Admin مدير المنتدى
عدد المساهمات : 18930 التقييم : 35300 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Mathematical Modeling the Life Sciences - Numerical Recipes in Python and MATLAB الخميس 07 سبتمبر 2023, 1:47 am | |
|
أخواني في الله أحضرت لكم كتاب Mathematical Modeling the Life Sciences - Numerical Recipes in Python and MATLAB N. G. Cogan
و المحتوى كما يلي :
Contents Foreword xi 1 Introduction 1 1.1 What Is a Model? . 1 1.2 Projectile Motion . 2 1.3 Problems . 8 2 Mathematical Background 9 2.1 Mathematical Preliminaries . 9 2.1.1 Linear . 11 2.1.2 Nonlinear Equations . 13 2.2 Linearization . 15 2.3 Qualitative Analysis . 18 2.4 Problems . 20 2.5 Appendix: Planar Example 23 3 Introduction to the Numerical Methods 27 3.1 Introduction 27 3.2 Best Practices in Coding . 29 3.2.1 Folder Structure 29 3.2.2 Naming Conventions . 30 3.2.3 Code Structure 3.2.4 Comments . 32 3.3 Getting the Programs Running 32 3.3.1 Python . 32 3.3.2 MATLAB 34 3.4 Initial Programs 34 3.4.1 Differential Equations in Python . 37 3.4.2 Differential Equations in MATLAB . 38 3.5 Problems . 40 vii 30viii Contents 3.6 Appendix: Sample Scripts 44 3.6.1 Python . 44 3.6.2 MATLAB 45 4 Ecology 47 4.1 Historical Background 47 4.2 Single Species Models 50 4.2.1 The Exponential Model 51 4.2.2 The Logistic Model 53 4.2.3 Analysis 53 4.2.4 Predator/Prey – Lotka-Volterra 54 4.2.5 Analysis 56 4.2.6 Sensitivity: One at a Time, Scatterplots . 59 4.3 Competitive Exclusion 62 4.3.1 Model . 63 4.3.2 Analysis 65 4.3.3 Sensitivity: Linear Regression 68 4.4 State of the Art and Caveats . 71 4.5 Problems . 73 5 Within-host Disease Models 77 5.1 Historical Background 77 5.2 Pathological: Tumor . 81 5.2.1 Model . 82 5.2.2 Analysis 84 5.2.3 Sensitivity: Direct Estimation . 87 5.3 Viral: Acute Infection . 92 5.3.1 Model . 92 5.3.2 Analysis 94 5.3.3 Sensitivity Analysis: Feature Sensitivity . 96 5.4 Chronic: Tuberculosis 99 5.4.1 Model . 99 5.4.2 Analysis 101 5.4.3 Sensitivity: Relative Change . 103 5.5 Problems . 104 5.6 Appendix . 108Contents ix 6 Between Host-Disease Models 111 6.1 Historical Background 111 6.2 Two Compartment Models 115 6.2.1 Model . 115 6.2.2 Analysis 117 6.2.3 Sensitivity Analysis: Spider Plot . 118 6.3 Classical SIR . 121 6.3.1 Model . 121 6.3.2 Analysis 122 6.3.3 Sensitivity Analysis: Tornado Plots 125 6.4 Waning Antigens . 126 6.4.1 Model: SIRS . 127 6.4.2 Analysis 129 6.4.3 Sensitivity Analysis: Cobweb Diagrams . 129 6.5 Caveats and State of the Art . 131 6.6 Problems . 132 7 Microbiology 135 7.1 Historical Background 135 7.2 Bacterial Growth: Chemostat . 138 7.2.1 Model . 140 7.2.2 Analysis 141 7.2.3 Sensitivity Analysis: Correlation Coefficient, Pearson’s Moment Correlation 142 7.3 Multiple State Models: Free/attached 146 7.3.1 Model: Freter . 148 7.3.2 Analysis 150 7.3.3 Sensitivity Analysis: Correlation Coefficient, Spearman . 151 7.4 Cooperators, Cheaters, and Competitions 154 7.4.1 Model . 155 7.4.2 Analysis 156 7.4.3 Sensitivity Analysis: Sensitivity in Time and Partial Rank Correlation Coefficient (PRCC) 157 7.5 State of the Art and Caveats . 161 7.6 Problems . 162x Contents 8 Circulation and Cardiac Physiology 167 8.1 Historical Background 167 8.2 Blood Circulation Models 173 8.2.1 Model: Algebraic . 174 8.2.2 Analysis 176 8.2.3 Sensitivity Analysis: Sampling Methods . 176 8.3 Cardiac Physiology 177 8.3.1 Model: Noble . 178 8.3.2 Analysis 181 8.3.3 Sensitivity Analysis: Morris Screening 183 8.4 State of the Art and Caveats . 186 8.5 Problems . 187 9 Neuroscience 189 9.1 Historical Background 189 9.2 Action Potential 192 9.2.1 Model: Hodgkin-Huxley . 194 9.2.2 Analysis 196 9.2.3 Sensitivity Analysis: ANOVA – Sobol’ 196 9.3 Fitzhugh-Nagumo 201 9.3.1 Model . 202 9.3.2 Analysis 203 9.3.3 Sensitivity: Moment Independent . 203 9.4 State of the Art and Caveats . 208 9.5 Problems . 209 10 Genetics 211 10.1 Historical Background 211 10.2 Heredity 215 10.2.1 Mathematics . 216 10.2.2 Analysis 217 10.2.3 Sensitivity: Factorial Design . 218 10.3 State of the Art and Caveats . 219 10.4 Problems . 220 Bibliography 223 Index 22 Index R0, 112, 124, 127, 128 Linnaeus, 48 action potential, 178, 182, 190, 192 activation, 179 acute infection, 92 Anaconda, 32 ANOVA, 196, 197 antigen, 126 asymptotic, 158 axon, 190, 191, 193 bacteria, 77–79, 81, 102, 135–142 Bellman, 170 biofilm, 137, 147 bistable, 204 blood, 136, 167, 168, 174–176 cancer, 77, 79, 81 capacitance, 178, 191 cardiac, 168, 175, 177, 178, 183 cell, 79–81, 92, 93, 95, 101, 136, 139, 168, 177, 178, 189, 192 cellular, 80 cheater/cooperator, 155 chemostat, 138, 140–142, 146 circulation, 174 cobweb diagram, 129 Cole and Curtis, 190 competitive exclusion, 62, 66, 72 correlation coefficent PRCC, 157 correlation coefficient, 145 Pearson, 158 PRCC, 159 Spearman, 158 Pearson, 142, 144 PRCC, 171 Spearman, 151, 153 covariance, 143, 160 COVID, 112, 123 curse of large dimension, 169 derivative, 3, 9–11, 13, 15, 52, 53, 87, 88, 97, 107, 118, 130, 134, 193 differential sensitivity, 87 disease, 79, 125 don’t panic Starbix, 39 ecology, 47, 55, 63, 135 effector cell, 82, 83, 85, 91, 104 eigenvalues, 12, 13, 22, 84, 86, 95, 105, 124, 146, 158 endemic, 112, 128–130 epidemics, 118, 122, 131 epidemiology, 111, 116, 128 excitability, 182, 191, 192, 196, 201, 203 229230 Index FAST, 201 feature sensitivity, 96 Fisher, 197 Fitzhugh Nagumo, 192 Fitzhugh-Nagumo, 201, 203, 206 Fourier Transform, 182 Freter, 148, 149 Galen, 168 gating variables, 194 Gause, 63 genetics, 211–214 half saturation constant, 119, 139 Hardy, 212 Harvey, 168 histogram, 102 Hodgkin-Huxley, 189, 192, 194, 201 Humboldt, 48 immune system, 79, 81, 99 inactivation, 179 infected, 93, 98, 115 infection, 78, 80, 92, 95, 96, 99, 101, 102, 115, 121–124, 126, 128, 130 infectious, 79, 112–114, 124, 126 initial value problem, 10 Jacobian, 18, 57, 73, 84–86, 89, 98, 104, 107 Kermack-McKendrick, 114 linear regression, 68, 71 linearization, 15, 18, 23, 54, 56, 74, 94 logistic, 53, 63 Lotka-Volterra, 54, 56, 63 Malthus, 52 mass action, 5, 54, 56, 83, 93, 94, 116 mass action kinetics, 94 MATLAB, 34 membrane, 177, 182, 190, 191, 194 Mendel, 211 Michaelis-Menton, 139 microbiology, 135 moment independent, 203 Monod, 139, 149 Monte Carlo, 201 Morris Screening, 183 nerve, 190 neuron, 189, 190 Noble, 178, 181, 192 nullcine, 57 nullcline, 65 nullclines, 20, 75, 86 period, 58–60, 74, 164, 182 periodic, 58, 59, 61, 74, 220 phase-plane, 18, 58 population growth, 52 PRCC, 196 propagate, 115, 118, 125, 128 propagation, 126 Punnett, 212 Purkinje, 178 Purkinje fibers, 178 qualitative analysis, 18, 53 rank transformation, 152 recovered, 115, 127Index 231 refractory period, 196 regression, 68–71, 143, 146, 152, 159, 196 sampling, 153, 169 Latin Hyper Cube, 144, 170, 176 Monte Carlo, 144, 173, 176 Sobol’ sequence, 173 uniform, 144 scatter plot, 158 scatterplot, 59, 60, 146, 171 sensitivity in time, 89, 157, 160 sigmoidal curve, 119, 139 SIR, 114, 116, 121, 128 Sobol’, 196, 199, 201, 203, 204 spider plot, 118 steady state, 16, 53, 58, 65, 66, 85, 98, 101, 122 steady-state, 129, 141, 142 susceptible, 115 Taylors’ Theorem, 13, 15, 17, 24 tonic firing, 203 tornado plot, 125 tradgedy of the commons, 154 trajectories, 20, 90, 106, 107, 197, 203 Tuberculosis, 99 tumor, 81–83, 85, 86, 90, 91, 104, 106 vaccination, 79, 111, 126, 134, 137 vaccine, 81, 111, 126, 127, 137 van der Pol oscillator, 202 variance, 70, 143, 200 Verhulst, 53, 63 viral dynamics, 92 virus, 93 voltage trace, 190 within-host, 79, 9 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Mathematical Modeling the Life Sciences - Numerical Recipes in Python and MATLAB رابط مباشر لتنزيل كتاب Mathematical Modeling the Life Sciences - Numerical Recipes in Python and MATLAB
|
|