Admin مدير المنتدى
عدد المساهمات : 19001 التقييم : 35505 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Optimal Production Planning for PCB Assembly الخميس 30 مارس 2023, 6:18 am | |
|
أخواني في الله أحضرت لكم كتاب Optimal Production Planning for PCB Assembly With 41 Figures William Ho and Ping Ji
و المحتوى كما يلي :
Contents 1 Introduction 1 1.1 PCB Assembly Process 1 1.2 Assembly Equipment . 2 1.3 PCB Assembly Problems . 3 1.4 Scope of This Book 4 2 Optimization Techniques . 7 2.1 Introduction 7 2.2 Mathematical Programming . 7 2.2.1 Linear Programming . 8 2.2.2 Integer Linear Programming . 8 2.2.3 Nonlinear Programming 10 2.3 Exact Algorithms 10 2.3.1 Algorithms for Linear Programming 11 2.3.1.1 The Simplex Algorithm . 11 2.3.1.2 The Interior Point Algorithm . 11 2.3.2 Algorithms for Integer Linear Programming 11 2.3.2.1 The Branch-and-Bound Algorithm 11 2.3.2.2 The Cutting Plane Algorithm 12 2.3.3 Algorithms for Nonlinear Programming . 12 2.3.3.1 The Generalized Benders Algorithm . 12 2.3.3.2 The Branch-and-Reduce Algorithm 13 2.4 Metaheuristics 13 2.4.1 Simulated Annealing . 14 2.4.2 Tabu Search 15 2.4.3 Genetic Algorithms . 15 2.5 Commercial Packages 16 2.5.1 BARON 17 2.5.2 CPLEX 17 2.5.3 Others 17 2.6 Summary 17viii Contents 3 The Sequential Pick-and-Place (PAP) Machine . 19 3.1 Introduction 19 3.2 Literature Review . 20 3.2.1 The Component Sequencing Problem . 20 3.2.2 The Integrated Problem . 20 3.3 Operating Sequence 22 3.4 Notation 23 3.5 Mathematical Models . 24 3.5.1 A Component Sequencing Model . 24 3.5.2 A Feeder Arrangement Model 26 3.5.3 Integrated Mathematical Models 27 3.5.4 Iterative Approach vs. Integrated Approach . 33 3.5.5 Computational Analysis 35 3.5.5.1 Computing Complexity . 35 3.5.5.2 Computational Time 37 3.6 Genetic Algorithms 37 3.6.1 Encoding . 40 3.6.2 Improved Heuristics 41 3.6.2.1 Nearest Neighbor Heuristic . 41 3.6.2.2 2-Opt Local Search Heuristic 41 3.6.2.3 Iterated Swap Procedure 41 3.6.3 Evaluation . 42 3.6.4 Selection 42 3.6.5 Genetic Operations 43 3.6.5.1 The Modified Order Crossover . 44 3.6.5.2 The Heuristic Mutation 44 3.6.5.3 The Inversion Mutation . 45 3.6.6 Performance Analysis . 45 3.6.6.1 Comparison to Other Approaches . 46 3.6.6.2 Effect of Population Size . 47 3.6.6.3 Comparison to Optimal Solution . 48 3.6.6.4 Integrated Problem with Feeder Duplication . 48 3.7 Summary 50 4 The Concurrent Chip Shooter (CS) Machine . 53 4.1 Introduction 53 4.2 Literature Review . 54 4.2.1 The Component Sequencing Problem . 54 4.2.2 The Feeder Arrangement Problem 54 4.2.3 The Integrated Problem . 54 4.3 Operating Sequence . 56 4.4 Notation 64 4.5 Mathematical Models . 65 4.5.1 A Component Sequencing Model . 65 4.5.2 A Feeder Arrangement Model 67 4.5.3 Integrated Mathematical Models 69 4.5.4 Iterative Approach vs. Integrated Approach . 74Contents ix 4.5.5 Computational Analysis 77 4.5.5.1 Computing Complexity . 77 4.5.5.2 Computational Time 77 4.6 Genetic Algorithms 78 4.6.1 Evaluation . 78 4.6.2 Performance Analysis . 79 4.6.2.1 Comparison to Other Approaches . 79 4.6.2.2 Effect of Population Size . 80 4.6.2.3 Comparison to Optimal Solution . 81 4.6.2.4 Integrated Problem with Feeder Duplication . 82 4.7 Summary 83 5 The Line Assignment and the Component Allocation Problems 85 5.1 Introduction 85 5.2 The Line Assignment Problem . 86 5.2.1 A Mathematical Model . 87 5.2.2 A Genetic Algorithm . 89 5.2.2.1 Initialization 91 5.2.2.2 Evaluation 92 5.2.2.3 Selection 92 5.2.2.4 Crossover Operator 92 5.2.2.5 Mutation Operator . 93 5.2.3 A Numerical Example . 93 5.3 The Component Allocation Problem 98 5.3.1 A Mathematical Model . 100 5.3.2 A Genetic Algorithm . 101 5.3.2.1 Initialization 101 5.3.2.2 Evaluation 102 5.3.3 A Numerical Example . 102 5.4 Summary 107 6 A Prototype of the Printed Circuit Board Assembly Planning System (PCBAPS) 109 6.1 The PCBAPS Framework . 109 6.2 A Guide to Using the PCBAPS 109 6.3 Graphical User Interfaces . 110 6.4 Summary 112 References 115 Index 119 Index A Algorithms, branch-and-bound (B&B) algorithm 11 branch-and-reduce algorithm 12 cutting plane algorithm 12 generalized benders algorithm 12 genetic algorithms (GAs) 14, 15, 37, 78, 89 hybrid genetic algorithm (HGA) 39 interior point algorithm 11 Lagrangian relaxation algorithm 99 pivot and probe algorithm (PAPA) 89 simplex algorithm 11 stepping stone algorithm 89 Assembly heads 54 B BARON 16 Board sequencing heuristic (BSH) 54 Branch-and-bound (B&B) algorithm 11 Branch-and-reduce algorithm 12 C Chebyshev metric 75 Chip shooter (CS) machine 2 Chromosome, two-link representation 40 Clock sequence 20 Component allocation problems 86, 98, 100 crossover operator 92 genetic algorithm 89, 101 mutation operator 93 Component placement system (CPS) 54 Component sequencing 20 Computational time 37 Concurrent chip shooter (CS) machine 53 feeder arrangement model 67 feeders duplication 82 genetic algorithms 78 integrated approach 74 iterative approach 74 population size 80 CPLEX 16 Crossover operator 43, 92 Cutting plane algorithm 12 D Data input interface 111 DICOPT 17 E Encoding 40 Exploitation (intensification) 43 Exploration (diversification) 43120 Index F Feeder arrangement model 26, 67 Feeders duplication 48, 82 G Generalized benders algorithm 12 Generalized transportation problem (GTP) 87, 88 Genetic algorithms (GAs) 14, 15, 37, 78, 89 hybrid (HGA) 39 parameters input interface 112 Genetic local search (GLS) 16 Genetic operations 42 Global optimum 13 Graphical user interfaces 110 Greedy random adaptive search procedures (GRASP) 98 H Heuristics 13 2-opt local search 41 board sequencing heuristic (BSH) 54 meta-heuristics 13 nearest neighbor heuristic (NNH) 39, 41 Hybrid genetic algorithm (HGA) 39 flowchart 38 I Implicit enumeration 11 Integer linear programming model, PCB 86 Integer programming (IP) 8 Integrated approach 33, 74 Integrated circuits (ICs) 1 Interior point algorithm 11 Inversion mutation 45 Iterated swap procedure (ISP) 39, 41 Iterative approach 33, 74 L Lagrangian relaxation algorithm 99 Line assignment 86 Linear programming (LP) 8 Lin-Kernighan (LK) 16 Local optimum 13 M Machine input interface 111 Meta-heuristics 13 Minimax type integer linear programming model 99 Minimax type objective function 69 Mixed integer linear programming (MIP) models 11 Mixed integer nonlinear programming (MINLP) model 12 Mutation operator 93 N Nearest neighbor heuristic (NNH) 39, 41 Neighborhood technique 44 Non-convex relaxation 13 Nonlinear programming (NLP) 10 NP-complete 37, 99, 101 P PCB assembly planning system 86 Pick-and-place (PAP) machine 2 Pick-up location (PUL) 57 Pivot and probe algorithm (PAPA) 89 Placement head 19 assembly sequence 22 Plated-through-hole (PTH) technology 1 Population diversity 44 Population size 46, 80 Printed circuit board (PCB) 1 Printed circuit board assembly planning system (PCBAPS) 109 Problem input interface 110Index 121 Q Quadratic assignment problem (QAP) 10, 12, 26 R Roulette wheel selection operation 42 S Sequential pick-and-place (PAP) machine 19 component sequencing 20 encoding 40 feeder arrangement model 26 feeders duplication 48 genetic algorithms 37 genetic operations 42 integrated approach 33 inversion mutation 43 iterated swap procedure 39 iterative approach 33 nearest neighbor heuristic 41 population size 46 Simplex algorithm 11 Simulated annealing (SA) 14 Stepping stone algorithm 89 Strategic partitioning 11 Surface mount technology (SMT) 1 T Tabu search (TS) 14, 15 Traveling salesman problem (TSP) 3 Tree search 11
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Optimal Production Planning for PCB Assembly رابط مباشر لتنزيل كتاب Optimal Production Planning for PCB Assembly
|
|