Admin مدير المنتدى
عدد المساهمات : 18938 التقييم : 35320 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Condition Monitoring and Control for Intelligent Manufacturing السبت 25 مارس 2023, 10:56 pm | |
|
أخواني في الله أحضرت لكم كتاب Condition Monitoring and Control for Intelligent Manufacturing Lihui Wang and Robert X. Gao (Eds.)
و المحتوى كما يلي :
Contents List of Contributors xvii 1 Monitoring and Control of Machining 1 A. Galip Ulsoy 1.1 Introduction . 1 1.2 Machining Processes . 6 1.3 Monitoring 10 1.3.1 Tool Failure 10 1.3.2 Tool Wear . 12 1.4 Servo Control 15 1.5 Process Control . 17 1.6 Supervisory Control 23 1.7 Concluding Remarks . 25 References . 27 2 Precision Manufacturing Process Monitoring with Acoustic Emission . 33 D.E. Lee, Inkil Hwang, C.M.O. Valente, J.F.G. Oliveira and David A. Dornfeld 2.1 Introduction . 33 2.2 Requirements for Sensor Technology at the Precision Scale 35 2.3 Sources of AE in Precision Manufacturing . 37 2.4 AE-based Monitoring of Grinding Wheel Dressing 39 2.4.1 Fast AE RMS Analysis for Wheel Condition Monitoring 40 2.4.2 Grinding Wheel Topographical Mapping . 41 2.4.3 Wheel Wear Mechanism . 42 2.5 AE-based Monitoring of Face Milling 43 2.6 AE-based Monitoring of Chemical Mechanical Planarization 44 2.6.1 Precision Scribing of CMP-treated Wafers . 45 2.6.2 AE-based Endpoint Detection for CMP . 46 2.7 AE-based Monitoring of Ultraprecision Machining 48 2.7.1 Monitoring of Precision Scribing . 48 2.7.2 Monitoring of Ultraprecision Turning of Single Crystal Copper 49x Contents 2.7.3 Monitoring of Ultraprecision Turning of Polycrystalline Copper . 52 2.8 Conclusions . 52 References . 53 3 Tool Condition Monitoring in Machining . 55 Mo A. Elbestawi, Mihaela Dumitrescu and Eu-Gene Ng 3.1 Introduction . 55 3.2 Research Issues . 56 3.2.1 Sensing Techniques 57 3.2.2 Feature Extraction Methods 61 3.2.3 Decision-making Methods 62 3.3 Neural Networks for Tool Condition Monitoring . 63 3.3.1 Structure of MPC Fuzzy Neural Networks . 64 3.3.2 Construction of MPC Fuzzy Neural Networks . 65 3.3.3 Evaluation of MPC Fuzzy Neural Networks 66 3.3.4 Fuzzy Classification and Uncertainties in Tool Condition Monitoring . 67 3.4 Case Studies 68 3.4.1 Experimental Tests on MPC Fuzzy Neural Networks for Tool Condition Monitoring . 68 3.4.2 Online Monitoring Technique for the Detection of Drill Chipping 75 3.5 Conclusions . 78 References . 80 4 Monitoring Systems for Grinding Processes . 83 Bernhard Karpuschewski and Ichiro Inasaki 4.1 Introduction to Grinding Processes . 83 4.2 Need for Monitoring during Grinding . 83 4.3 Monitoring of Process Quantities 84 4.4 Sensors for the Grinding Wheel 91 4.5 Workpiece Sensors 94 4.6 Sensors for Peripheral Systems . 99 4.7 Adaptive Control Systems . 102 4.8 Intelligent Systems for Abrasive Processes . 103 References . 106 5 Condition Monitoring of Rotary Machines . 109 N. Tandon and A. Parey 5.1 Introduction . 109 5.2 Performance Monitoring . 111 5.3 Vibration Monitoring 111 5.3.1 Vibration Signal Processing 118 5.4 Shock Pulse Analysis (SPA) . 124 5.5 Current Monitoring . 125Contents xi 5.6 Acoustic Emission Monitoring . 126 5.7 Wear Debris and Lubricating Oil Analysis . 129 5.7.1 Magnetic Plugs and Chip Detectors 129 5.7.2 Ferrography 129 5.7.3 Particle Counter 132 5.7.4 Spectrographic Oil Analysis (SOA) 133 5.7.5 Lubricating Oil Analysis . 133 5.8 Thermography . 134 5.9 Conclusions . 135 References . 135 6 Advanced Diagnostic and Prognostic Techniques for Rolling Element Bearings . 137 Thomas R. Kurfess, Scott Billington and Steven Y. Liang 6.1 Introduction . 137 6.2 Measurement Basics . 138 6.3 Bearing Models . 145 6.4 Diagnostics 147 6.4.1 Signal Analysis . 147 6.4.2 Effects of Operating Conditions . 153 6.4.3 Appropriate Use of Fast Fourier Transforms (FFTs) 157 6.4.4 Trending 157 6.5 Prognostics 158 6.6 Conclusions . 163 References . 163 7 Sensor Placement and Signal Processing for Bearing Condition Monitoring . 167 Robert X. Gao, Ruqiang Yan, Shuangwen Sheng and Li Zhang 7.1 Introduction . 167 7.2 Sensor Placement 169 7.2.1 Structural Attenuation . 169 7.2.2 Simulation of Structural Effects . 171 7.2.3 Experimental Evaluation 173 7.2.4 Sensor Location Ranking 175 7.3 Signal Processing Techniques . 180 7.3.1 Frequency Domain Techniques 180 7.3.2 Time–frequency Techniques . 182 7.3.3 Performance Comparison . 186 7.4 Conclusions . 188 References . 189 8 Monitoring and Diagnosis of Sheet Metal Stamping Processes . 193 R. Du 8.1 Introduction . 193 8.2 A Brief Description of Sheet Metal Stamping Processes 194xii Contents 8.3 Online Monitoring Based on the Tonnage Signal and Support Vector Regression . 199 8.3.1 A Study of the Tonnage Signal . 199 8.3.2 A Brief Introduction to Support Vector Regression (SVR) 200 8.3.3 Experiment Results . 206 8.3.4 Remarks 207 8.4 Diagnosis Based on Infrared Imaging . 209 8.4.1 A Study of Diagnosis Methods . 209 8.4.2 Thermal Energy and Infrared Imaging . 211 8.5 Conclusions . 215 References . 217 9 Robust State Indicators of Gearboxes Using Adaptive Parametric Modeling 219 Yimin Zhan and Viliam Makis 9.1 Introduction . 219 9.2 Modeling . 221 9.2.1 Noise-adaptive Kalman Filter-based Model . 221 9.2.2 Bispectral Feature Energy . 224 9.2.3 AR Model Residual-based State Parameter 226 9.2.4 Improved AR Model Residual-based State Parameter . 228 9.3 Experimental Set-up 231 9.4 Performance Analysis of BFE . 233 9.5 Performance Analysis of MRP 235 9.6 Performance Analysis of IMRP 239 9.7 Conclusions . 242 References . 243 10 Signal Processing in Manufacturing Monitoring . 245 C. James Li 10.1 Introduction . 245 10.2 Types of Signatures . 246 10.3 Signal Processing 247 10.3.1 Time Domain Methods . 247 10.3.2 Frequency Domain Methods . 251 10.3.3 Time–frequency Methods . 256 10.3.4 Model-based Methods 260 10.4 Decision-making Strategy . 261 10.4.1 Simple Thresholds 261 10.4.2 Statistical Process Control (SPC) . 262 10.4.3 Time/Position-dependent Thresholds . 262 10.4.4 Part Signature . 262 10.4.5 Waveform Recognition . 263 10.4.6 Pattern Recognition 263 10.4.7 Severity Estimator 263 10.5 Conclusions . 264 References . 264Contents xiii 11 Autonomous Active-sensor Networks for High-accuracy Monitoring in Manufacturing 267 Ardevan Bakhtari and Beno Benhabib 11.1 Sensor Networks . 267 11.1.1 Sensor Fusion . 268 11.1.2 Sensor Selection . 268 11.1.3 Sensor Modeling . 269 11.1.4 An Example of a Multi-sensor Network . 270 11.2 Active Sensors . 272 11.2.1 Active-sensor Networks for Surveillance of Moving Objects in Static Environments . 272 11.2.2 Online Sensor Planning for Surveillance of Dynamic Environments 275 11.3 Agent-based Approach to Online Sensor Planning . 276 11.3.1 Agents . 276 11.3.2 Advantages and Drawbacks of Multi-agent Systems . 277 11.3.3 Examples of Agent-based Sensor-planning Systems 277 11.4 An Active-sensor Network Example for Object Localization in a Multi-object Environment 282 11.4.1 Experimental Set-up . 282 11.4.2 Experiments 283 References . 286 12 Remote Monitoring and Control in a Distributed Manufacturing Environment 289 Lihui Wang, Weiming Shen, Peter Orban and Sherman Lang 12.1 Introduction . 289 12.2 WISE-SHOPFLOOR Concept . 290 12.3 Architecture Design 292 12.4 Data Collection and Distribution . 295 12.4.1 Information Flow 295 12.4.2 Applet–Servlet Communication . 295 12.4.3 Sensor Signal Collection and Distribution 296 12.4.4 Virtual Control versus Real Control . 297 12.5 Shop Floor Security 298 12.6 Case Study 1: Remote Robot Control . 299 12.6.1 Constrained Kinematic Model 300 12.6.2 Inverse Kinematic Model . 302 12.6.3 Java 3D Scene-graph Model . 303 12.6.4 Remote Tripod Manipulation 305 12.7 Case Study 2: Remote CNC Machining 307 12.7.1 Test Bed Configuration . 307 12.7.2 Java 3D Visualization . 308 12.7.3 Data Communication 309 12.7.4 Remote Machine Control 309 12.8 Toward Condition-based Monitoring 311xiv Contents 12.9 Conclusions . 312 References . 313 13 An Intelligent Nanofabrication Probe for Surface Displacement/Profile Measurement . 315 Wei Gao 13.1 Introduction . 315 13.2 Design of the Nanofabrication Probe 317 13.2.1 Concept of the Probe 317 13.2.2 Design of the Probe 320 13.3 Evaluation of the Nanofabrication Probe 327 13.3.1 Evaluation of FTC Performance of the Probe . 327 13.3.2 Evaluation of Force Detection by the Probe . 330 13.3.3 Evaluation of Displacement Detection by the Probe 333 13.4 Nanofabrication and Workpiece Surface Profile Measurement Using the Probe . 335 13.5 Conclusions . 344 References . 344 14 Smart Transducer Interface Standards for Condition Monitoring and Control of Machines 347 Kang B. Lee 14.1 Introduction . 347 14.2 IEEE 1451 Smart Transducer Interface Standards 349 14.2.1 IEEE 1451.0 Common Functions and Commands 350 14.2.2 IEEE 1451.1 Networked Smart Transducer Model . 351 14.2.3 IEEE 1451.2 Transducer-to-Microprocessor Communication Interface . 353 14.2.4 IEEE 1451.3 – Distributed Multi-drop Systems for Interfacing Smart Transducers 355 14.2.5 IEEE 1451.4 – Mixed-mode Transducer Interface . 356 14.2.6 IEEE P1451.5 – Wireless Transducer Interface 358 14.3 Distributed Control Architecture . 359 14.3.1 Networked Smart Sensor Standards . 360 14.3.2 Network Communications using Ethernet 360 14.3.3 Distributed Measurement and Control Model 361 14.3.4 Web-based Access to Control Network 363 14.3.5 Internet-based Condition Monitoring . 364 14.4 Networked Sensor Application – Machine Tool Condition Monitoring . 366 14.4.1 Design Approach 369 14.4.2 System Implementation 369 14.4.3 Hardware System Layout . 369 14.5 Conclusions . 370 References . 371Contents xv 15 Rocket Testing and Integrated System Health Management 373 Fernando Figueroa and John Schmalzel 15.1 Introduction . 373 15.2 Background . 375 15.3 ISHM for Rocket Test . 378 15.3.1 Implementation Strategy . 378 15.3.2 DIaK Architecture 378 15.3.3 Object Framework 381 15.4 ISHM Implementation 384 15.4.1 Overall System . 384 15.4.2 Intelligent Sensors 385 15.4.3 Process Models . 388 15.5 Implementation/Validation: Rocket Engine Test Stand 388 15.6 Conclusions and Future Work . 389 References . 390 Index . 393 Index acoustic emission, 10, 11, 13 14, 19, 33, 35, 37, 39 41, 56 57, 63, 84, 87 89, 109, 111, 126 128, 135, 139, 159 160, 168, 246 247 analysis cepstrum analysis, 60, 121 122, 151 frequency analysis, 87 88, 115, 128, 226 order analysis, 251 signal analysis, 149, 182 spectral analysis, 123, 181, 189, 220, 251 spectrum analysis, 151, 220, 246, 251 vibration signature analysis, 59 bandwidth, 7, 59, 147, 152, 158, 181, 292, 295, 308, 312, 316, 321, 329, 345, 355 bearing localized defect, 246 bicoherence, 151, 225, 254 255 calibration, 39, 60, 91, 111 112, 269 270, 312, 330, 353 357 capacitance-type, 315, 317, 320 321, 328, 334 CBN, 42, 86 87, 89 90, 92, 97 99, 101 characteristic defect frequency, 254 chatter, 4, 6 8, 10 11, 17, 23, 25, 58, 60, 84, 86 88, 93 94, 312, 369 chip thickness, 35, 39, 41, 53 Choi Williams distribution, 259 classification fuzzy classification, 62, 65 68 supervised classification, 64, 68, 70, 79 unsupervised classification, 67 68, 79 80 client server, 292, 307, 351 compensation, 14 17, 26, 58, 311 312, 341 compliance, 139, 167 control adaptive control, 1, 3, 18 20, 22, 36, 57, 83, 94, 102, 106, 312 behavioral control, 291 feedback control, 24, 106, 328, 336, 385 feedforward control, 17 force control, 7, 12, 19 23, 25, 102 measurement control, 360, 370 motion control, 4, 308, 310 311 numerical control, 307, 369 process control, 3 4, 17 19, 23 26, 33, 53, 104, 361 statistical process control, 2 quality control, 2, 26, 53, 106 remote control, 291 292, 296, 311 servo control, 1, 3 5, 15, 23, 25, 317, 319, 333 session control, 292 supervisory control, 1, 4 5, 23 25 control network, 359 361, 375 controller engine controller, 376 NC controller, 315 open architecture controller, 5, 307 PID controller, 328 convolution theorem, 183 coordination strategy, 280 crest factor, 118 120, 149, 199, 247 cutting tool, 1 3, 6, 9, 11 12, 20, 26, 312, 315 316, 369 cyclostationary, 256394 Index data acquisition, 40, 60, 113, 168, 200, 206, 232, 348, 358, 370, 376, 379 380 data collection, 292, 296, 307, 309, 312 data packet, 297 298, 305, 309 decision making, 55 58, 60, 62 65, 68, 70, 111, 193, 245, 264, 268, 277, 374 defect propagation, 159 163, 187, 189 deformation, 9, 37, 41, 48, 51, 58, 102, 126 127, 140, 195, 211 212, 214, 311 312 depth of cut, 14, 41, 48, 62, 67, 87, 315 316, 318, 340 design architecture design, 290, 377 collaborative design, 289, 291, 312 computer-aided design, 23 detection displacement detection, 333 failure detection, 59, 62, 127 fault detection, 109, 123 124, 225 force detection, 331 state detection, 219, 221, 225 threshold detection, 376 vibration detection, 142 diagnosis, 55, 57, 109, 122 123, 129, 167 168, 180, 193 194, 199, 209, 212, 215 216, 220, 233, 238, 261 262, 291, 348, 373, 375 diagnostics, 118, 120, 137 138, 148, 155, 164, 231, 290, 377 distributed intelligence, 359, 362, 375 376 DMC, 360 361, 363 366 eddy current probe, 140 144 146 effective independence, 167, 175, 189 electrical noise, 321, 324 electrode, 321 electronic data sheet, 112, 347 348, 353, 356 embedded sensing, 171 encoder rotary encoder, 318 320, 336 surface encoder, 336 energy dissipation, 169 energy loss ratio, 170, 171 energy operator, 248 249 enveloping bandpass-based enveloping, 181 wavelet-based enveloping, 180, 184, 186 187 error Abbe error, 321 calibration error, 269 270 cosine error, 321 linearity error, 317, 327 random error, 269 270 statistical error, 269 270 systematic error, 269 event counting, 248 expert system, 26, 62, 111, 132, 272, 275 failure bearing failure, 137, 148, 164, 167 168 catastrophic failure, 109, 159, 235 fatigue failure, 137 failure mode, 137 feature extraction, 60, 65, 67, 167 168, 263, 268 field network, 349, 360, 370 filtering, 105, 152, 158, 181, 184, 186, 206, 220, 223, 248 249, 251 252, 260, 264, 370 FM0, 253 FM4, 253 254 force contact force, 315 316, 319, 332, 342 cutting force, 1, 3 4, 6 8, 11, 13 14, 16, 19 22, 36, 48, 56, 60, 62, 67, 260, 263, 308, 311, 316, 369 dynamic force, 168, 172 174, 177, 323 static force, 177 frequency domain, 8, 14, 59, 76, 79, 87, 148, 151, 180, 183, 185 186, 199, 245 247, 251, 264Index 395 frequency domain methods, 251 frequency modulation, 147 148, 248 frequency response, 128, 224, 252, 258, 320, 357 frequency spectrum, 87, 114, 146 147, 183 fusion decision fusion, 268 feature-level fusion, 268 high-level fusion, 268,272 low-level fusion, 268 mid-level fusion, 268 pixel fusion, 268 sensor fusion, 23, 25, 60, 105, 263, 268 269, 283, 375 gear motion residual, 226, 228, 235, 237, 239, 242 gearbox, 119 120, 122, 219 221, 228, 231 233, 235, 239, 242, 248 health evaluation, 380 health management, 373, 375 377 hysteresis, 317, 327 IEEE 1451, 347 353, 355 361, 364, 366 367, 369 371, 384, 386 infrared imaging, 211 inspection, 2, 11, 34, 163 164, 225– 226, 231 232, 237, 295, 306 workpiece inspection, 245 interferometer, 52, 113, 333 334, 345 interoperability, 348 351, 359 360, 370 ISHM, 373 382, 384 385, 388 389 Java 3D, 291 294, 296, 303 305, 308 309, 311 312 Kalman filter, 1, 219 224, 261 knowledge updating, 57, 62, 64, 67 68, 72 73, 79 80 kurtosis, 60, 76, 118 120, 149 150, 199, 229, 235, 237, 239, 242, 253 254, 261 lead time, 110 learning, 14, 56 57, 60, 62 68, 70, 72, 74, 78 80, 383 life prediction, 164, 168 lock-in amplifier, 331 machine lathe, 1, 17, 48 milling machine, 259, 307 308, 364 NC machine tool, 2 parallel kinematic machine, 299 300 machinery health, 347 machining drilling, 1, 3, 6, 15, 23 25, 55, 58 62, 68, 74 76, 78 80 grinding, 1, 3, 6, 19, 33, 36, 39 43, 83 94, 96 104, 106, 339 milling, 1, 3, 6 7, 9, 12, 16, 19 21, 25, 43 44, 61 62, 256, 259, 261, 307 308, 364 NC machining, 311 312 polishing, 45 47 turning, 1, 3, 6 7, 12, 15 16, 19, 34, 49 50, 52, 55, 61 63, 68 69, 74, 79 80, 290, 315 316, 335 diamond turning, 33, 39, 45, 315 317, 324, 335 336, 340 virtual machining, 291, 312 maintenance condition-based maintenance, 159, 220 221, 347 348 manufacturing collaborative manufacturing, 298, 312 distributed manufacturing, 289, 290, 292 e-manufacturing, 289, 312 intelligent manufacturing, 373, 375 web-based manufacturing, 290, 307 material brittle material, 247, 339, 344 345 ductile material, 315, 344 material removal, 1, 35 36, 38, 45, 47, 53, 83 84, 86 88, 93396 Index measurement AE measurement, 126 128 displacement measurement, 345 position measurement, 142 profile measurement, 315, 317, 319, 324, 335, 340, 345 MEMS, 33, 112 MIMOSA, 347 349 model autoregressive model, 219 220 diagnostic model, 160, 162 163, 226 embedded model, 261 Java 3D model, 291 294, 296, 304 305, 309, 311 312 kinematic model, 300, 304 305 Markov model, 264 object model, 349, 351, 378 state pace model, 57 model-based methods, 61 model order selection, 228, 230, 237, 242 modeling adaptive parametric modeling, 219 finite element modeling, 171, 173 geometric modeling, 308 sensor modelling, 269 270 modulation, 117, 122, 147 148, 245, 252, 254, 315, 331 monitoring AE monitoring, 43, 127 debris monitoring, 109 health monitoring, 139, 245 in-situ monitoring, 33, 53 online monitoring, 55 56, 58 59, 80 performance monitoring, 111 process monitoring, 6, 10, 18, 25 26, 34 36, 40, 52, 55, 57, 245, 264 real-time monitoring, 289 292, 295 296, 310 312, 348 remote monitoring, 289, 292, 299 300, 304, 306, 309, 347, 364 367 temperature monitoring, 111, 134 tool condition monitoring, 44, 55 57, 60 68, 70, 72, 74 75, 245, 264, 311, 368 vibration monitoring, 109, 219, 221, 242 Monte Carlo simulation, 210 NA4, 253 254 nanofabrication, 315 317, 319 320, 324 327, 329, 331 335, 339 340, 342, 344 345 nanofabrication probe, 317, 319 320, 324 326, 329, 331 325, 339 340, 344 345 NB4, 253 254 NCAP, 348 350, 353 354, 356, 358, 361, 363 364, 366 367, 369 370 neural network, 11, 14, 18, 26, 55, 62, 64 68, 70 73, 78, 80, 88 89, 105, 111, 124, 263 fuzzy neural network, 55, 64 68, 70 72, 74 75, 78 80 nodal displacement, 172, 177 178 nodal-signal-to-noise-ratio, 172, 178 object-oriented framework, 351 352, 361 observation uncertainty, 269 OSA-CBM, 349 part signature, 262 pattern classification, 11, 14, 64, 168, 263 pattern recognition, 62, 63, 111 peak-to-valley, 247, 253 performance index error covariance matrix, 175 176 Fisher information matrix, 175 photodetector, 132 piezoceramic plate, 173 plug and play, 348, 354, 358, 360, 370 positioning strategy, 280 281 power spectrum, 11, 62, 121 122, 151 152, 180, 186 187, 224, 251 252, 256, 258 probability density function, 63, 248Index 397 process quantity, 89 prognosis, 168, 264, 348, 375 prognostics, 137 138, 159, 163 164, 373, 377 progressive degradation, 374 protocol communication protocol, 293, 297, 307, 347 350, 353, 357 358, 360 HTTP streaming, 293, 297 TCP, 297, 307, 309, 364 publish subscribe, 292, 309, 312, 351, 362, 364 PZT, 315 317, 319 321, 325 327, 331 333 quartz crystal, 323 rapid prototyping, 289 repeatability, 94, 342 resolution, 40 41, 80, 92, 158, 182, 187, 213, 220, 225, 232, 251, 257, 259, 273 274, 283, 289, 311, 316, 320 321, 324, 331, 333, 336, 345 resonant frequency, 120, 125, 128, 152, 157, 320, 329 response dynamic response, 327, 329, 345 static response, 327 RMS, 39 41, 43, 45 52, 59, 87, 112, 114 115, 118, 120, 142, 144, 146, 149, 155 156, 162, 229– 230, 232, 234 237, 247, 264 robust state indicator, 219, 221, 242 rocket engine, 373, 375, 378 379, 389 rolling element bearing, 120, 124, 137 138, 164, 189, 248 rule-based reasoning, 382 sampling rate, 40, 114, 120, 158, 233, 296, 306 SB ratio, 253 scene graph, 291 292, 303 304, 308 SEM image, 51 security, 290, 292, 294, 297 299, 307, 309, 311 semiconductor, 33,44, 46, 134 sensing technique, 19, 25, 36, 56, 58, 140, 173, 219 sensitivity, 11, 13, 35 36, 39, 43, 45, 48 49, 91, 128, 158, 164, 172 173, 210 211, 225, 239, 247, 315 317, 331 sensor accelerometer, 112, 114, 125, 139 140, 142, 144, 146, 149, 155 157, 162 163, 174, 232 234, 356 357 active sensor, 267, 276 AE sensor, 33, 43, 45, 59, 149 competitive sensor, 268 269 complementary sensor, 267 cooperative sensor, 268, 270 displacement sensor, 143, 315, 317, 319 321, 326, 328, 334, 340 force sensor, 315 317, 319, 323, 325, 329 330, 332, 336, 345 intelligent sensor, 291, 377, 383 385, 387 388 microwave sensor, 140 144, 146 piezoelectric sensor, 376 position sensor, 140, 146, 312 shock wave sensor, 173 smart sensor, 112, 347 349, 355, 370, 377 380, 384, 386, 389 physical smart sensor, 384, 386 387 virtual smart sensor, 384, 387 strain gauge, 7, 85 virtual sensor, 261, 264 sensor interface, 347 349, 358 sensor location, 123, 146, 155, 158, 167, 169, 171 180, 186, 189, 195, 273 sensor network, 267 268, 276, 351, 363, 366 367, 369, 385 sensor placement, 156, 167 169, 175, 177, 189 sensor selection, 268 269, 276, 279 severity estimator, 263398 Index sheet metal stamping, 193 195, 204, 209, 212, 215 signal AE signal, 14, 37, 39 40, 43, 46– 48, 51 52, 59, 128, 308, 311 difference signal, 43, 253 non-stationary signal, 182, 220, 256 residual signal, 226, 228, 237, 242, 254 time domain signal, 59, 76 77, 119 122, 150, 182 transient signal, 200, 246 vibration signal, 55, 59, 75 76, 112 115, 118 119, 124, 143, 159, 167 171, 175, 180 182, 186 187, 189, 194, 220, 224, 254, 369 signal attenuation, 169, 171, 173 signal processing, 1, 10, 26, 40, 55 58, 69, 74, 79, 109, 118, 120, 124, 128, 137, 148, 151, 158, 160, 167 168, 180, 186, 188,193, 245 247, 252, 255 256, 260, 263 264, 304, 376 short-time signal processing, 256 signal-to-noise ratio, 151 152, 168 169, 175, 177, 188, 205 signature-generating mechanism, 246, 253 sinusoidal, 9, 49, 241, 258, 331, 336 337 socket, 295 297, 309, 364 spectrogram, 256 257 standards interface standards, 347 348, 350, 364, 369 370 sensor standards, 366, 387 statistical moments, 118, 150, 247, 256 stiffness, 7, 85, 102, 248, 261, 263, 316 317, 320, 324 326, 329 STIM, 353 355, 366 367, 369 370 stress fracture, 374 support vector machine, 194, 216, 263 surface complex surface, 315 318, 323, 340, 344 345 microstructured surface, 329, 337 surface finish, 7, 9, 13, 19, 26, 34, 36 37, 51 52, 57 58, 150 surface integrity,9, 58, 86, 89, 94, 98 surface roughness, 4, 13, 44, 84, 125, 139 surface temperature, 134 surveillance, 267 269, 272, 274 275, 277 280, 283 synchronized averaging, 250 synthesis, 272 275 system adaptive control system, 102 agent-based system, 276 277, 280 intelligent grinding system, 83, 105 multi-sensor system, 36, 268 web-based system, 289, 298, 311 312 system configuration, 158, 272, 360, 368 systems-of-systems, 374 375 Taylor factor, 50 52 TEDS, 112, 347 348, 350, 353 360, 369 371 thermal energy distribution, 211 212, 214 thermocouple, 89 91 thermography, 91, 109, 111, 134, 308, 311 threshold, 8, 11, 59, 76, 100, 104, 106 127 128, 132, 142, 150, 160, 205, 209, 248, 261 262, 334, 342, 376 floating threshold, 262 simple threshold, 58, 62 time/position dependent threshold, 262 time domain, 59, 70, 76 77, 79, 87, 89, 118 123, 147, 149 150, 161, 182, 184, 245 247, 258, 264Index 399 time frequency distributions, 124, 187 188, 199, 245 246, 258 259, 263 264 time-synchronous average, 226 time-varying spectrum, 220 tolarance, 311 tool breakage, 8, 10 11, 17, 19, 23 25, 60, 68, 72, 246 247, 263, 369 tool wear, 3 4, 6 7, 9 10, 12 15, 24 25, 36 37, 39, 58, 60, 63, 67 68, 70 72, 74, 246, 248, 259, 261, 263 tracking, 16 17, 21, 36, 250, 268, 270 271, 277 278, 333 334, 370 transducer, 112, 125, 128, 134, 260, 347 349, 351, 353 358, 360 361, 366, 370 smart transducer, 347 352, 360, 362, 364, 369 370 transform FFT, 59, 76, 78, 114, 156, 158, 185, 220, 251, 256 Fourier transform, 122, 151, 180, 182 185, 225, 251, 254, 258 Discrete Fourier transform, 114 Fast Fourier transform, 59, 114, 220 short-time Fourier transform, 187 188 Hilbert transform, 181, 184, 252 253 wavelet packet transform, 184 185 harmonic wavelet packet transform, 185 188 wavelet transform, 59, 167, 183– 184, 186, 194, 246, 257 259, 370 continuous wavelet transform, 55, 59, 183 discrete wavelet transform, 59, 183 184 trouble-shooting, 291, 293 294, 311 312 ultraprecision machining, 36, 48, 53 ultrasonic shock, 124 UML, 349, 351, 353 vibration acceleration, 112, 128 vibration spectrum, 115, 117 118 virtual reality, 380, 390 visibility, 272, 278 283 waveform recognition, 263 wear debris, 109, 111, 129 132, 135, 138 139 wear estimation, 13 14, 25 wear mechanism, 43, 129, 131 wear mode, 60, 131 wideband demodulation, 260 Wigner Ville Distribution, 167, 182, 187 188, 258
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Condition Monitoring and Control for Intelligent Manufacturing رابط مباشر لتنزيل كتاب Condition Monitoring and Control for Intelligent Manufacturing
|
|