting - Report of DFG Research Unit FOR 1845
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب High Precision Bearings
» كتاب The UHMWPE Handbook - Ultra-High Molecular Weight Polyethylene in Total Joint Replacement
» كتاب SKF Catalogs - High Precision Bearings
» كتاب Precision CNC Machining for High-Performance Gears - Theory and Technology
» كتاب Precision Measuring and Gaging

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: