Admin مدير المنتدى
عدد المساهمات : 19001 التقييم : 35505 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Machining Dynamics - Fundamentals, Applications and Practices السبت 22 أبريل 2023 - 21:21 | |
|
أخواني في الله أحضرت لكم كتاب Machining Dynamics - Fundamentals, Applications and Practices Kai Cheng Editor
و المحتوى كما يلي :
Contents List of Contributors xvii 1 Introduction .1 1.1 Scope of the Subject .1 1.2 Scientific and Technological Challenges and Needs 2 1.3 Emerging Trends 4 References 6 2 Basic Concepts and Theory 7 2.1 Introduction 7 2.2 Loop Stiffness within the Machine-tool-workpiece System .7 2.2.1 Machine-tool-workpiece Loop Concept .7 2.2.2 Static Loop Stiffness 8 2.2.3 Dynamic Loop Stiffness and Deformation .9 2.3 Vibrations in the Machine-tool System 10 2.3.1 Free Vibrations in the Machine-tool System 10 2.3.2 Forced Vibrations .13 2.4 Chatter Occurring in the Machine Tool System .15 2.4.1 Definition .15 2.4.2 Types of Chatters 16 2.4.3 The Suppression of Chatters 16 2.5 Machining Instability and Control 17 2.5.1 The Conception of Machining Instability 17x Contents 2.5.2 The Classification of Machining Instability .19 Acknowledgements 19 References 19 3 Dynamic Analysis and Control 21 3.1 Machine Tool Structural Deformations 21 3.1.1 Machining Process Forces .22 3.1.2 The Deformations of Machine Tool Structures and Workpieces .30 3.1.3 The Control and Minimization of Form Errors 39 3.2. Machine Tool Dynamics .43 3.2.1 Experimental Methods .43 3.2.2 The Analytical Modelling of Machine Tool Dynamics .47 3.3. The Dynamic Cutting Process .54 3.3.1. Mechanic of Dynamic Cutting 55 3.3.2. The Dynamic Chip Thickness and Cutting Forces 59 3.4. Stability of Cutting Process .63 3.4.1 Stability of Turning 64 3.4.2. The Stability of the Milling Process 68 3.4.3. Maximizing Chatter Free Material Removal Rate in Milling .74 3.4.4. Chatter Suppression-Variable Pitch End Mills .79 3.5. Conclusions .82 References 83 4 Dynamics Diagnostics: Methods, Equipment and Analysis Tools .85 4.1 Introduction 85 4.2 Theory 86 4.2.1 An Example .88 4.2.2 The Substructure Analysis .90 4.3 Experimental Equipment 92 4.3.1 The Signal Processing 92 4.3.2 Excitation Techniques 93 4.3.3 The Measurement Equipment 93 4.3.4 Novel Approaches 94 4.3.5 In-process Sensors .96Contents xi 4.3.6 Dynamometers .96 4.3.7 The Current Monitoring .97 4.3.8 The Audio Measurement 97 4.3.9 Capacitance Probes 97 4.3.10 Telemetry and Slip Rings .98 4.3.11 Fibre-optic Bragg Grating Sensors .98 4.4 Chatter Detection Techniques 98 4.4.1 The Topography .100 4.4.2 The Frequency Domain 100 4.4.3 Time Domain .105 4.4.4 Wavelet Transforms .109 4.4.5 Soft Computing 110 4.4.6 The Information Theory .111 4.5 Summary and Conclusions .111 Acknowledgements 112 References 112 5 Tool Design, Tool Wear and Tool Life 117 5.1 Tool Design 118 5.1.1 The Tool-workpiece Replication Model 118 5.1.2 Tool Design Principles .120 5.1.3 The Tool Design for New Machining Technologies 123 5.2 Tool Materials 124 5.2.1 High Speed Steel 124 5.2.2 Cemented Carbide 124 5.2.3 Cermet 125 5.2.4 Ceramics 125 5.2.5 Diamond .126 5.2.6 Cubic Boron Nitride .127 5.3 High-performance Coated Tools 127 5.3.1 Tool Coating Methods .128 5.3.2 The Cutting Performance of PVD Coated Tools .129 5.3.3 The Cutting Performance of CVD Coated Tools .132xii Contents 5.3.4 Recoating of Worn Tools .133 5.4 Tool Wear .133 5.4.1 Tool Wear Classification .134 5.4.2 Tool Wear Evolution 136 5.4.3 The Material-dependence of Wear .138 5.4.4 The Wear of Diamond Tools .139 5.5 Tool Life .142 5.5.1 The Definition of Tool Life .142 5.5.2 Taylor’s Tool Life Model 142 5.5.3 The Extended Taylor’s Model .144 5.5.4 Tool Life and Machining Dynamics 145 References 148 6 Machining Dynamics in Turning Processes 151 6.1 Introduction 151 6.2 Principles 151 6.2.1 The Turning Process 153 6.3 Methodology and Tools for the Dynamic Analysis and Control 154 6.4 Implementation Perspectives 155 6.5 Applications 156 6.5.1 The Rigidity of the Machine Tool, the Tool Fixture and the Work Material 156 6.5.2 The Influence of the Input Parameters .162 6.6 Conclusions 164 References 164 7 Machining Dynamics in Milling Processes 167 7.1 Introduction 167 7.1.1 Forced Vibration 167 7.1.2 Self-excited Vibration 168 7.1.4 Nomenclature in This Chapter .170 7.2 The Dynamic Cutting Force Model for Peripheral Milling 171 7.2.1 Oblique Cutting 172 7.1.3 The Scope of This Chapter 169Contents xiii 7.2.2 The Geometric Model of a Helical End Mill .173 7.2.3 Differential Tangential and Normal Cutting Forces .174 7.2.4 Undeformed Chip Thickness .175 7.2.5 Differential Cutting Forces in X and Y Directions 178 7.2.6 Total Cutting Forces in X and Y Directions 180 7.2.7 The Calibration of the Cutting Force Coefficients .181 7.2.8 A Case Study: Verification 186 7.3 A Dynamic Cutting Force Model for Ball-end Milling 186 7.3.1 A Geometric Model of a Ball-end Mill 186 7.3.2 Dynamic Cutting Force Modelling 188 7.3.3 The Experimental Calibration of the Cutting Force Coefficients 194 7.3.4 A Case Study: Verification 198 7.4 A Machining Dynamics Model 200 7.4.1 A Modularisation of the Cutting Force 200 7.4.2 Machining Dynamics Modelling 203 7.4.3 The Surface Generation Model 205 7.4.4 Simulation Model .207 7.5 The Modal Analysis of the Machining System 207 7.5.1 The Mathematical Principle of Experimental Modal Analysis 208 7.5.2 A Case Study .209 7.6 The Application of the Machining Dynamics Model .213 7.6.1 The Machining Setup .213 7.6.2 Case 1: Cut 13 214 7.6.3 Case 2: Cut 14 219 7.7 The System Identification of Machining Processes 224 7.7.1 The System Identification 225 7.7.2 The Machining System and the Machining Process 226 7.7.3 A Case Study .227 7.7.4 Summary 231 References 231 8 Machining Dynamics in Grinding Processes .233 8.1 Introduction 233xiv Contents 8.2 The Kinematics and the Mechanics of Grinding 236 8.2.1 The Geometry of Undeformed Grinding Chips .236 8.3 The Generation of the Workpiece Surface in Grinding 242 8.4 The Kinematics of a Grinding Cycle 248 8.5 Applications of Grinding Kinematics and Mechanics 253 8.6 Summary 259 References 261 9 Materials–induced Vibration in Single Point Diamond Turning 263 9.1 Introduction 263 9.2 A Model-based Simulation of the Nano-surface Generation 264 9.2.1 A Prediction of the Periodic Fluctuation of Micro-cutting Forces .265 9.2.2 Characterization of the Dynamic Cutting System 269 9.2.3 A Surface Topography Model for the Prediction of Nano-surface Generation 271 9.2.4 Prediction of the Effect of Tool Interference .275 9.2.5 Prediction of the Effect of Material Anisotropy .277 9.3 Conclusions 278 Acknowledgements 279 References 279 10 Design of Precision Machines .283 10.1 Introduction 283 10.2 Principles 284 10.2.1 Machine Tool Constitutions .284 10.2.2 Machine Tool Loops and the Dynamics of Machine Tools .288 10.2.3 Stiffness, Mass and Damping .290 10.3 Methodology 293 10.3.1 Design Processes of the Precision Machine .293 10.3.2 Modelling and Simulation 295 10.4 Implementation .298 10.4.1 Static Analysis .298 10.4.2 Dynamic Analysis 298 10.4.3 A General Modelling and Analysis Process Using FEA 300Contents xv 10.5 Applications 303 10.5.1 Design Case Study 1: A Piezo-actuator Based Fast Tool Servo System .303 10.5.2 Design Case Study 2: A 5-axis Micro-milling/ grinding Machine Tool .313 10.5.3 Design Case Study 3: A Precision Grinding Machine Tool .317 Acknowledgements 320 References 320 Index 323 Index ABAQUS, 300 accelerometer, 208 AC motor, 286 acoustic emission (AE), 146–148 adaptive control, 257 air bearing, 289 ALGOR, 302 aluminium oxide (Al2O3), 125 analysis, 294, 298–300 dynamic, 283, 294, 299–300 harmonic, 299 modal, 299 preliminary, 314 spectrum, 300 static, 294, 298 transient, 300 angular velocity, 188 ANSYS, 300 ARMA, 228, 269 ARMAX, 225, 228, 229, 230 ARX, 225 attritious wear, 245 audio measurement, 97 ball end mill, 122, 186–187 brainstorming, 293 built–up edges (BUEs), 120, 172 CAD model, 157 calibration, 181, 194 capacitance probes, 97 carriage, 314 cast iron, 132, 157, 158, 285 cemented carbide, 124–125 ceramics, 125–126 cermet, 125 chatters, 15, 145, 167 Arnold–type, 16 detection, 98–99 marks, 269 reduction, 16 regenerative, 16 suppression, 79 turning, 67 velocity dependent, 16 chemical vapour deposition (CVD), 128, 132 chip, 134, 236 formation, 236 geometry, 234 hammering, 134 shape ratio, 238 size, 244 thickness, 237, 265 chromium nitride (CrN), 128, 129 comb cracks, 134 conceptual design, 294 contact length, 237 control system, 284, 287 COSMOS, 300 crater depth, 135–136 crystallographic orientations, 265, 266, 276–277 cubic boron nitride (CBN), 124, 127 current monitoring, 97 cutter, 178 run–out, 178 cutting, 244324 Index cutting conditions, 197, 205, 213, 312 cutting direction, 267 cutting efficiency ratio, 243 cutting edge density, 258 cutting forces, 22 axial, 188 coefficients, 181, 183, 194, 198 differential, 178, 191 dynamic, 54, 186, 188, 215 model, 186, 188 normal, 174 proncipal, 172 tangential, 173, 174 total, 180, 193 cutting parameters, 163, 197,199, 213 depth of cut, 163 feed rate, 163 specific energy, 172, 175 speed, 163 cutting plane, 267 cutting process models, 25 cycle time, 257 cylindrical grinding, 248 damping, 9, 290, 291 coefficient, 12 joint, 292 material, 292 ratio, 12 damper, 292 data dependent systems (DDS), 271 DC brushless motor, 286 deflection, 248, 249, 250 deformations, 30 machine tool structures, 30 tools, 32, 33, 34, 36 workpiece, 32, 33, 37–39 delay, 205 Deform 2D/3D, 302 depth of cut, 163, 188, 250 axial, 188 radial, 190 detailed design, 294 diamond, 129 diamond–like carbon (DLC), 128, 129, 132 diamond turning machine, 311 dies, 313 down–hill slope, 198 down milling, 32, 74, 176, 178, 181, 189, 190, 191, 193, 200 dressing, 234 conditions, 235, 247 depth, 245 kinematics, 234, 246 lead, 245 tools, 234 drive system, 284, 286 drying machining, 132 ductile regime machining (DRM), 126 dwell stage, 248, 251 dynamic chip thickness, 59 milling, 62 turning, 60 dynamic cutting force coefficients (DCFC), 58–59 dynamic cutting system, 269 dynamics, 1, 3, 64, 68, 145, 151, 288 analysis, 44, 154, 293 disgnostics, 85 machine tool, 43, 47–49, machining, 2, 3, 145, 151, 312 milling process, 61 model, 200, 213 turning process, 59 dynamometers, 96 edge chipping, 134 elastic deflection, 244 elastic deformation, 244 envelope curve, 206, 207 environmentally friendly machining (EFM), 123–124 excitation, 152 excitation techniques, 93 experimental analysis, 294 fast Fourier transform (FFT), 101, 215, 216, 271Index 325 fast tool servo (FTS), 303, 308, 311 fibre–optic bragg grating sensors, 98 finite element analysis (FEA), 5, 157, 159–160, 161, 283, 298–299, 300–302, 306 fixture system, 284, 286–287 flank wear land width, 134–135 flexure hinge, 305 flute edge, 174 flute geometry, 188 flute number, 188 form errors, 39–40 fracture wear, 245 frequency domain, 99, 100–105 frequency response function (FRF), 44, 51–54, 294 experimental testing, 95, 96 measurement, 92 friction angle, 22 friction coefficient, 241 geometric model, 186, 187 grain fracture, 258 grain shape, 245 granite, 285 grinding, 233 conditions, 235–236, 246, 247 control strategies, 253, 255 cycle, 248, 255 dwell time, 257 force, 234, 238, 242 kinematics, 234, 236, 248 mechanics, 236 power, 234, 251, 254, 255, 259 simulation, 245–246, 255–256 specific energy, 240 temperature, 234 wheel, 234, 247 vibrations, 234 grinding burn, 253 grit, 235, 236, 238, 241, 243 density, 245 shape, 245 gross fracture, 134 hammer test, 44–45, 95, 208 harmonic excitation, 289 helical end mill, 173 helix angle, 174 Helix lag angle, 170 Hertz distribution, 242 high speed machining, 123 high speed steel (HSS), 124 homogeneity, 285 I–DEAS, 302 inertia, 291 infeed rate, 249 infeed stage, 248 information theory, 111 in–process sensors, 96 inspection system, 284, 287 ISO 3685:1993, 135, 136 KDP single crystal, 264 kinematics, 242, 248, 253, 260 Laplace domain, 203, 209 laser Doppler velocometer (LDV), 94 leadscrew, 317 linear motor, 286 low pollution machining, 123–124 lumped–parameter techniques (LPT), 298 machine base, 284 machine column, 284 machine configuration, 294 machine design, 283, 293 machine dynamics, 283, 288 machine layout, 294 machine performance, 284, 287–288 machine specifications, 294 machine structure, 284, 285 machine tool constitutions, 284 machine tool loops, 288, 289 machine tool vibrations, 288 machine–tool–workpiece loop, 7 machining instability, 17, 18, 19 machining processes, 1 , 151, 153, 167, 226 grinding, 233, 246 milling, 167326 Index turning, 151, 153 machining systems, 21, 226 machining setup, 213, 214 mass, 290, 291 material anisotropy, 276 material induced vibration, 263, 270 material removal rates (MRR), 41, 76 mean arithmetic roughness (Ra), 277 mechanical components, 313 mechanics, 242, 253, 260 medical components, 313 MEMS, 313 metal cutting, 118 grinding, 233 milling, 167 turning, 151, 153, 263 metal matrix composite (MMC), 132, 137 metrology, 287 micro cutting, 263 micro milling machine, 313 microplasticity model, 265 milling, 167 ball–end, 169 dynamics, 213 face, 169 model, 176, 200, 213 peripheral, 169, 171, 213 plane, 189, 199 slot, 185, 197 minimum quantity lubricant (MQL), 123–124, 132–133 modal, 87, 294 analysis, 88–90, 154, 207,208, 209 constant, 88 mass, 88 parameters, 210, 212 mode, 87, 88 mode coupling, 289 modelling, 295 modularisation, 200 cutting force, 200 monitoring system, 284 moulds, 313 multi–degree of freedom, 204, 208 multi frequency solution, 68 multiscale modelling, 5–6 mutual information, 111 National Aeronautics and Space Administration (NASA), 128 nanometric cutting, 263 nano–surface, 264 NASTRAN, 302 natural frequency, 9, 155, 159–160, 161 non–interference, 276 oblique cutting, 172 optimisation, 154, 155 optical components, 313 overshoot, 254 PATRAN, 302 physical vapour deposition (PVD), 128, 129 piezo–actuator, 303 effective stroke, 304 nominal stroke, 304 piezoelectric accelerometer, 93–94, 208 plastic deformation, 244 ploughing, 236, 243, 244 plunge grinding, 248 poly–crystal diamond (PCD), 126, 137 polycrystalline, 263 polymer concrete, 285, 314 position loop, 289 postprocessor, 302 precision machines, 263, 283 preliminary analysis, 314 preliminary design, 314 preprocessor, 300 process damping, 57 pulsating excitation, 289 radial immersion angle, 170, 190 rake angle, 120, 122, 172 effective, 170, 175 normal, 170, 175 radial, 170, 175 reanalysis, 315Index 327 redesign, 315 regenerative displacement, 203, 205 tool, 203, 289 regenerative effect, 289 removal rate time constant, 250, 252, 253 resonance, 152 rigidity, 43 dynamic, 43 fixture, 156 machine tool, 156 work material, 156 rotary table, 317 rubbing, 236, 243, 244 scallop hight, 190 scanning electron microscope (SEM), 127, 140, 266 sculptured surfaces, 188 SDRC, 302 sensor sysetm, 287 shear angle, 22, 265 oscillations, 55–57 signal processing, 92 signal–to–noise ratio (SNR), 45 silicon, 139 machining, 139–142 silicon nitride (Si3N4), 126 simulation, 207, 245–246, 264, 295 single–crystal diamond (SCD), 126 single crystal materials, 264 single–degree–of–freedom (SDOF), 46 single frequency solution, 70 single grain, 234 single mode, 46 single point diamond turning (SPDT), 263 slideways, 284 sliding, 236 slip rings, 98 size effect, 245, 260 size error, 234, 254 soft computing, 110 solution, 302 spark–out, 248, 252 specific energy, 240 spindle frequency (SF), 171, 218, 219, 220, 221, 222, 223, 224 spring element, 314 squeeze film dampers, 292 stability, 64 limit, 71 lobes, 72 milling, 68–74 turning, 64–67 STAR, 208, 209 steel, 158, 210 step–over, 190 feedrate, 190 stiffness, 7, 248–249, 290 dynamic, 9 dynamic loop, 10, 289 static loop, 8, 289 stiffness loop, 289 stiffness–to–mass ratio, 291 structural dynamic parameters, 46 structural loop, 297 structural materials, 285 structural modification, 294 sum–squared error (residual), 226, 228, 229 surface generation, 205, 206 surface integrity, 234 surface profile, 206 surface roughness, 118, 234, 252, 253, 273, 312 peak to valley (Rmax) 119 surface topography, 224, 273, 274, 312 system identification, 224, 225–226 Taylor’s model, 142–145 telemetry, 98 temporal stability, 285 thermal loop, 289 three–dimensional (3D) surface analysis, 272, 274 thrust bearing, 317 time domain, 99, 105–109 titanium aluminium nitride (TiAlN), 128, 129, 129–131328 Index titanium carbon (TiC), 128, 129 titanium carbon nitride (TiCN), 128, 129, 129–131 titanium nitride (TiN), 128, 129, 129–131 tool, 117 coated, 127, 129, 132 design, 118, edge radius, 120, 122 failure, 133, 134 geometry, 120, 122, 162 life, 142 materials, 162 rake angle, 120, 122, 172 relief angle, 120, 122 round–nosed, 119 straight–nosed, 119 wear, 133, 162 tool–work vibration, 275–276 tool–workpiece replication model, 118 tool–workpiece loop, 288 tool interference, 275 tooling system, 284, 286 tooth passing frequency (TPF), 171, 215, 216, 218, 220, 221, 222, 223, 224 tooth passing period (T), 171, 216 topography, 100 transfer function (TF), 44, 45, 46, 203, 205 turning, 151, 153, 263 two–degree–of–freedom, 175 ultra–precision machines, 263 ultraprecision machining, 126, 263 undeformed chip thickness, 122, 172, 175, 238, 244 up milling, 32, 42, 74, 177, 179, 182, 189, 190, 192, 194, 201 variable pitch cutters, 79–82 verification, 186, 198 vibrations, 10 amplitude, 169 forced, 13, 167 free, 10 frequency, 169 self–excited, 102, 167, 168–169 virtual surface, 274 wavelets, 99, 109–110 wear, 133, 162 abrasive, 141 adhesive, 141 classification, 134–135 crater, 134 diamond tools, 139–142 diffusion, 141 effects, 162–163 evolution, 136 flank, 134, 137 material–dependence, 138 progressive, 134–135 recoating, 133 tool, 133, 139 wheel, 234 conditioning, 235 diameter, 257 dressing, 234 speed, 257 topography, 234 wear, 234 width, 257 workpiece, 162 materials, 162, 173 speed, 257 surface, 242, 243 WYKO interferometric microscope, 277, 278 X–Y plane, 275 XYZ gantry configuration, 315–316 Z–Buffer scanning algorithm, 206 Zygo 3D surface profiler, 31
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Machining Dynamics - Fundamentals, Applications and Practices رابط مباشر لتنزيل كتاب Machining Dynamics - Fundamentals, Applications and Practices
|
|