Admin مدير المنتدى
عدد المساهمات : 18936 التقييم : 35318 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Electrically Assisted Forming - Modeling and Control الأحد 26 مارس 2023, 12:03 am | |
|
أخواني في الله أحضرت لكم كتاب Electrically Assisted Forming - Modeling and Control Wesley A. Salandro , Joshua J. Jones , Cristina Bunget , Laine Mears , John T. Roth
و المحتوى كما يلي :
Contents 1 Deformation of Metals 1 1.1 Relevant Background on Automotive and Aerospace Industries . 2 1.2 Present Forming Technologies . 4 1.2.1 Hot Working . 5 1.2.2 Incremental Forming 5 1.2.3 Superplastic Forming 6 1.2.4 Tailor-Welded Blanking 7 1.3 Limitations of Current Technologies 8 1.4 Plastic Deformation of Metals . 8 1.4.1 Bonding 9 1.4.2 Dislocations . 10 1.4.3 Crystalline Structures 13 1.4.4 Lattice Defects . 14 1.5 Metrics of Formability . 17 1.5.1 Formability in Sheet Metals . 17 1.5.2 Additional Forming Metrics . 18 1.6 Conclusions . 20 References . 20 2 Introduction to Electrically Assisted Forming . 23 2.1 Electrically Assisted Forming . 23 2.2 EAF Literature Review . 25 2.2.1 EAF Theory and Modeling 26 2.2.2 Significant EAF Modeling Variables from Experimentation 28 2.2.3 Relation to Crystal Structure and Resistivity 32 2.2.4 Electroplasticity and Electromigration . 33 2.3 Broader Impacts of EAF 33 2.3.1 Automotive and Aerospace Industries . 33 2.3.2 Potential Early Adopters of EAF Modeling . 34 References . 34x Contents 3 The Effect of Electric Current on Metals . 37 3.1 Electrical Current Flow 37 3.2 Previous Electroplastic Theories . 39 3.2.1 Localized Heating . 39 3.2.2 Electron Wind Effect 42 3.3 Comprehensive Electroplastic Theory Explanation . 43 3.3.1 Electrical Current Without Metal Deformation 43 3.3.2 Electrical Current with Metal Deformation . 46 3.3.3 Electrical Current Effects on Formability 48 3.3.4 Supporting Experimental Results . 49 3.4 Electroplastic Theory Conclusions 51 References . 53 4 Macroscale Modeling of the Electroplastic Effect 55 4.1 Mechanical-Based Approach to Determining the EEC 55 4.1.1 Experimental Setup and Procedure . 56 4.1.2 Mechanical-Based EEC Determination Procedure . 57 4.1.3 Mechanical-Based EEC Conclusions 58 4.2 Thermal-Based Approach to Determining the EEC . 58 4.2.1 Building a Thermal Model 59 4.2.2 Experimental Setup and Procedure . 63 4.2.3 EEC Thermal-Based Determination . 65 4.2.4 Thermal-Based EEC Conclusions 70 4.3 Comparison Between the Different EEC Determination Approaches 71 4.3.1 SS304 Electroplastic Effect Coefficient Profiles . 71 4.4 EEC Profile Conclusions . 72 4.5 Empirical Modeling Strategies . 73 4.5.1 Non-constant Current Density . 73 4.5.2 Constant Current Density . 78 4.6 Macroscale Modeling of the Electroplastic Effect Conclusions . 82 References . 82 5 Compressive Electrically Assisted Forming Model . 83 5.1 Analytical Modeling of Compression Forming Processes 83 5.1.1 Definition of an EAF Modeling Strategy . 83 5.1.2 Analysis of an Electrically Assisted Compression Process 84 5.1.3 Effective Stress and Strain—Classical Compression Test . 85 5.1.4 Effective Stress and Strain—Electrically Assisted Compression Test 86 5.1.5 Current Density Relationship During Electrically Assisted Compression 88Contents xi 5.1.6 Strain and Temperature Effect on Resistance and Current 89 5.1.7 Analytical Model for Electrically Assisted Compression . 89 5.1.8 Overall Solution Schematic . 90 5.1.9 EAF Modeling Approach Summary . 91 5.2 Simplified EAF Forging Model 91 5.2.1 EAF Forging Stress–Strain Model 91 5.2.2 Modeling Strategy Overview 92 5.2.3 Coupled Thermo-Mechanical Modeling . 92 5.2.4 Assumptions of the Thermo-Mechanical Model . 94 5.2.5 Experimental Setup and Procedure . 96 5.2.6 Experimental and Modeling Results 97 5.2.7 Electrical Efficiency Analysis . 100 5.2.8 EAF Forging Model Conclusions . 101 5.3 Specific Heat Sensitivity . 102 5.4 Heat Transfer Modes Analysis . 104 5.5 EEC Profile—Material Sensitivity Comparison 107 5.6 EAF Modeling—Sensitivities and Simplifications Conclusions . 109 References . 110 6 Tensile Electroforming Model 113 6.1 Thermal Modeling 113 6.1.1 Model Development . 114 6.1.2 Experimental Setup . 123 6.1.3 Results and Discussion . 124 6.1.4 Thermal Model Conclusions 132 6.2 Mechanical Modeling 133 6.2.1 Deformation/Strength Model Derivation . 134 6.2.2 Deformation/Strength Model Solution Method 137 6.2.3 Deformation/Strength Model Results 140 6.2.4 Mechanical Modeling Conclusions . 152 6.3 Thermo-Mechanical Model . 153 6.3.1 Thermo-Mechanical EAF Model Overview and Solution Scheme 153 6.3.2 Thermal Expansion Stress 154 6.3.3 Model Results 155 6.3.4 Division of Thermal Expansion, Thermal Softening, and Direct Electrical Effects 157 6.3.5 Thermo-Mechanical Modeling Conclusions 158 6.4 Tensile Electroforming Model Conclusions . 159 References . 159xii Contents 7 Control of Electrically Assisted Forming . 161 7.1 Constant Force Forming 162 7.1.1 Benefits of Constant Force Forming . 168 7.2 Constant Stress Forming . 169 7.2.1 Benefits and Opportunities of Constant Stress Forming . 171 7.3 Constant Current Density Forming . 172 7.3.1 Benefits of Constant Current Density Forming 174 7.4 Model-Based Control Feasibility . 175 7.5 Process Control Conclusions 176 References . 177 8 Microstructure and Phase Effects on EAF 179 8.1 Grain Size Effect on EAF . 179 8.1.1 Specimen Preparation and Resulting Grain Sizes 180 8.1.2 Experimental Grain Size Testing . 181 8.1.3 EAF/Grain Size Conclusions 183 8.2 Prior Cold Work Effect on EAF 183 8.2.1 Importance of Percent Cold Work on EAF Effectiveness 184 8.2.2 Specimen Preparation 184 8.2.3 Experimental Setup and Procedure . 185 8.2.4 Results and Discussion . 186 8.2.5 EAF/Percent Cold Work Conclusions . 191 8.3 Microstructure Analysis Under Tensile Loading . 192 8.3.1 As-Received Material Microstructure . 192 8.3.2 Summary of Statistical Analysis of Micrographs . 195 8.3.3 Room Temperature Deformation Microstructure . 198 8.3.4 EAF Microstructure . 201 8.3.5 Microstructure Analysis Conclusions 209 References . 210 9 Tribological and Contact Area Effects . 211 9.1 Contact Area Effect on EAF Effectiveness . 211 9.1.1 Specimen Preparation (Surface Ground) . 212 9.1.2 Specimen Preparation (Enhanced Asperities) . 212 9.1.3 Post-forming EAF Roughness Examination 214 9.1.4 Experimental Setup and Procedure . 216 9.1.5 Thermal Analysis of EAF Based on Contact Area 217 9.1.6 Voltage–Resistance Contact Area Model . 223 9.1.7 Mechanical Analysis of EAF Based on Contact Area 226 9.1.8 EAF/Contact Area Conclusions 230Contents xiii 9.2 Tribological Effect on EAF Effectiveness 231 9.2.1 Effects of Electricity on Tribological Conditions . 232 9.2.2 Experimental Setup and Procedure (Ring Tribo-Tests) 233 9.2.3 Determining Friction Calibration Curves . 235 9.2.4 Testing Procedures 235 9.2.5 Candidate Metal Forming Lubricants 237 9.2.6 Experimental Results and Discussion . 238 9.2.7 Lubricant Evaluation (Reduction in Forming Load) . 238 9.2.8 Temperature Measurements . 241 9.2.9 EAF/Tribology Conclusions . 243 References . 243 10 Design of an Electrically Assisted Manufacturing Process . 245 10.1 Energy Analysis 245 10.1.1 Conventional Cold Forming . 245 10.1.2 Thermally Assisted Forming 247 10.1.3 Electrically Assisted Forming . 249 10.1.4 Energy Comparison . 250 10.2 AC Versus DC Current . 251 10.2.1 Energy Analysis 251 10.2.2 Skin Effect 251 10.3 Additional Process Design Considerations . 252 10.3.1 Power Supply 252 10.4 EAF Process Design Conclusions 253 11 Applications of Electrically Assisted Manufacturing 255 11.1 EAF Bending Application and Model . 255 11.1.1 Analysis of an EA Bending Process . 257 11.1.2 Assumptions of the EAB Model . 257 11.1.3 Classical Bending Process (Force and Springback) . 258 11.1.4 Analytical Modeling of EAB 260 11.1.5 EAB Solution Schematic . 263 11.1.6 Experimental Setup and Procedure . 264 11.1.7 Thermal Measurements in EAB 268 11.1.8 Validation of the Model via Experiments . 269 11.1.9 Effects of Electricity in Bending . 270 11.1.10 EAB Model Conclusions . 276 11.2 Electrically Assisted Machining 277 11.2.1 Observations in Low-Strain-Rate EA Machining 277 11.2.2 High-Strain-Rate Process Modeling and Experimental Testing for EA Machining 279 11.2.3 EA Machining Conclusions . 283xiv Contents 11.3 Electrically Assisted Friction Stir Welding . 284 11.3.1 Electrically Assisted Friction Stir Welding Background 284 11.3.2 EAFSW Experimental Setup 285 11.3.3 Results and Discussion . 287 11.3.4 Conclusions and Future Work . 291 11.4 Experimental Findings for Alternative EAF Processes 291 11.4.1 Compression . 292 11.4.2 Tension . 294 11.4.3 Non-uniform Deformation (E.G. Channel Formation) 300 11.4.4 Springback Reduction Using EAF 301 11.4.5 Electrically Assisted Micro-Forming 302 11.5 Overhead Transmission Line Design Using EAF 303 11.5.1 The Electricity Transmission Grid 303 11.5.2 Transmission Line Structures and Setups . 303 11.5.3 Commercial Conductors and Sizing . 304 11.5.4 Conductor Sag . 305 11.5.5 Effect of Temperature on Transmission Line Longevity . 306 11.5.6 Applying EAF Modeling to OHTL Sag Calculations 307 11.5.7 Future Work to Determine EEC Values for OHTL’s 309 References . 309 Appendix A . 313 Appendix B . 327 Abbreviations AISI American Iron and Steel Institute AO Analog Output APF Atomic Packing Factor ASTM American Society for Testing and Materials BCC Body-Centered Cubic CAE Computer-Aided Engineering CAFE Corporate Average Fuel Economy CCD Constant Current Density CGA Circle Grid Analysis CI Confidence Interval cRIO CompactRIO DOT Department of Transportation EA Electrically Assisted EAF Electrically Assisted Forming EA-Forging Electrically Assisted Forging EAM Electrically Assisted Manufacturing EDM Electrical Discharge Machining EEC Electroplastic Effect Coefficient EPA Environmental Protection Agency FCC Face-Centered Cubic FE Finite Element FEA Finite Element Analysis FFT Fast Fourier Transform FLC Forming Limit Curve FLD Forming Limit Diagram FLIR Forward-Looking Infrared GBS Grain Boundary Sliding GHG Greenhouse Gas GUI Graphical User Interface HCP Hexagonal Close Packed IF Incremental Formingxvi Abbreviations LDH Limiting Dome Height LVDT Linear Variable Differential Transformer MBC Model-Based Control NCCD Non-Constant Current Density NI National Instruments OEM Original Equipment Manufacturer PID Proportional-Integral-Derivative PLC Portevin–Le Chatelier PS Parameter Set SCR Silicon Controlled Rectifier SMDI Steel Market Development Institute SPF Superplastic Forming TWB Tailor Welded Blank UHSS Ultra-High Strength Steel
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Electrically Assisted Forming - Modeling and Control رابط مباشر لتنزيل كتاب Electrically Assisted Forming - Modeling and Control
|
|