Admin مدير المنتدى
عدد المساهمات : 19002 التقييم : 35506 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites الجمعة 14 يوليو 2023, 2:12 am | |
|
أخواني في الله أحضرت لكم كتاب Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites Edited by Visakh P.M. Tomsk Polytechnic University, Tomsk, Russia Mong Liang Tomsk Polytechnic University, Tomsk, Russia
و المحتوى كما يلي :
Table of contents List of Contributors Preface 1: Polyethylene Terephthalate: Blends, Composites, and Nanocomposites – State of Art, New Challenges, and Opportunities Abstract 1.1. Modification of Polyethylene Terephthalate 1.2. Reinforcement of Polyethylene Terephthalate via Addition of Carbon-Based Materials 1.3. Polyethylene Terephthalate-Based Blends: Thermoplastic and Thermoset 1.4. Polyethylene Terephthalate-Based Blends: Natural Rubber and Synthetic Rubber 1.5. Characterization of Polyethylene Terephthalate-Based Composites and Nanocomposites 1.6. Polyethylene Terephthalate: Copolyesters, Composites, and Renewable Alternatives 1.7. Molecular Weight Determination of Polyethylene Terephthalate 1.8. Degradation Kinetic Parameter Determination of Blends Containing Polyethylene Terephthalate and Other Polymers with Nanomaterials 1.9. Modification of Polymer Composites by Polyethylene Terephthalate Waste 1.10. Highly Functionalized Polyethylene Terephthalate for Food Packaging 2: Modification of Polyethylene Terephthalate Abstract 2.1. Introduction 2.2. Radio-Frequency Plasma 2.3. Ultraviolet Technique 2.4. Protein Immobilization on Treated Surfaces 2.5. Conclusions Acknowledgments 3: Reinforcement of Polyethylene Terephthalate via Addition of Carbon-Based Materials Abstract 3.1. Introduction 3.2. Carbon Nanotubes 3.3. Carbon Fibers 3.4. Graphene 3.5. Polyethylene Terephthalate/Carbon Nanotube Composites 3.6. Polyethylene Terephthalate/Carbon Fiber Composites 3.7. Polyethylene Terephthalate/Graphene Composites 3.8. Conclusions 4: Polyethylene Terephthalate-Based Blends: Thermoplastic and Thermoset Abstract 4.1. Introduction 4.2. Polyethylene Terephthalate-Based Thermoplastic Blends 4.3. Preparation of Polyethylene Terephthalate-Based Thermoplastic Blends 4.4. Polyethylene Terephthalate-Based Thermoset Blends 4.5. Preparation of Polyethylene Terephthalate-Based Thermoset Blends 4.6. Conclusions Acknowledgments 5: Polyethylene Terephthalate-Based Blends: Natural Rubber and Synthetic Rubber Abstract 5.1. Introduction 5.2. Polyethylene Terephthalate-Based Natural Rubber Blends 5.3. Polyethylene Terephthalate/Synthetic Rubber Blends 5.4. Conclusions Acknowledgments 6: PET Nanocomposites: Preparation and Characterization Abstract 7: Polyethylene Terephthalate: Copolyesters, Composites, and Renewable Alternatives Abstract 7.1. The Context 7.2. Composites from PET and Renewable Substrates 7.3. Copolyesters from PET and Aliphatic Renewable-Based Comonomers 7.4. Copolyesters from PET and Aromatic Renewable-Based Comonomers 7.5. PET Alternatives from Renewables 7.6. Conclusions and Future Challenges Acknowledgments 8: Molecular Weight Determination of Polyethylene Terephthalate Abstract 8.1. Introduction 8.2. Determination of PET Molecular Weight 8.3. Applications of PET 8.4. Conclusions 9: Degradation Kinetic Parameter Determination of Blends Containing Polyethylene Terephthalate (PET) and Other Polymers with Nanomaterials Abstract 9.1. Introduction 9.2. Thermolysis Types and Classification 9.3. Principles of Polyethylene Terephthalate (PET) Degradation Reaction and Mechanisms 9.4. The Degradation Behavior of PET Blends in Thermogravimetry 9.5. Thermal Degradation of Polyester Blends with Nanoclay and Carbon Nanofibers 9.6. Concluding Remarks and Recommendations Acknowledgment 10: Modification of Polymer Composites by Polyethylene Terephthalate Waste Abstract 10.1. Introduction 10.2. Application of PET Waste in Construction Composites 10.3. Epoxy Mortars Modified by PET Glycolysate – A Case Study 10.4. Conclusions 11: Highly Functionalized Polyethylene Terephthalate for Food Packaging Abstract 11.1. PET for Packaging: Backgrounds and Requirements 11.2. Fundamentals of the Properties Achieved by Composites for Food Packaging 11.3. Hard Material/PET Nanocomposites for Food Packaging Index Index A Acrylonitrile-butadiene-styrene (co)polymer, 66 Actis, 221 Acyclic dienemetathesis (ADMET), 131 Adipic acid (AA), 117 ADMET. See Acyclic dienemetathesis (ADMET) Agglomerations, 30 Aggregates concrete waste, 201 lightweight, 197 sulfuric acid solution, 208 waste PET and rubber, 198 Alcohol group reactions epoxides, schematic of PET, 69 Aliphatic-aromatic copolyesters ecoflex, 120 packaging industry, 120 renewable-based aliphatic monomers, 117 through polycondensation of biobased diacyl chlorides, 132 Aliphatic renewable-based comonomers, 117 applications, examples, 120 linear aliphatic comonomers, 117 PET-co-PEG copolyesters structure, 123 PET-co-PGA copolyesters structure, 122 PET-co-PS copolyesters structure, 117 poly(ethylene terephthalate-co-alkylene dicarboxylate)s, 120 poly(ethylene terephthalate-co-alkylene succinate)s, 117 poly(ethylene terephthalate-co-ethylene glycol)s, 123 poly(ethylene terephthalate-co-glycolic acid)s, 121 poly(ethylene terephthalate-co-lactic acid-co-ethylene glycol)s, 124 poly(ethylene terephthalate-co-lactic acid)s, 121 synthesize PET-co-PLA copolyesters, schematic illustration, 122 Analytical solution method, kinetic parameters determination, 188 APG plasma. See Atmospheric-pressure glow (APG) plasma Aromatic polyesters, 47, 52, 131 Aromatic renewable-based comonomers, 127 PET-co-PHB copolyesters, 128 polarized light microscopy, 129 structure of, 128 PET-co-PHQT copolyester structure of, 128 poly(ethylene terephthalate)-co- (4-gydroxybenzoate), 128 poly(ethylene terephthalate-cohydroquinone terephthalate), 128 Arrhenius-type temperature dependence, 175 ASTM D 2857 method, 145 ASTM D 4603 method, 145 AT. See Attapulgite (AT) Atmospheric-pressure glow (APG) plasma, 222 Atomic force microscopy (AFM) measurements bending force, 48 distribution of collagen molecules, 30 grain analysis method, 30, 33 plasma-treated films, 20 solver PRO-M, 19 tapping-mode, 33 untreated PET, 20 UV treated, 26 collagen immobilized on PET, 34 Attapulgite (AT), 106, 223 Automobile tire yarns, 99 B Banbury mixer, 4, 79 Billmeyer equation, 145 Biobased diols (BD), 132 2.2-Bis-hydroxymethyl-propionic acid, 227 10-[3,5-Bis(methoxycarbonyl) phenoxy] decyltriphenylphosphonium bromide (IP10TP), 103 Bisphenol A diglycidyl ether (DGEBA), 231 Bisphenol-A epoxy resin (E-44), 3 Blending formulations, 91 polyvinyl chloride (PVC), 79 of thermoplastics and rubbers, 77 Blow-molding process, PET bottles, 225 Boltzmann equation, 16 Brabender Plasti-Corder, 79 Breaking bonds, energies, 17 C CaCO 3 nanoparticles, 107 Carbon-based materials, 42 Carbon fiber composites applications, 52 carbon fiber-reinforced PET (CFRPT), 50 durable properties, 52 electrical conductivity, 52 electromagnetic interference shielding, 52 mechanical performance, 51 thermal properties, 51 preparation, 49 properties, 50 Carbon fiber-reinforced PET (CFRPT) composites, 3, 50 durable properties, 52 electrical conductivity, 52 electromagnetic interference shielding, 52 mechanical performance, 51 thermal properties, 51 Carbon fibers (CF), 44 commercial properties, 45 PAN-based manufacturing, 44 reinforced polymer, 45 -reinforced thermoplastic composites, 51 Carbon nanofiber (CNF) polyester blends, thermal degradation of, 186 -toughened polyester, 50 Carbon nanotubes (CNTs) composites, 2, 42 application, 49 covalent functionalization, 44 crystallization characteristics, 48 electrical properties, 48 mechanical properties, 48 preparation, 47 properties, 47 surface modification, 4 thermal properties, 48 thermoconductivity, 43 Carbon-reinforced polyester composite materials, 53 Carboxylic acids, schematic of PET, 69 Carroll method, 176 Catalytic cracking, 172 Cellulosic polymers, 190 CFRPT composites. See Carbon fiberreinforced PET (CFRPT) composites Chemical recycling, 171 Chemical surface modification toxic compounds and physical alterations, 15 Chemical vapor deposition (CVD), 43 Chopped rice husk (CRH) composites, 5, 116236 Index Clay/PET composites, 217 platelets, 100 Cloisite 30A, 100 CNF. See Carbon nanofiber (CNF) 13C-NMR analysis, 149 Coatings, 214 antireflection, 191 antistatic, 49 barrier properties, 219 diamond-like carbon (DLC), 218, 221–223 PET bottles, 221 fiber, 52 HMDSO/O 2/CF4 mixtures, 7, 219 hydrocarbon, 221 hydrophobic-protecting, 120 material/PET composite films, 215 plastic packaging materials, 7 silicon-based, 101 silicon oxide (SiO x ), 218, 219 thin gas-barrier, 215 ultrathin, 104 Coats–Redfern method, 176 Collagen, 28 –buffer solution, SEM images of, 29, 30 extracellular matrix, 26 immobilization AFM measurements, 31 AFM measurements on PET plasma, 32 -immobilized films, 28 PET film, 28 -rich tissue, 26 Composites defined, 195 from PET, 115 Compressive strength test, testing machine, 206 Construction composites chemical resistance, 201 epoxy mortars modified by PET glycolysate, 202 HB hardness, 206 microstructural studies, 204 obtaining process, 202 pull-off test, 207 tensile strength in bending/ compressive strength, 204 water absorption and chemical resistance to selected corrosive media, 208 PET waste, application, 197 aggregates, 197 epoxy resins production, 201 mortar, 197 recycled fiber reinforcing concrete/ mortar, 199 uncemented composites, 201 in unsaturated polyester resins production, 200 sulfuric acid solution, 201 Copolyesters, 117, 118, 127 aliphatic-aromatic, 120 from aliphatic renewable-based comonomers, 117 backbone, 120 lignin-based, 131 liquid crystalline, 128 2,6-naphthalenedicarboxylic acid, 125 on PET, renewable-based succinic acid, 118 PET-co-PHB structure, 128 polydispersity, 131 poly(ethylene 2, 5-furandicarboxylate), 129 polyethylene terephthalate, 5 poly(ethylene terephthalateco-butylene succinate) (PET-co-PBS), 119 Crude oil processing, 173 Cryofractured surfaces, 83 Crystallinity degree, trans conformer fraction, 22 CVD. See Chemical vapor deposition (CVD) Cyclic aliphatic comonomers, 124 poly(ethylene terephthalate-co-1, 4-cyclohexylene dimethylene terephthalate)s, 125 1,4-Cyclohexenedimethanol (1,4-CHDM), 124 -based polyesters, 124 polymerization, 124 D D8 Advance Bruker AXS diffractometer, 22 Dehydrohalogenation, 25 Depolymerization processes, 172 Diamond-like carbon (DLC), 218, 221–223 coating technology, 221 film, 8 PET bottles, 221 Diepoxide, reacts with hydroxyl/carboxyl groups, 72 Differential scanning calorimetry (DSC), 48 heating thermograms, 85 measurements, 102 PET/ABS blends, 93 Diffusing molecules, tortuous path, 216 Diglycidyl ether, 70 1,4-Di-(hydroxymethyl)-benzene, isosorbide, 130 Dimethyl terephthalate (DMT), 106, 227 Disproportionation reaction, 24 DLC. See Diamond-like carbon (DLC) DMEM high-glucose medium, 34 DMT. See Dimethyl terephthalate (DMT) Dodecyl-benzenesulfonate (DBS), 227 Dodecylsulfate (DS), 227 Druyvesteyn approximation, 17 DSC. See Differential scanning calorimetry (DSC) E ECR plasma. See Electron cyclotron resonance (ECR) plasma EG. See Exfoliated graphite (EG) E-GMA. See Ethylene-glycidyl methacrylate (E-GMA) Electrical insulating properties, 195 Electromagnetic interference shielding, 52 Electron cyclotron resonance (ECR) plasma, 8, 219 Emitech K1050X Plasma Asher, 18 Epoxy group, of GMA, 82 Epoxy mortars, 207 modified by PET glycolysate, 202 HB hardness, 206 microstructural studies, 204 obtaining process, 202 pull-off test, 207 SEM microphotographs, 204, 205 tensile strength in bending/ compressive strength, 204 water absorption and chemical resistance to selected corrosive media, 208 Epoxy resin bisphenol-A, 3, 70 Epidian 5, 204 SEM microphotographs, 205 PET/PA6 blend, 71 E44 blends, 72 PET waste application, 201 mortar modified, 199, 202 preparation of, 69, 70 Esterification reaction, 168 Ethylene-glycidyl methacrylate (E-GMA), 67 Ethylene glycol (EG), 99, 114, 168, 227 condensation polymerization, 168 DMSI-modified LDH, 227 methylene protons, 149 polymer contains, 144 polymerization, 99 TA-intercalated LDHs, 106 trans–gauche conformation, 19 Ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA), 104 Ethylene vinyl acetate, 66 Excited-state quenchers, 24 Exfoliated graphite (EG), 103 Exfoliation, 159 Expanded graphite, 229 Exposure, 25 Extruder CSI Max Mixing Extruder, 87 ICMA MC 33, 67 single-screw, 67 twin-screw, 67 Werner-Pfleiderer, 71Index 237 F FBS. See Fetal bovine serum (FBS) FDCA. See 2,5-Furandicarboxylic acid (FDCA) Fetal bovine serum (FBS), 34 Fiber-reinforced polymer (FRP), 52 Film foil, 196 Flexible packaging, 215 Flexural strength testing, 205 Flexural-strength values, 208 Fluorine mica, 226 Food packaging acid-MWCNT/diamine-MWCNT, schematic diagram, 231 clay/polymer composites, 216 clays stretching, schematic representation, 227 commercialized DLC coating machine, 222 O 2 and CO2 transmission rates, 223 diamond-like carbon (DLC) nanocoating on PET bottles, 222 flexible packaging, 215 gas-barrier properties, 7 inorganic filler/PET composites, 223 by nanocomposites, 215 of sheet clay/polymer nanocomposites, 229 by thin film coatings, 215 gas permeations polymer bottle/DLC-coated polymer bottle, 214 hard material/PET nanocomposites, 218 DLC thin-films, gas-barrier properties, 221 SiO x thin-films, gas-barrier properties, 218 high gas-barrier properties for, 218 highly functionalized, 7 hydrophilic to hydrophobic phases in clays, 226 layered double hydroxide (LDH) DMSI, schematic diagram, 228 mica clay, 225 modified atmosphere packaging (MAP), 213 modified montmorillonite (MMT) clays, 225 nanofillers, with sheet-like structures, 224 O 2 permeation, two-layer model, 215 PET bottles for beverage, 213 polymer nanocomposites, clays classification, 224 reinforcement by nanocomposites, 216 silicate layered clays, exfoliation/ intercalation of, 224 Fourier transform infraded (FT-IR) method, 202 plasma treatments/collagen immobilization, measurements, 29 spectroscopy data, for PET, 19 Fourier transform infrared-attenuated total reflection spectroscopy (FTIR-ATR) spectroscopy, 18 Freeman method, 176 Friedman method, 182, 186, 187, 189 for activation determination, 187, 188 kinetic parameters determination, 188 for PBT/NC, 188 FRP. See Fiber-reinforced polymer (FRP) Furan-aromatic polyesters, 131 2,5-Furandicarboxylic acid (FDCA), 129 copolyesters, 130 polyester, 114 G Gas-barrier properties, 7 DLC thin-films/PET composites, 221 food packaging, 218 inorganic filler/PET composites, 223 by nanocomposites, 215 of sheet clay/polymer nanocomposites, 229 SiO x thin-films/PET composites, 218 by thin film coatings, 215 Gas-phase photodissociation, UV light and ozone, 24 Gauche CH 2 wagging band, 19 Gauche conformer, trans conformer transformation, 1 Gel permeation chromatography (GPC) methods, 6, 148 14 PET fibers, analysis of, 153 GF. See Glass fiber (GF) Glass fiber (GF), 50 Glass fiber-reinforced recycled polyethylene terephthalate, 50 Glycidyl methacrylate (GMA), 80 HDPE grafted, 67, 68 Glycolic acid, 114 Glycolysates, 202 characteristics, 203 critical values of hardness, 207 FT-IR spectrum, 203 resin, 196 spatial and contour graph, 206, 207 Glycolysis reaction, PET waste, 201 Grafting, of elastomer, 80 Granulated PET, 70 Graphene composites, 45, 46, 53, 228 advantages of, 56 application, 56 lightweight high-performance thermal management systems, 56 melt-compounding polymerization, 54 PET reinforced, 2 preparation, 54 properties, 55 crystallization, 56 electrical, 56 mechanical, 55 thermal, 56 schematic diagram, 42 in situ polymerization/in situ melt polycondensation, 54 synthesis of, 55 Graphene nanocomposites, 5, 46, 56 Graphene nanosheets, 5 Graphene oxide (GO), 228 Graphite, schematic diagram, 42 Graphite nanoplatelet (GNP), 229 Graphite oxide, 46 Gyration, 145 H Hakke Rheomix 3000p, 67 Halpin–Tsai equation, 217, 218 Hand lay-up method (HLU), 50 Hard material/PET nanocomposites, 218 DLC thin-films, gas-barrier properties, 221 SiO x thin-films, gas-barrier properties, 218 Heat-transfer problems, 176 Hematoxylin/eosin-stained samples, photomicrographs of, 35 Hemp fiber composites, 115 Hexamethyldisilazane (HMDSN), 219 Hexamethyldisiloxane (HMDSO), 8, 218 HFIP–CDC1 3 mixture, 149 HFIP:chloroform, 153 High-density polyethylene (HDPE), 3, 116, 214 microfibrillar blends of, 116 scrap, 67 High-energy ball milling (HEBM), 227 High-tenacity polyester fibers, 155 Human endothelial cell line EA.hy926, 34 Hydrogen bonding, carbonyl group of PET, 85 Hydrophobic BaSO4 nanoparticles, 107 Hydroquinone (HQ), 114, 127 Hydrous magnesium-aluminum silicate mineral, 106 4-Hydroxybenzoic acid (HBA), 114, 127 Hydroxyl end group, of PET, 82 5-Hydroxymethulfurfural (HMF), catalytic oxidation of, 129 I ICMA MC 33 twin-screw corotating extruder, 67 Infrared (IR) radiation, 25 In situ polymerization technique (I-S), 105 Interfibrillar amorphous phase, 22 IPA. See Isophthalic acid (IPA) Isocyanate, preparation of, 70 Isophthalic acid (IPA) fossil-based, 123 mechanical properties, 7 Isothermal measurements, advantages/ disadvantages of, 175 Izod impact strength, 81238 Index K K2-5 formulation, SEM illustration, 91 Kissinger method, 176 L Laponite-synthetic hectorite, 102 Laser irradiation, 1 Layered double hydroxide (LDH), 103, 223 anionic clays, 106 oxygen barrier properties, 103 Layer nanosheets, 228 LDH. See Layered double hydroxide (LDH) Light source, ultraviolet technique, 23 functional groups studies on treated surfaces, 24 PET, UV radiation effects, 25 principle of technique, 23 Lightweight aggregates, 197 Lignin-based alternatives, 131 lignin-based copolyesters, 131 poly(dihydroferulic acid)/poly(alkylene 4-hydroxybenzoate)/ poly(alkylene vanillate)/ poly(alkylene syringate) homopolyesters, 131 Lignin composites, 6 Limiting oxygen index (LOI), 106 Linear aliphatic comonomers, 117 Linear lowdensity polyethylene (LLDPE), 171 Liquid crystalline polymers (LCPs), 67 compatibilized and uncompatibilized films, 68 Lotader AX8900, 80 Low density polyethylene (LDPE), 171, 198 M Major municipal solid waste (MSW), 169 Maleic anhydride (MAH), 80 Maleic anhydride-grafted styrene-ethylenebutylene-styrene (MAH-gSEBS) rubber, 77 Mark–Houwink equation, 145, 147, 151 Material recovery facilities (MRFs), 169 MDI-grafted AT (MAT), 106 Melt blending, 66, 79 Melt-compounding polymerization process, 54 Melt-flow index (MFI) measurements, 145 Melt flow rate (MFR), 71 mechanical properties, 71 Melt Indexer Dynisco–Kayeness Polymer Test Systems model LMI 4004, 147 Melting temperature, of PET, 48 Melt mixing (MB), 105 Metallized polyethylene terephthalate/ nanotubes (M-PET/NTs), 2 Metal oxides as fillers, 105 Microfiber formation, 48 Microfibrillar blends (MFBs), 116 Mini-Max Molder CS-183MM machine, 47 Mixing rigid fillers, 216 Modified montmorillonite (MMT) clays, 4, 8 exfoliation of, 226 PET composites, 225 Modulus reduction factor (MRF), 217 Moisture resistance, 144 Molecular weight determination, 144 applications of PET, 154 in biomedical research, 155, 159 clay nanocomposites, 159 Coca-Cola bottles analyzed by GPC, 154 fabrication, ease of, 155 HT PET advantages, 155 ideal elongation, 159 materials properties, 156 medical-grade compatibility, 155 reference collection of synthetic fibers by GPC, 155 strength and flexibility, 155 bottle-grade PET (BPET) intrinsic viscosity, 147 viscosity vs. concentration, 146 carboxyl/hydroxyl end group assay methods, 148 13C-NMR chemical shifts, 150 Dawkins method, 151 end group in PET by NMR spectroscopy, 149 by gel permeation chromatography, 149 gel permeation chromatography (GPC) analysis of diluted fiber polymer sample, 153 obtaining methods, 151 iterative algorithm method, 151 1H-NMR spectra of PET fiber, 150 intrinsic viscosity method, 144, 145 Mark–Houwink equation, 147, 148 melt-flow index (MFI) intrinsic viscosity determination of, 147 of PET samples, 147 near infrared spectroscopy (NIR) GPC methods, 149 scans, decreasing absorbance, 148 polydispersity measured by SEC, 153 polyesters, by NIR spectroscopy, 148 poly(ethylene terephthalate) (PET) chemical structure, 144 determination of, 144 fibers GPC chromatograms, 153 samples analyzed by GPC, 154 intrinsic viscosity, samples, 147 using GPC, 152 mobile phase, 152 simplified, 151 Sreenivasan and Nair Method, 152 terephthalic acid/diol, polyester synthesized, 144 Ubbelohde viscometer, illustrative image, 146 Montmorillonite (MMT) clay, 99, 223 thermal stability and degradation, 171 Multiwalled carbon nanotube (MWCNT), 8 PET composites, 230, 231 surface, carboxylic acid groups, 231 Multiwalled nanotubes (MWNTs), 42 Municipal solid waste (MSW) categories, 169 N Nanoclay nanoparticles, 171 polyester blends, thermal degradation of, 186 Nanocomposites films, 186 crystallization temperature, 102 graphene with uniform dispersion, 103 isocyanate groups, 47 polyethylene terephthalate (PET), 2, 4, 5, 47, 100, 101, 103 in TGA, 179 Nanofillers, with sheet-like structures, 224 Nanolayers, 171 Nanoparticles, 171 Nanopolymers, classification/degradation, 170 Nanotechnology, 171 Nanotubes, 171 Natural rubber (NR) blends, 4, 77, 78 applications, 86 crystallinity, percentage of, 85 hydrogen bonding carbonyl group of PET, 85 PET/NR blends, molecular characteristics, 84 PET/NR blends, morphology, 82 PET/NR blends, preparation of, 78 Brabender Plasti-Corder, 79 Haake Rheocord, 79 mixing, 79 solution casting, 79 twin-screw extruder, 79 two-roll mill, 79 PET/NR blends, properties of, 80 influence of blend composition, 81 influence of compatibilizers, 80 influence of extrusion speed, 82 PET/NR blends, thermal properties, 85 Near infrared spectroscopy (NIR), 148 North America Free Trade Agreement (NAFTA), 169 Notched Izod impact strength, of PET/NR blends, 81 Notch sensitivity, of PET, 4 NR blends. See Natural rubber (NR) blendsIndex 239 O Objective function (OF), 181 Oligomeric poly(L-lactic acid) (PLLA), 121 Organoclay I.30E, 102 Organo-montmorillonite (OMMT), 101 Oxygenated polymers (polyesters) extensive applications of, 191 Oxygen-containing polymers, 190 Ozawa-Flynn-Wall (OFW) method, 176, 179, 182 activation determination, 189 kinetic parameters determination, 188 Ozone, gas-phase photodissociation, 24 P Peroxide components, generation/possible disintegration products, 26 PET blends. See Polyethylene terephthalate (PET) blends Petrochemical plants, 172 Phenolic resins, 190 Phenol–tetrachloroethane and molecular weight, 148 Phenyl containing highly cross-linked polyborosiloxane (PBSiO), 101 Phosphate buffered saline (PBS), 28 Photooxidation, 168 Photooxidative degradation, 25 Photooxidative reactions, 25 Plasma enhanced CVD (PECVD), 218 Plasma-exposed substrate surfaces, 17 Plasma-treated films, surface topography, 20 Plasma-treated PET AFM measurements for collagen immobilization, 31 collagen immobilization on, 30 interaction mechanism, 18 samples study of aging time, 23 SEM images of collagen immobilization, 30 Plasticity, improvement of, 196 Plastics, reusing, 169 Plastics industry, blending technology, 65 Plastic solid waste (PSW), 169 commercial-grade resins, 169 quantities, generation, and trends, 169 recovery routes, 172 recycling processes, 171 Plastic waste, 195 PN-EN ISO 2039-1: 2004, 206 Poly(acrylonitrile-co-butadiene-co-styrene) blends, 4 Poly(alkylene 4-hydroxybenzoate)s, 131, 133 Poly(alkylene syringate) homopolyesters, 131 Poly(alkylene syringate)s synthesis, 133 Poly(alkylene vanillate)s, 131, 133 Polyamide 6 (PA6) blends, 3, 101 Polyarylate, 66 Poly(bis-O-dihydroferuloyl) copolyesters, structure, 133 Poly(butylene 2,5-furandicarboxylate), 130 Poly(butylene terephthalate) (PBT) crystal structure, 48 NC studied, activation energy plot against heating rate, 190 Poly(butylene terephthalate-co-diethylene terephthalate) random copolymers (PBTDEG), 186 Polycarbodiimides, 70 PET blends, 72 preparation of, 70 Polycarbonates (PCs), 2, 66, 198 Poly(1,4-cyclohexylenedimethylene terephthalate) (PCT), 124 homopolyester, structure of, 124 PCT-co-PCI (PCTA), 124 Poly(dihydroferulic acid) (PHFA), 131 polycondensation reaction, 131 synthesis, 132 Poly(ε-caprolactone) (PCL), 5, 115 Polyester blends, thermal degradation of, 186 Polyester fibers, 53, 196 Polyester nanocomposites, degradation modeling, 186 Polyesters, 121, 186 structural constitution, 22 Polyethylene (PE), 66, 167, 215 thermal degradation, 172 Poly(ethylene 2,5-furandicarboxylate) (PEF), 114 Poly(ethylene glycol) (PEG), 123, 231 Polyethylene naphthalate (PEN), 100, 104 Poly(ethylene2,6-naphthalate) (r-PET/ PEN) blends, 50 Polyethylene terephthalate (PET) blends, 15, 66, 167 ABS blends DSC analysis of, 93 SEM micrographs, 92 application of, 68 biodegradable, 114 characterization of, 99–107 CNT composites, in situ microfiberreinforced, 2 composites/nanocomposites, characterization, 4 copolyesters, 114 composites/renewable alternatives, 5 degradation kinetic parameter determination, 6 film, mechanism collagen anchored, 28 food packaging, highly functionalized, 7 graphene, 46 HDPE blends, 67 interfacial tension, 1 ionic functionalities, 101 LCP blends, 67 manufacturing, 168 modification of, 1 molecular weight determination, 6 nanocomposites, 2, 4, 5, 47, 100, 101, 103 graphene with uniform dispersion, 103 isocyanate groups, 47 in TGA, 179 natural rubber (NR) blends, 4, 86 PA6 blend, 71 E44 blends, 70 PC blends, 67 PET-co-PCT copolyesters, 125 PCT homopolyester, structure of, 124 PET-co-PEG copolyesters, structure of, 123 PET-co-PES copolyesters, shape transition of, 119 PET-co-PGA copolyesters, structure of, 122 PET-co-PHB copolyesters, 128 PHQT, polarized light microscopy, 129 polarized light microscopy, 129 structure of, 128 PET-co-PHQT copolyester, structure of, 128 PET-co-PS copolyesters, structure, 117 plasma, AFM measurements, 21 polymer composites matrix, 2 modification of, 7 with nanomaterials, 6 reinforcement via carbon-based materials addition, 2 SBR viscosity, 88 SEBS-g-MAH blend, 82 synthetic rubber (NR) blends, 4 thermal treatments, 42 thermoplastic blends, 3 thermoset blends, 3 UV, AFM measurements, 27 VGCNF fibers, 105 waste synthesis, modification of, 7 Poly(ethylene terephthalate-co-alkylene dicarboxylate)s, 120 Poly(ethylene terephthalate-co-alkylene succinate)s, 117 poly(ethylene terephthalate-co-butylene terephthalate-co-ethylene adipate-co-butylene adipate) (PET-co-PBT-co-PEAco-PBA) copolyesters, 120 Poly(ethylene terephthalate-co-ethylene glycol)s, 123 Poly(ethylene terephthalate-co-ethylene succinate)s (PET-co-PES), 118 poly(ethylene terephthalate-co-ethylene succinate-co-butylene succinate) (PET-co-PES-co-PBS), 119 Poly(ethylene terephthalate-co-glycolic acid)s, 121 Poly(ethylene terephthalate)-co- (4-gydroxybenzoate), 128240 Index Poly(ethylene terephthalate-cohydroquinone terephthalate) (PET-co-PHQT) copolyesters, 128 Poly(ethylene terephthalate-co-4- hydroxybenzoate) (PET-coPHB), 128 poly(ethylene terephthalate-co-4- hydroxybenzoate-co-vanillate) (PET-co-PHB-co-PVA), 128 Poly(ethylene terephthalate-co-lactic acid)s, 121 poly(ethylene terephthalate-co-lactic acid-co-ethylene glycol)s, 124 Poly(ethylene terephthalate-co-propylene succinate) (PET-co-PPS), 119 Polyethylene terephthalateco-trimethylene terephthalate (PET-co-PTT) blends, 116 Poly(glycolic acid) (PGA), 121 Poly(lactic acid) (PLA), 114, 121 Polymer blends, 76 Polymer bottle, gas permeations, 214 Polymer–clay nanocomposites, 159 Polymer composites, production of, 195 Polymeric nanomaterials, classifications of, 171 Polymerization of terephatalic acid (PTA), 168 Polymerization processes, 49, 54, 167, 168 polyethylene terephthalate-based nanocomposites, characterization of, 99 in situ polymerization, 54 Polymers blending of, 88 degradation types, 170 first-order reaction, 181 intrinsic viscosity, 151 resins, 195 Polymer thermal degradation, kinetics of, 175 Polymethyl methacrylate (PMMA) blends, 7, 180 UV irradiation, 2 zirconia nanocomposites, 180 Polyolefins, preparation of, 67 Poly(oxyalkylene)-diamine, 224 Poly(oxypropylene)-diamine, 224 Polyphenylene-ether (PPE) concentration, 71 Polypropylene (PP), 2, 66, 116, 167, 214, 215 Polysaccharides, 129 Polystyrene (PS), 2, 66, 79, 167 GPC instrument, 149 Mark–Houwink equation, 151 Poly(styrene-co-acrylonitride) (SAN), 87 Polyurethane blends, 69, 72 preparation of, 70 Polyvinyl chloride (PVC), 215 Poly(vinyl methyl ether) (PVME) mixtures, 79 Protein adsorption, 1 Protein immobilization, on treated surfaces, 26 biocompatible character of surface, 34 collagen immobilization after UV treatments, 32 principle of technique, 26 Proton nuclear magnetic resonance (1H-NMR), 149 Pseudovirgin material, structural/physical properties, 182 Pultrusion, 50 Pyrolysis advantages, 175 PBT degradation, 187 Pyromellitic dianhydride (PMDA), 5, 115 R Radio frequency (RF) discharges, 16 power, 219 Radio-frequency plasma, 16 principle of techniques, 16 treatments on polyethylene terephthalate degradation behavior, 22 stabilization of, 23 surface characteristics, 18 ultraviolet technique, 23 functional groups studies on treated surfaces, 24 PET, UV radiation effects, 25 principle of technique, 23 Raman spectroscopy, 56 Random chain scission, 178 Random ethyleneacrylic ester-glycidyl methacrylate terpolymers, 80 Rational waste management, 195 Recycled polyethylene terephthalate (R-PET), 102, 104, 116, 226 bottling powder, 76 PEN blend, 51 sample, 147 waste, 200 Reinforcement, in polymer, 100 Reinforcing fibers, 51 Renewable-based succinic acid, 118 Renewable resources PET alternatives, 129 furan-based alternatives, 129 poly(alkylene 2, 5-furandicarboxylate)s, 130 poly(ethylene 2, 5-furandicarboxylate), 129 substrates, 115 Residual waste, 171 Resin composite, 206 Resin concrete samples, 201 Resin transfer molding, 50 rMMT/PET composites, 226 Ropet degradation, 180 R-PET. See Recycled polyethylene terephthalate (R-PET) Rubber cavitations, schematic presentation, 78 Rubber toughening, 78 PET composites, 81 RxFibron HT, 155 S Saponite, 99 Saw-dust (SD), 116 Scanning electron microscopy (SEM) analysis, 18, 82 Schulz–Blaschke constants, 147 Schulz-Blaschke equation, 146, 148 Sebacic acid (SbA), 117 Sheet-like filler/polymer nanocomposites gas-barrier properties of, 229 Short carbon fiber (SCF) composites, 50 Silane-coupling agents, 226 Silicate, hydrophilic surface of, 224 Silicon oxide (SiO x ) barrier technologies, 219 coating, 218 Single-walled carbon nanotube (SWCNT) composites, 104 conceptual diagram, 42 Single-walled nanotubes (SWNTs), 42 Size-exclusion chromatography (SEC), 152 Sodium dodecyl sulfate (SDS), 8, 231 Solution viscosity measurement, 145 SR blends. See Synthetic rubber (SR) blends Stearic acid (SA) coating, 107 Styrene acrylonitrile copolymer, 2 Styrene-butadiene rubber-grafted-maleic anhydride (SBR-g-MAH), 87 Styrene-ethylene-butylene-styrene (SEBS) blends, 81 Succinic acid, 117 aliphatic monomers, 117 renewable resources, 118 Synergistic flame retardant effects, 106 Synthesize PET-co-PLA copolyesters schematic illustration, 122 Synthetic phyllosilicate mineral, 230 Synthetic rubber (SR) blends, 4, 77, 86 applications, 93 PET/ABS blends, 90 influence of fracture behavior, 91 mechanical properties, 93 thermal properties, 93 PET/SR blends, morphology, 89 PET/SR blends, preparation of, 86 acrylonitrile-butadiene-styrene (ABS) blends, 87 styrene-butadiene rubber (SBR) blend, 87 PET/SR blends, properties of, 88 influence of rubber with grafting, 89 without grafting, 88 MAH concentration, 89 possesses, 86Index 241 Synthetics polymerization, recommendations, 190 T TBC. See Tributyl citrate (TBC) Terephatalic acid, 114, 168 Testing adhesion, camera, 208 Tetraethoxysilane (TEOS), 218 Tetramethoxysilane (TMOS), 219 1,1,3,3-Tetramethyldisiloxane (TMDSO), 219 Tetramethylsilane, 218 Textile grade polymer, 144 Thermal insulating properties, 195 Thermochemical treatment (TCT), 173 Thermographs, 51 Thermogravimetric analysis (TGA), 106, 175 Thermogravimetry apparent activation energy evaluated PET, 185 PET blends, degradation behavior, 180 background, 180 Friedman method, pre-exponential factor determination, 183 model comparison, 182 model development, 181 OFW method, kinetic parameters, 183 PET/PMMA blend model vs. experimental results, 183, 184 Thermolysis chemical treatment methods, 172 classification, 171, 173 kinetic parameter evaluation methods, 177 PET degradation mechanism, 179 cyclic oligomers formation, 179 reaction and mechanisms principles, 176 PET/PMMA degradation, pyrolysis conditions, 180 petrochemicals (PCs) produced via pyrolysis of POs, 174 polymers, treatment methods, 173 polymer thermal degradation, kinetics of, 175 radical chain mechanism PE, thermal degradation, 178 schemes with reference, 174 Thermoplastic blends, 3 PET/HDPE blends, 67 PET/LCP blends, 67 PET/PC blends, 67 polyethylene terephthalate, 66 blends, application of, 68 polyolefins, preparation of, 67 preparation of, 66 properties of, 68 Thermoplastic elastomers (TPEs), 86 Thermoplastic polymers, 66, 76 polyethylene terephthalate (PET), 69, 76 preparation of polymer blends, 66 reason for blending, 66 Thermoset blends, 3, 69 application of, 72 epoxy resin, preparation of, 69, 70 isocyanate, preparation of, 70 melt flow rates (MFR) and mechanical properties, 71 polycarbodiimides, preparation of, 70 of polymers, 66 polyurethane, preparation of, 70 preparation of, 69 properties of, 71 Thermotropic liquid crystalline polymers (TLCP), 127 Thin gas-barrier coatings, 215 TiO 2 nanoflowers, 106 TiO 2 /PET nanocomposites, 105 Tortuosity, 216 TPA acid, structures, 129 Transfer stations (TSs), 169 Tributyl citrate (TBC), 115 PET/sisal fibers interactions, 116 Triphenylphosphine, 179 Turbostratic–graphitic hybrid structure, 45 U Ubbelohde-type viscometer, 145 Ubbelohde viscometer, 146 Ultraviolet technique absorbers, 24 collagen immobilization, 32 FTIR measurements, 26 irradiation, 24 laser, 2, 25 surface, 32 light source, 23 functional groups studies on treated surfaces, 24 gas-phase photodissociation, 24 PET, UV radiation effects, 25 principle of technique, 23 Philips lamp, 26 radiation, 15 schematic representation, 24 treated PET AFM measurements, 33, 34 FTIR-ATR spectrum for, 32 hematoxylin/eosin-stained samples, photomicrographs of, 35 mechanism of absorption collagen, 32 SEM images of collagen immobilization, 33 Unsaturated polyester resins (UPRs), 120 Untreated PET, SEM images, 29 V Vacuum-assisted resin transfer molding (VARTM), 50 Vacuum infusion, 50 Vanillic acid (VA), 114, 127 Vapor-grown carbon nanofibers (VGCF), 52 under uniaxial tension, 50 Viscosity, 4 intrinsic, 144 molecular weight distribution of polymer, 145, 147 of PET–SBRg blends, 90 Volumetric strain energy, 78 W Waste glycolysis reaction, 201 PET application, 197 aggregates, 197 epoxy resins production, 201 mortar, 197 recycled fiber reinforcing concrete/ mortar, 199 uncemented composites, 201 in unsaturated polyester resins production, 200 plastics, 195, 196 synthesis polyethylene terephthalate, modification of, 7 Water-soluble polyvinylpyrrolidone-treated fibrous silicate, 102 Werner-Pfleiderer extruder, 71 Wide angle X-ray diffraction (WAXD), 48 Y Young’s modulus, 81, 217 PET fibers, 3 of reinforcement material, 217 yielding stress, 227 Z Zirconia nanocomposites, 7
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites رابط مباشر لتنزيل كتاب Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites
|
|