Admin مدير المنتدى
عدد المساهمات : 19001 التقييم : 35505 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Manufacturing and Novel - Applications of Multilayer Polymer Films الأربعاء 30 أغسطس 2023, 9:28 am | |
|
أخواني في الله أحضرت لكم كتاب Manufacturing and Novel - Applications of Multilayer Polymer Films Deepak Langhe , Michael Ponting PolymerPlus LLC, Valley View, Ohio, USA
و المحتوى كما يلي :
Table of contents Preface 1: Introduction to Multilayered Films Abstract 1.1. Introduction 1.2. Coextrusion Processing Techniques 1.3. Toward Hundreds of Layers 1.4. Multilayer Film Applications 1.5. Multilayer Film Properties 1.6. Novel Applications 1.7. Summary 2: Coextrusion Processing of Multilayered Films Abstract 2.1. Introduction 2.2. Multilayered Film Processing Technologies 2.3. Rheological Phenomena in Multilayered Films 2.4. Summary 3: Gas Transport, Mechanical, Interphase, and Interdiffusion Properties in Coextruded-Multilayered Films Abstract 3.1. Introduction 3.2. Gas Transport Properties of Multilayered Films 3.3. Adhesion and Mechanical Properties of Multilayered Composites 3.4. Interphase Materials 3.5. Interdiffusion in Multilayered Polymers 3.6. Summary 4: Optical Properties of Multilayered Films Abstract 4.1. Introduction 4.2. Polymeric Reflector (Bragg) Films 4.3. Optically Active Nanolayered Film Systems 4.4. Photopatternable Films 4.5. Nanolayer-Enabled Polymer Refractive Optical Devices 4.6. Summary 5: Dielectric and Electrical Properties of Multilayered Films Abstract 5.1. Introduction 5.2. Dielectric Films 5.3. Summary 6: Novel Multilayered Structures and Applications Abstract 6.1. Introduction 6.2. Blends and Composites 6.3. Multilayered Foams 6.4. Porous Composites 6.5. Gradient Multilayered Films 6.6. Shape Memory Polymers 6.7. Multilayered Fibers 6.8. Summary 7: Future Trends Abstract 7.1. Introduction 7.2. Conventional Packaging Applications 7.3. Layered Optical Films 7.4. Molded and Thermoformable Products 7.5. Annular Coextrusion Technology 7.6. Future Markets 7.7. Summary Index Index A ABS/HIPS/ABS three-layered sheet, 30 cross-sectional photomicrograph, 31 ABS/HIPS layer structure, 222 A/B type multilayered structures, 191 Acoustic emission techniques, 156 Acrylonitrile-butadiene-styrene (ABS), 30 Adhesion properties, 8, 71 via tie layers, 77–82 effect of metallocene PE content on adhesion of, 82 effect of tie-layer thickness on delamination toughness, 80 model for PP and ZNPE, mPE, and blends interfaces, 82 resins used in coextrusion of LDPE/ES multilayered composites, 79 tie-layer damage zone, representation, 81 Anisotropic conductivity, 180 Anisotropy, 143, 185, 187 Annular coextrusion technology, 226 Annular dies, 226 Autoclavable barrier films, 6 Automotive glazing, 6 B BCPs. See Block copolymers (BCPs) Biaxially oriented multilayered films, 175–179 Biaxially oriented PP (BOPP) film, 63 Biaxially stretched recrystallized PET/P(VDF–TFE) 32-layered films, 67 Biaxial stretching, 175, 176 approach, 175 composites, 65 microlayers to nanolayers, 64 thick PET/P(VDF–TFE) multilayer films, 177 Biodegradable polymers, 224 Blend-like morphology, 191 Block copolymers (BCPs), 17 Blown film microlayer coextrusion, 26–27 challenges and innovations, 27 commercial die with stacked plates, 35 development of multilayered feedblocks, 26 AFM image microlayer blown film, 27 die geometry, 26 early versions, 26 utilized to fabricate, 26 Blown film process, 2 BOPET films, 222 BOPP film. See Biaxially oriented PP (BOPP) film Bragg crystal films, 123 Bragg-crystal structural reflection, 125 Breakdown failure analysis, 145–148 Breakdown progression, 148–150 Breakdown strength, of films, 176 Breathable films, 11232 Index Brittle, 6, 66 to ductile transition, 84, 207 fracture in SAN, 83 Broadband dielectric spectroscopy, 162 C CaCO 3 filler, 201 Capacitance change associated with different breakdown events, 152 measurements, 143, 150 Capacitor applications BOPP and PET films for, 190 Cast film microlayer coextrusion, 17–26 advancement in die cutting tools, 18 alteration of layer multiplying die length, 23 improvement in layer thickness deviation, 23 layered polymer films, improvement over, 17 layer multiplication process, flexiblity, 20 vs single shot feedblock approach, 20 layer multiplying die design optimization program, 22 mathematical relationship to predict distribution, 24 micro- and nanolayers produced cross-section AFM image, 22 from layer multiplication process with multiplier dies, 21 multichannel-layered feedblock, 18, 19 setting pressure drop and flowrates, 24 through layer multiplying die, 24, 25 optical micrograph, 25 two component multilayer system comprised of, 20 Cell boundaries stretching, 198 Ceramic/alloy-based membrane technologies, 201 Chaotic mixing, 28 Cocontinuous morphology, 191 Coextruded film, 205 Coextruded structures, 2 Coextrusion process, 2, 7, 47, 197, 204, 222, 228 coextrusion/2D multiplication system, schematics of, 212 conventional horizontal layer multiplication process, 211 cross-sectional images, 213 3D writable film, 131 to fabricate films with inorganic phosphate glass, 66 fiber fabrication, 211 filled-filled and unfilled-filled systems, 181 foam/film multilayer, schematic of, 197 K values, 185 layer-structure morphologies, produced using, 5 melt flow instability in, 29–33 cross-sectional photomicrograph, 31 illustration of film or sheet appearance, 30 interlayer instability patterns, 32 nanolayered photopatternable PMMA with, 130 PCL fiber matrix, 216 Compatibilizers, 1 Composites, of polymer, 191 filled composites, 195–196 Compression-molded composites, 183 Conductive pathways, 157 Conductive polymers, 180 Conductivity, as function of electric field, 166Index 233 Conventional packaging applications, 222–223 green/biodegradable multilayered films, 224 modified atmosphere packaging (MAP) materials, 223 multilayer foam/film composites, 224 Conventional PSU–EO blends, 194 CO 2/O2 selectivity, 11 Copolyester composites, 108 Copolymerization, 1 Craze density, 156 Crazing phenomena, 156 Cross-linked polyolefin elastomers, 11 Crystallization behavior, 7 impact gas permeability properties, 48 Custom 3D spherical GRIN optics, 155 D DBR nanolayered mirrors, 127 Deformation interfacial, 29 mechanism, 8 in multilayered films, 87–90 optical micrographs, 88, 89 stress–strain curves, 89, 90 TEM micrographs, 90 optical micrographs of microdeformation, 86 of polymer nanolayers, 6 tensile strain, 124 D–E hysteresis loops, 161, 167 DFB laser film, 127 Dielectric constants charge build-up at interfaces, dependent on, 178 effective, 180 PVDF–TFE layers, 180, 181 P(VDFvHFP) layers, 174, 175 increased, in biaxially stretched films, impact of morphology, 180 of multilayered films, 178 Dielectric films, 143, 227 Dielectric lifetime, enhanced, 151–158 Dielectric polarization, 158 Dielectric properties, 10, 141–143 short-term, 149 Dielectric spectroscopy 50/50 PC/PVDF layered films, 163 Dielectric thermal analyzer (DETA), 150 Diffusion coefficient, 9, 105, 110, 163, 164 Dipole switching, in PVDF, 161 Distributed Bragg reflector (DBR) laser, 125 Ductile, 6, 86, 95, 207 E Early-patented applications, 16 Electrical properties, 141–143 Electric displacement-electric field (D-E) hysteresis, 159 Electrolytic capacitors, 141 Electronic conduction, in polysulfone multilayered films, 165 Electrospinning, 210, 214 Encapsulation effects, in polymer melts, 31 Energy density, 141, 179 biaxially oriented films, 178 PC/P(VDF–HFP) multilayered films, 143–145 PVDF-based multilayered films, 167 Energy storage capability, 141 Ethylene–octane copolymer, 11 Ethylene-octene (EO) copolymers, 8, 11, 40, 194, 197 -based foams, 196 elastomer foam foam/film composites, 196–200234 Index Ethylene vinyl alcohol copolymers (EVOHs), 192 Evaporation, of metal electrodes, 157 F Fabrication of layers, 7 Fatigue, in multilayered films, 92 Fatigue resistance properties, 8 SEM image, 93 strain energy release rate, 93 Feedblock technology, 7, 226 Fiber-filled PP (FPP), 195 Fiber webs, 228 Filled composites, 12 Filled multilayered composites, 93–94 effect of number of layers on fracture strain of, 94 Filled multilayered film systems, 66–69 Fillers, 1, 93–94, 180, 184 Film orientation, 201 Flexible barrier materials, 6 Flory–Huggins interaction parameter, 40 Flow instability, 30 Fluoropolymer barrier layers, 131 Foam/film composites, 199 cell orientation, 196 stress-strain behavior of, 198 Foam/film structures, 11 Focused ion beam (FIB) milling, 146 “Forced assembly” coextrusion process, 4 Fourier transform infrared (FTIR), 162 G Gas barrier polymer, 192 Gas barrier properties, 7 Gas jet process, 210 Gas permeation, through polymer films, 48 Gas separation membranes, 201 Gas transport properties, 47–49 Gradient films, 207 Gradient layer composites, 94 optical microscopy, 95 Gradient multilayered films, 205 gradient foams, 207 optically reflective gradient films, 205–207 Gradient refractive index (GRIN) lenses, 165 Gradient structures, 11 Graphene nanoplatelets-filled PS, 196 Gyration, of polymer molecules, 190 H High-density polyethylene (HDPE), 7, 62 HDPE/PS films, AFM phase images, 192 layer thicknesses, 191 melting temperature, 191 polymer droplets, 191 High impact polystyrene (HIPS), 30 Hydro-entanglement technique, 12 Hyperform HPR-803, 195 Hysteresis, 158, 159 reduction, 162 I Injection molding, of multilayered films, 69–71, 225 improvements in gas barrier properties, 70, 71 morphology analysis, 69, 70 Interdiffusion multilayered polymers, 9, 105 in polyethylenes, 111 Interface phenomena, 47 Interfacial adhesion, in multilayered films, 74–77 3D plots, 75, 76 effect of styrene content on, 78Index 235 peel curves of PC/SAN and PC/ PMMA, 77 Interfacial polarization, 163 Interfacial slip, in nanolayers, 40–42 film layer instability, 42 interface between entangled melts of two incompatible polymers, 41 nominal viscosity of multilayer samples, 41 peeled surface from PP/EO multilayer system, 40 process exemplifie shear conditions, 42 SEM micrographs, 41 Interfacial surface generator, 4 static mixer, 28 Interlayer instability patterns, 32 Interphase materials, 9, 98–105 atomic force microscopy (AFM) phase images, 100 phase images of film crosssections, 104 effect of layer thickness on oxygen permeability, 103 glass transition behavior of PC/ PMMA nanolayer films, 101 three-layered interphase model, representation of, 104 L Lamellar orientation, control in crystalline polymers, 48 Layered optical films, 225 Layered polymer technologies, 16 early examples of applications, 16 Layered structures, thermal break-up of, 191 Layering feedblock technique, 3 Layer instability, 30 Layer interfaces, 40 distortion, 32 Layer multiplication process, 4 coextrusion. See Coextrusion process Layer multiplier-like static mixer, 28 Layer structure integrity, 5 Layer thickness nonuniformity, 30 LCD display, 123 LDPE layers, 199 PP layers, coextruded system of, 214 LDPE–Ni–LLDPE microlayer, 186 LED light bulbs, 225 Linear dielectric material, 159 M Magnesium-based inorganic whisker, 195 MAP materials, 223 Maxwell–Wagner–Sillars (MWS) interfacial polarization, 165 Mechanical properties, 8, 71, 83–84 confined block copolymers, 97–98 stress–strain response of, 99 layer thickness effect on, 84–86 optical micrographs of microdeformation, 86 stress–strain curves, 85 multilayered composites, 83 stress–strain curves of 49-layered PC/SAN tensile specimens, 83 tensile specimens from 49-layered PC/SAN composites changes in fracture mode, 83 nanoscale confinement effect on, 95–97 AFM images of PEO layer structure in, 98 deformation mechanism, 97 stress–strain curves, 96 Melt disturbances, 29 Melt feed ratio, 5236 Index Melt flow instabilities, 29 in coextrusion process, 29–33 encapsulation effects in polymer melts with, 32, 33 flow rate dependent interfacial features, 29, 30 methods preferred to avoid instabilities, 32 and viscosity mismatch, 31 zig-zag/scattering/wave patterns, 30–31 Melt influxes, 40 Melting temperatures, 10 Metal-filled conductive multilayers, 180–186 Microlayered structures, 228 Micro/nanolayer coextrusion, 16 Micro/nanolayered packaging materials, 224 Microplatelet-based oriented morphology, 192 Modified atmosphere packaging (MAP) materials, 223 Modifiers, 1 Molded products, 225 3M’s Ultra Series of multilayered films, 6 Multicomponent heterogeneous polymers, 46 Multilayer coextrusion, 196, 211, 221. See also Coextrusion process advantages of, 221 PET/P(VDF–TFE) multilayer films, 177 Multilayered blends, 225 Multilayered composites for F–F and U–F composites, 181 mechanical properties of, 71, 83–84 scanning electron micrographs, 182 Multilayered fibers, 210 LDPE/PP fibers, 214 modified coextrusion processing, 211 multilayer blown microfibers, 210–211 PA6/PET fibers, 214 PCL nanofibers, single component fiber webs, 215–217 Multilayered films, 11, 223, 228 applications, 6, 225 with hundreds of layers, 4 interface modification in, 168–169 effect of PETG and SAN30 tie layers, 171–175 effect of PMMA tie layers, 169–171 markets, 221 micro- and nanoscale affects, 190 microfibrillation of, 210 narrowband one-dimensional photonic crystals of, 227 O 2 permeability of, 203 polarization in, 158 high-field hysteresis, 159–162 interfacial polarization, 165–167 ionic polarization, 162–164 processing technologies commercialization aspects, 17 companies, patented by, 16 historical perspective, 16 micro- and nanolayered usage patents published, 17 research and develpoment, 16–17 properties, 7 structures, 197, 224 systems, and improvements over control films, 46 Multilayered foams, 196–200 structures, 197, 224 Multilayer feedblock technology conventional, early examples, patented by, 16 Multilayer micro- and nanofibers, 12 Multilayer optical films, applications of, 225Index 237 Multilayer stacked plate or “pancake” die, 27 Multiple polymer materials, 1 Multiple thermomechanical cycles, 208 Multistep coating, 1 Multistep lamination, 1 N Nanobiaxially oriented PET (NanoBOPET), 66 Nanobiaxially oriented polypropylene (Nano-BOPP), 63–65 Nanolayered DBR laser, 125 Nanolayered film systems, optically active, 123–129 Nanolayered reflective films, 125 Nanolayered structures, 5 Nanolayer-enabled polymer refractive optical devices, 132–138 nanolayered polymeric GRIN lens fabrication, 134–138 nanolayer film enabled flat-top beam shaping GRIN lens system, 137 GRIN “flat prism”, 137 Nanolayers, interfacial slip in, 40 Nd:YAG laser, 125 Nickel filled LLDPE layer, 186 Numerical simulations, 5 Nylon-EVOH composites, 110 O Olefinic block copolymers (OBCs), 8, 40 Optical film markets, 227 dielectric films, 227 fiber webs/scaffolds, 228 passive sensors, 227 porous structures, 228 shape memory polymers (SMPs), 228 Optical filtering, 123 Optical micrographs injection-molded plaques, 192 of transverse and longitudinal sections, 194 Optical properties, 9, 117 Optical reflection brand gradient layer thickness films, 123 Optical reflective properties, 119 Oriented morphology, 192 Oxygen permeance values, 201 P Packaging, 3, 227 fabrication techniques, 225 PA6/PET composite system, 214 SEM images, 215 Particle arrangement, in thick and thin filled layers, 185 Passive sensors, 227 PC/copolyesters, 9 PCL. See Polycaprolactone (PCL) PC/PMMA interphase properties, 46 and estimated properties from various models, 46 PC/PMMA system, 9 PC/P(VDF–HFP) films, 154 multilayered diffusion models for, 163 energy density, 143–145 PC/PVDF serial capacitor model, 162 PC/SAN multilayer composites, 8 impact properties of, 91 number of crazes in composite, 92 relative rheometrics impact strength of, 91 shear banding in PC layers acting as, 92 PEBA/b-PP multilayered composites, 201 PEO. See Poly(ethylene oxide) (PEO) Permeability coefficient, of film, 48 Permeability model, 67 Permittivity values, 143238 Index PET/PVDF–TFE films, 176 PET/PVDF–TFE interface, 178 PET/P(VDF –TFE) multilayer system, 177 Phase angle, 118 Phosphate glass-filled composites, 196 Phosphate glass-filled PP-g-MA, 195 Phosphate glass platelets, 195 Photopatternable films, 129–131 Plaques creating polyamide-66 (PA66) microplatelets, 192 Plastic/elastic polymers, 11 PMMA/SAN17 polymer films, 135 Polyamides, 192 Polycaprolactone (PCL), 7, 11, 55–57, 208, 222 barrier properties, 55 crystallization temperature, 56 fixity ratio, 209 Herman’s orientation function, 58 images of, 208 interaction of confining substrates, 56 layer thicknesses and morphology, 55 melting temperature, 208 morphology analysis of, 208 nanofibers, 216 web, 228 nanolayers, 190 oxygen permeability properties, 57 PCL/PEO system, 216 structure/morphology evolution, 58 Polycarbonate, 6, 22, 125 composites, 108 Polyester terephthalate glycol, 125 Poly(ether block amide) (PEBA) elastomers, 11 polymer, 201 Polyethylene (PE), 196 Poly(ethylene oxide) (PEO), 7, 49–55, 215 based multilayer films, in commercial applications, 55 crystallinity of, 52 gas barrier properties, 54 Herman’s orientation function, 52 isothermal crystallization kinetics, 53 on-edge crystal orientation, 54 oxygen permeability, 49 effect of layer thickness on, 50 transition from 3D spehrullitic morphology to, 50 Polyethylenes, 9 Polyethylene terephthalate (PET), 7, 142 Polymer blending, 1, 191 innovative, 191–195 Polymer C, 5 Polymer fibers, 210 Polymer foams multilayered foams, 196–200 Polymeric reflector (bragg) films, 117–122 Polymer layers, 3 Polymer materials, in packaging applications, 47 Polymer melt, 3 Polymer optical films, 225 Polymethyl methacrylate (PMMA), 9, 22, 39, 87, 130, 170, 171 Poly(4-methylpentene-1) (P4MP1), 7, 62 measured permeability values, 62 Polyolefins, 222 blends, 11 Polypropylene (PP) -based foam/film systems, 199 elastomer layered composites, 40 EO multilayer system, peeled surface from, 40 foam/film structure multilayer, 11 number of layers, 198 HDPE multilayered films, 8Index 239 matrix, 192 multilayer composite, SEM image, 195 PA66 multilayered system, 10 polystyrene multilayered films, 6 spherulite boundaries, 40 stress–strain behavior of, 200 Polystyrene (PS), 196 horizontal layers, 214 Polysulfone (PSU), 194 SEM image, 195 Polytetramethyl oxide (PTMO), 201 Polyurethane (PU), 11, 196 Polyvinylidene fluoride (PVDF), 7, 142 polymers, 61 oxygen permeability values, 61 Poly(vinylidene fluoride- co -tetrafluoroethylene) (PVDF–TFE), 175 Polyvinylidine- co -trifluoroethylenbased terpolymers, 141 Porous alternating layers process optimization, 204 Porous composites, 201 corrugated layers, 204–205 multilayered gas separation membranes, 201–204 Porous materials, 11 Postorientation annealing techniques, 201 PP. See Polypropylene (PP) Properties, 3 PS/PMMA gradient layer cross-section optical micrograph, 205 refractive index difference, 205 128 step-layered thickness distribution, 206 PS/THV gradient film, 207 PU/PCL films, 11 PVDF-based ferroelectric polymers, 158 polarization, 158 PVDF-based multilayered films energy density, 167–168 PVDF dipole flipping, 162 P(VDF–HFP)-based multilayer films, 158 P(VDF–HFP)/tie interactions, 174 PVDF–TFE layers, 175 crystal morphology in, 178 Q Quinacridonequinone (QQ), 201 R Reflective polarizers, 6 Refractive index, 118, 131 gradient, 135 Resitivities, of composites, 183 R6G laser dye, 127 Rheological phenomena, 29 S Scattering, 30 SEPS block copolymer elastomer, 204 Shape memory polymers (SMPs), 11, 208, 228 permanent and temporary shapes, 208 polymer blends and block copolymers, 208 Shear stress, 30 Skin-layer viscosity, 30 SMPs. See Shape memory polymers (SMPs) Specific resistivity, 182 sPP. See Syndiotactic polypropylene (sPP) Stackable plate die, 2 Stretched multilayered films, 204 Structure–property relationships, 1 Styrene-acrylonitrile (SAN), 6240 Index Syndiotactic polypropylene (sPP), 7, 58–60 cross-hatched lamellae, role, 59 morphological analysis of extruded film, 58 oxygen transport measurements, 59 T Tensile behavior, 198, 214 Tensile stress, 123 Thermal annealing, 175, 186 of biaxially stretched multilayer films, 177 Thermoformable products, 225 Thermoplastic film applications, 1 Thermoplastic polymers, 6 Thickness uniformity, 5 Three-dimensional photopatterning of nanolayered films, 130 Tie-layer polymer, 5 Tortuosity, 10 Transmission drop, film exhibiting, 120 Tree diameter, as a function of electric field, 179 Treeing mechanism, 178 Treeing phenomenon, 145 Tubular coextrusion process, 2 Two-layered annular extrudate, 2 U Ultrathin separation membranes fabrication of, 201 V Viscosity, 3 comparison of PS resins, 33 effect in layer multiplication process, 39 PC and PMMA viscosities as a function of temperature, 39 mismatch, 31, 33 comparison of PS resins, 33 cross-section images of A/D samples, 33 effect on layer structure, 33–38 two-layered patterns, 35 skin layer polymer, 30 W Water vapor transport rates (WVTR), 66 of extruded, biaxially stretched, and biaxially stretched recrystallized PET/ P(VDF–TFE) films, 68 overall film, 68 “Wave” instability, 31 pattern, interfacial instability, 32 Weibull distribution function, 152, 153 Weibull plots, 167 WVTR. See Water vapor transport rates (WVTR) Y Young’s modulus, 214 Z Zig-zag type interfacial instability, 32
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Manufacturing and Novel - Applications of Multilayer Polymer Films رابط مباشر لتنزيل كتاب Manufacturing and Novel - Applications of Multilayer Polymer Films
|
|