Admin مدير المنتدى
عدد المساهمات : 18984 التقييم : 35458 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Vibration Assisted Machining - Theory, Modelling and Applications السبت 22 أبريل 2023, 9:58 pm | |
|
أخواني في الله أحضرت لكم كتاب Vibration Assisted Machining - Theory, Modelling and Applications Lu Zheng Newcastle University Newcastle, UK Wanqun Chen Harbin Institute of Technology Harbin, China Dehong Huo Newcastle University Newcastle, UK
و المحتوى كما يلي :
Contents Preface xi 1 Introduction to Vibration-Assisted Machining Technology 1 1.1 Overview of Vibration-Assisted Machining Technology 1 1.1.1 Background 1 1.1.2 History and Development of Vibration-Assisted Machining 2 1.2 Vibration-Assisted Machining Process 3 1.2.1 Vibration-Assisted Milling 3 1.2.2 Vibration-Assisted Drilling 3 1.2.3 Vibration-Assisted Turning 5 1.2.4 Vibration-Assisted Grinding 5 1.2.5 Vibration-Assisted Polishing 6 1.2.6 Other Vibration-Assisted Machining Processes 7 1.3 Applications and Benefits of Vibration-Assisted Machining 7 1.3.1 Ductile Mode Cutting of Brittle Materials 7 1.3.2 Cutting Force Reduction 8 1.3.3 Burr Suppression 8 1.3.4 Tool Life Extension 8 1.3.5 Machining Accuracy and Surface Quality Improvement 9 1.3.6 Surface Texture Generation 10 1.4 Future Trend of Vibration-Assisted Machining 10 References 12 2 Review of Vibration Systems 17 2.1 Introduction 17 2.2 Actuators 18 2.2.1 Piezoelectric Actuators 18 2.2.2 Magnetostrictive Actuators 18 2.3 Transmission Mechanisms 18 2.4 Drive and Control 19 2.5 Vibration-Assisted Machining Systems 19 2.5.1 Resonant Vibration Systems 19 2.5.1.1 1D System 20viii Contents 2.5.1.2 2D and 3D Systems 23 2.5.2 Nonresonant Vibration System 27 2.5.2.1 2D System 29 2.5.2.2 3D Systems 34 2.6 Future Perspectives 35 2.7 Concluding Remarks 36 References 37 3 Vibration System Design and Implementation 45 3.1 Introduction 45 3.2 Resonant Vibration System Design 46 3.2.1 Composition of the Resonance System and Its Working Principle 46 3.2.2 Summary of Design Steps 46 3.2.3 Power Calculation 47 3.2.3.1 Analysis of Working Length Lpu 48 3.2.3.2 Analysis of Cutting Tool Pulse Force Fp 49 3.2.3.3 Calculation of Total Required Power 49 3.2.4 Ultrasonic Transducer Design 49 3.2.4.1 Piezoelectric Ceramic Selection 49 3.2.4.2 Calculation of Back Cover Size 51 3.2.4.3 Variable Cross-Sectional, One-Dimensional Longitudinal Vibration Wave Equation 51 3.2.4.4 Calculation of Size of Longitudinal Vibration Transducer Structure 53 3.2.5 Horn Design 53 3.2.6 Design Optimization 54 3.3 Nonresonant Vibration System Design 55 3.3.1 Modeling of Compliant Mechanism 56 3.3.2 Compliance Modeling of Flexure Hinges Based on the Matrix Method 56 3.3.3 Compliance Modeling of Flexure Mechanism 59 3.3.4 Compliance Modeling of the 2 DOF Vibration Stage 61 3.3.5 Dynamic Analysis of the Vibration Stage 62 3.3.6 Finite Element Analysis of the Mechanism 63 3.3.6.1 Structural Optimization 63 3.3.6.2 Static and Dynamic Performance Analysis 63 3.3.7 Piezoelectric Actuator Selection 65 3.3.8 Control System Design 66 3.3.8.1 Control Program Construction 66 3.3.9 Hardware Selection 66 3.3.10 Layout of the Control System 68 3.4 Concluding Remarks 68 References 69 3.A Appendix 70 4 Kinematics Analysis of Vibration-Assisted Machining 73 4.1 Introduction 73 4.2 Kinematics of Vibration-Assisted Turning 74 4.2.1 TWS in 1D VAM Turning 75Contents ix 4.2.2 TWS in 2D VAM Turning 78 4.3 Kinematics of Vibration-Assisted Milling 80 4.3.1 Types of TWS in VAMilling 81 4.3.1.1 Type I 81 4.3.1.2 Type II 82 4.3.1.3 Type III 82 4.3.2 Requirements of TWS 83 4.3.2.1 Type I Separation Requirements 83 4.3.2.2 Type II Separation Requirements 85 4.3.2.3 Type III Separation Requirements 87 4.4 Finite Element Simulation of Vibration-Assisted Milling 89 4.5 Conclusion 93 References 93 5 Tool Wear and Burr Formation Analysis in Vibration-Assisted Machining 95 5.1 Introduction 95 5.2 Tool Wear 95 5.2.1 Classification of Tool Wear 95 5.2.2 Wear Mechanism and Influencing Factors 96 5.2.3 Tool Wear Reduction in Vibration-Assisted Machining 98 5.2.3.1 Mechanical Wear Suppression in 1D Vibration-Assisted Machining 98 5.2.3.2 Mechanical Wear Suppression in 2D Vibration-Assisted Machining 101 5.2.3.3 Thermochemical Wear Suppression in Vibration-Assisted Machining 102 5.2.3.4 Tool Wear Suppression in Vibration-Assisted Micromachining 106 5.2.3.5 Effect of Vibration Parameters on Tool Wear 107 5.3 Burr Formation 108 5.4 Burr Formation and Classification 109 5.5 Burr Reduction in Vibration Assisted Machining 109 5.5.1 Burr Reduction in Vibration-Assisted Micromachining 111 5.6 Concluding Remarks 113 5.6.1 Tool Wear 113 5.6.2 Burr Formation 115 References 115 6 Modeling of Cutting Force in Vibration-Assisted Machining 119 6.1 Introduction 119 6.2 Elliptical Vibration Cutting 120 6.2.1 Elliptical Tool Path Dimensions 120 6.2.2 Analysis and Modeling of EVC Process 120 6.2.2.1 Analysis and Modeling of Tool Motion 120 6.2.2.2 Modeling of Chip Geometric Feature 120 6.2.2.3 Modeling of Transient Cutting Force 124 6.2.3 Validation of the Proposed Method 126 6.3 Vibration-Assisted Milling 127 6.3.1 Tool–Workpiece Separation in Vibration Assisted Milling 128x Contents 6.3.2 Verification of Tool–Workpiece Separation 131 6.3.3 Cutting Force Modeling of VAMILL 133 6.3.3.1 Instantaneous Uncut Thickness Model 133 6.3.3.2 Cutting Force Modeling of VAMILL 136 6.3.4 Discussion of Simulation Results and Experiments 137 6.4 Concluding Remarks 143 References 143 7 Finite Element Modeling and Analysis of Vibration-Assisted Machining 145 7.1 Introduction 145 7.2 Size Effect Mechanism in Vibration-Assisted Micro-milling 147 7.2.1 FE Model Setup 148 7.2.2 Simulation Study on Size Effect in Vibration-Assisted Machining 151 7.3 Materials Removal Mechanism in Vibration-Assisted Machining 152 7.3.1 Shear Angle 152 7.3.2 Simulation Study on Chip Formation in Vibration-Assisted Machining 154 7.3.3 Characteristics of Simulated Cutting Force and von-Mises Stress in Vibration-Assisted Micro-milling 156 7.4 Burr Control in Vibration-Assisted Milling 158 7.4.1 Kinematics Analysis 159 7.4.2 Finite Element Simulation 160 7.5 Verification of Simulation Models 161 7.5.1 Tool Wear and Chip Formation 162 7.5.2 Burr Formation 163 7.6 Concluding Remarks 164 References 164 8 Surface Topography Simulation Technology for Vibration-Assisted Machining 167 8.1 Introduction 167 8.2 Surface Generation Modeling in Vibration-Assisted Milling 171 8.2.1 Cutter Edge Modeling 172 8.2.2 Kinematics Analysis of Vibration-Assisted Milling 173 8.2.3 Homogeneous Matrix Transformation 174 8.2.3.1 Basic Theory of HMT 174 8.2.3.2 Establishment of HTM in the End Milling Process 174 8.2.3.3 HMT in VAMILL 176 8.2.4 Surface Generation 185 8.2.4.1 Surface Generation Simulation 185 8.3 Vibration-Assisted Milling Experiments 187 8.4 Discussion and Analysis 187 8.4.1 The Influence of the Vibration Parameters on the Surface Wettability 188 8.4.2 Tool Wear Analysis 189 8.5 Concluding Remarks 189 References 189 Index 193x Index a abnormal wear 95–96 chipping 95–96 cracking 95–96 fracture 95–96 spalling 95–96 abrasive wear 97 actuators 18–19 magnetostrictive actuators 18 piezoceramic rings 21 piezoelectric actuators 18 adhesion wear 97 analytical rigid body 148 ANSYS 63 Arbitrary Lagrangian Eulerian (ALE) formulation 148 atomic force microscope (AFM) 171 b block type chips 141 boundary conditions 54 brittle damage 95 burr 8 burr reduction 8, 108–115 c Cartesian coordinate system 60 Castigliano’s second theorem 56 ceramic stack 46 chip generation 108 chip geometric feature 120 chip thickness 73, 89 uncut chip thickness 106–107 undeformed chip thickness 7, 112, 145 clamping mode 20, 35 coated tool 97 coating delamination 97 cold welding 97 compliance transformation matrix 60–63 composite horns 53 compound motion 34–35 compression shear deformation 112 constructive solid geometry 169 contact angles 188 continuous type chips 141 controllable wettability surface 171 coupling effect 31–33, 36–37, 45 crater 96 critical cutting depth 7 critical up-feed velocity 76 critical velocity 48, 100 cross-coupling 32 C type chips 141 cut-off burr 109 cutting-directional vibration-assisted (CDVA) 74 cutting-edge angle 89 cutting-edge radius 89 cutting energy 49, 69, 98 cutting force 8, 119–144 cutting force coefficient 127 cutting paths 132 cutting power 49 cutting temperature 105 cutting zone 89 d data acquisition (DAQ) 66–67 data collection 66–67 decoupling 28, 45 DEFORM 2D software 152 deformation zone 104 depth ratio 120 diffusion wear 97 drive and control 19 open loop control system 19 proportion integration differentiation (PID) 19, 66 e effective cutting time 48 electrode plate 49 electromechanical coupling coefficient elliptic vibration-assisted (EVA) cutting 74 energy-dispersive X-ray spectroscopy (EDS) 101, 105 excitation sources 47 f ferrous materials 98 Fick’s first law 105 finite element analysis (FEA) 17, 22, 63–65 fish scale surface 188 fish squamous structure 188 friction force 100 front cover 49–53 g Gibbs free energy 104 Gibbs–Helmholtz equations 105 h hard and brittle materials 1, 7, 36, 98, 102, 113 AISI 1045 steel 90 Steel and SiCp/Al composites 99 titanium alloys 102 homogeneous transformation matrix 174 horizontal speed ratio (HSR) 76 i ImageJ 172 independent drive 34–35 instantaneous uncut thickness 135 Inverse kinematic modeling (IKM) 56 j Johnson–Cook damage model 89 Johnson–Cook (JC) material model 89 l LabVIEW platform 66–67 Langevin transducer 50 linear Hooke’s law 56 m matrix-based compliance modeling (MCM) 56 maximum vibration velocity 85 mechanical amplification 18, 46 mechanical stiffness 29–30, 49 mechanical wear 96–98 micro-electro-mechanical systems 167 micro-Euler–Bernoulli beam 56 minimum chip thickness 106 motion strokes 33 n natural frequency 17, 19, 22, 26, 28 negative shear angle 110 negative shear band 110 nodal plane 46, 52 node point 20, 27, 53 nominal cutting velocity 85 nonresonant system 27–36 normal-directional vibration-assisted (NDVA) 74 normal wear 95–96 boundary wear 96 flank wear 96 rake wear 96 tool tip wear 96 o output compliance 61–62 oxidation wear 98Index 195 p parasitic motions 33 piezoelectric transducer (PZT) 2 plastic-elastic deformation 106 plastic hinge point 110 ploughing effect 106 Poisson burr 109 polycrystalline diamond (PCD) tools 99 processing parameters 9, 169 cutting depth 123 feed rate 74, 83, 106 pseudo-rigid body (PRB) method 56 pulse force 47, 49 q quarter-wave horns 53 r radial force 136 rear cover 49–53 relative rotational angle 178 residual stress 108 resonance rod 27 resonant system 19–28 right circular flexure hinge 56–58 rollover burr 109 rotation matrix 60 rotation speed 87 s scanning electron microscope (SEM) 99 secondary damage 107 shear angle 125 shear yield stress 110 signal generator 66–67 Sindatek Water Contact Goniometer 187 size effect 106 spindle rotation frequency 88 spindle rotation speed 185 stress concentration 22, 31, 64 structural compliance 63–64 structural stiffness 63–64 surface quality 9–10, 159 surface roughness 107, 108, 146 surface simulation 185 surface texture 10, 146, 167–171, 185–187 surface topography 188 sweep signal 66 t tangential force 136 tear burr 109 thermochemical wear 96–98 thermo-elastic-plastic material 148 tool-chip contact length 152 tool geometry 108 tool holder 20–21, 30–31 tool life 9, 95–108 tool materials 35, 96, 145 tool parameters 9, 98, 170 tool paths 8, 87 elliptical tool paths 87 tool tip motion 75 tool trajectory 25, 30, 101, 120, 155 elliptical tool trajectory 101 tool-workpiece separation (TWS) 73–75, 80 top burr height 163 top burrs 112 transmission efficiency 47 transmission mechanisms 18–19 acoustic waveguide booster 19–20 double parallel four bar linkage 19, 32 flexible hinges 18, 32, 33, 56–59 hollow ultrasonic horn 22 sonotrode 19–20 ultrasonic horn 18–19, 22 ultrasonic transducer 19–20 u ultrasonic generator 46 ultrasonic transducer 46 ultrasonic vibration 22–25, 35 uncut work material 76 unloaded power 49–50 up-feed increment 76 v vibration amplitude 18, 22, 26, 29, 49, 67, 78, 82 vibration assisted machining process 3196 Index vibration assisted machining process (contd.) vibration-assisted drilling 3–4 vibration-assisted grinding 4–6 vibration-assisted machining process 3 vibration-assisted milling 3 vibration-assisted polishing 6 vibration-assisted turning 4 vibration frequency 29, 36, 47, 49, 53–54, 74 vibration resolutions 33
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Vibration Assisted Machining - Theory, Modelling and Applications رابط مباشر لتنزيل كتاب Vibration Assisted Machining - Theory, Modelling and Applications
|
|