كتاب Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18486
التقييم : 34050
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems  Empty
مُساهمةموضوع: كتاب Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems    كتاب Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems  Emptyالخميس 09 مارس 2023, 2:18 am

أخواني في الله
أحضرت لكم كتاب
Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems
Phase I: Isothermal forced convection case

كتاب Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems  B_m_o_10
و المحتوى كما يلي :


Table of contents
Chapter 1: Introduction . 11
Chapter 2: Benchmark specifications 13
2.1 Design feature of the HELIOS . 13
2.2 Geometrical data 15
2.3 Guidelines for pressure loss coefficient evaluation .20
2.3.1 Definition of pressure loss coefficients . 20
2.3.2 Procedures for pressure loss coefficient evaluation . 20
2.3.3 Report format for evaluated pressure loss coefficients under
isothermal forced convection conditions 21
Chapter 3: Method of the benchmark . 22
3.1 KIT/IKET, Germany . 22
3.1.1 Code description 22
3.1.2 Mesh structure and local form loss coefficients .24
3.2 RSE, Italy 28
3.3 ENEA, Italy .37
3.3.1 RELAP5 code version for HLM .37
3.3.2 Models and nodalisation . 37
3.3.3 Preliminary results 41
3.4 Seoul National University, Korea 42
3.4.1 Computer code characteristics .42
3.4.2 Nodalisation of HELIOS . 43
3.4.3 Pressure loss lodels in MARS-LBE 3.11 [1] .43
3.5 GIDROPRESS, Russian Federation . 48
3.6 IPPE, Russian Federation 49
3.6.1 Calculating code HYDRA for carrying out calculation of a hydraulic
network .49
3.6.2 HELIOS model .51
3.7 RRC KI, Russian Federation 54
3.7.1 Definition of pressure loss coefficients and relative pressure all over
the loop .54
3.7.2 Procedures for pressure loss coefficients evaluation . 54
3.7.3 Results of calculation of pressure loss coefficients and pressure
distribution along HELIOS loop under isothermal flow conditions .55
3.8 KIT/INR, Germany 56
3.8.1 Description of TRACE 56
3.8.2 Wall drag and pressure loss models 56
3.8.3 TRACE nodalisation and calculation of the HELIOS loop 59
Chapter 4: HELIOS experiments and results 62
4.1 Setup . 62
4.2 Instrumentation . 62
TABLE OF CONTENTS
4.3 Procedure .66
4.4 Results . 68
Chapter 5: Comparison and discussion . 71
5.1 Benchmark plan . 71
5.2 Result of system code simulation . 71
5.3 Result of CFD simulation 75
5.3.1 Core . 75
5.3.2 Gate valve . 78
5.3.3 Orifice . 79
5.4 Comparison and discussion .81
5.4.1 Core . 81
5.4.2 Orifice . 84
5.4.3 Gate valve . 84
5.4.4 Heat exchanger 85
5.4.5 Expansion tank .88
5.4.6 Straight and 45° and 90° elbow pipes 89
5.4.7 Gasket 92
5.4.8 Tee . 93
Chapter 6: Summary and conclusion . 96
6.1 Summary . 96
6.2 Conclusion . 97
Appendix A 105
Appendix B 120
Appendix C 158
List of figures
Figure 2.1 : Schematic diagram of PEACER-300 13
Figure 2.2 : Schematic (left) and photograph (right) of HELIOS (Heavy Eutectic
liquid metal Loop for Integral test of Operability and Safety of PEACER) 14
Figure 2.3 : Component numbers .16
Figure 3.1 : Form loss coefficient of T-junction [3] . 27
Figure 3.2 : Form loss coefficient of bending pipe [3] 27
Figure 3.3 : Flow expansion and contraction [3] .27
Figure 3.4 : Form loss coefficient of flow contraction [3] .27
Figure 3.5 : LegoPC graphical interface 29
Figure 3.6 : Translation of the component links into a non-linear equation system 29
Figure 3.7 : LegoPC simulation user interface 30
Figure 3.8 : HELIOS model main components 30
Figure 3.9 Gasket between flanges .31
Figure 3.10 : Single bend . 31
Figure 3.11 : S-shaped bend with flow in one plane .32
Figure 3.12 : Rehme modified drag coefficient 33
Figure 3.13 : Thin-plate orifice .34
Figure 3.14 : Gate valve 34
Figure 3.15 : LegoPC HELIOS preliminary model .35
Figure 3.16 : Nodalisation scheme of Helios loop for RELAP5 code .39TABLE OF CONTENTS
Figure 3.17 : Pressure distribution in HELIOS loop at high-flow conditions 42
Figure 3.18 : Nodalisation of the HELIOS .43
Figure 3.19 : Sudden expansion (left) and contraction (right) .45
Figure 3.20 : A1 (left figure) and B1 (right figure) for elbow form factor .45
Figure 3.21 : Geometry of tee (left figure) and form factor (right figure) 46
Figure 3.22 : Geometry of the orifice . 47
Figure 3.23 : Grid form factor, Cv 47
Figure 3.24 : TRACE nodding for an abrupt contraction (a), an abrupt expansion (b)
and a thin-plate orifice (c) [5] 59
Figure 3.25 : TRACE nodalisation scheme of the HELIOS loop 60
Figure 4.1 : Three-dimensional diagram of the HELIOS forced convection test setup .63
Figure 4.2 : Location of Type K thermocouples (T/C) in the HELIOS 64
Figure 4.3 : Location of five differential pressure transducers (DP) in the HELIOS . 65
Figure 4.4 : Pressure difference at orifice region and temperature at all positions at
a different pump speed .67
Figure 4.5 : Pressure loss at core region 68
Figure 4.6 : Pressure loss at gate valve . 69
Figure 4.7 : Pressure loss at orifice region .69
Figure 5.1 : Overall procedures of LACANES benchmark .71
Figure 5.2 : Comparison of the total and partial pressure loss at high-mass flow
rate case(13.57kg/s) 73
Figure 5.3 : Comparison of the accumulated pressure loss at high-flow rate case
(G/V: Gate Valve, E/T: Expansion Tank, H/X: Heat Exchanger) .74
Figure 5.4 : Comparison between CFD and experiment result .75
Figure 5.5 : Schematic diagram of HELIOS core and flow path . 76
Figure 5.6 : Pressure distribution at the centre plane of the core (a) results of StarCD® (b) results of CFX® .77
Figure 5.8 : Schematic diagram of gate valve .78
Figure 5.9 : Pressure distributions at gate valve . 79
Figure 5.10 : Pressure change due to the gate valve 79
Figure 5.11 : Schematic diagram of orifice 80
Figure 5.12 : Pressure distribution at orifice .80
Figure 5.13 : Pressure change due to the orifice . 81
Figure 5.14 : Pressure loss in the core at the high mass flow rate case 81
Figure 5.15 : Schematic diagram of core spacer based on orifice shape 82
Figure 5.16 : Drag coefficient (Cv) of Rehme correlation for predicted pressure loss
of grid spacer; modified new one based on measured data and four
set used in benchmarking 83
Figure 5.17 : Pressure loss in the core using equation 5.1 .83
Figure 5.18 : Pressure loss in the orifice at the high-mass flow rate . 84
Figure 5.19 : Pressure loss in the gate valve at the high-mass flow rate (other
participants used manufacturer’s data) 85
Figure 5.20 : Accumulated pressure loss in the heat exchanger at high-flow rate . 86
Figure 5.21 : Geometry and pressure loss coefficients of entrance in a vessel and
discharge into a pipe [2] 87
Figure 5.22 : Accumulated pressure loss in the heat exchanger at high-flow rate
using Figure 5.21 88
Figure 5.23 : Pressure loss in the expansion tank at the high-mass flow rate (left)
and schematic diagram of expansion tank (right) 88TABLE OF CONTENTS
Figure 5.24 : Sum of pressure loss in the straight pipe (15m) at high-flow rate 91
Figure 5.25 : Sum of pressure loss in the 45° elbow pipes (9ea) at high-flow rate .91
Figure 5.26 : Sum of pressure losses in the 90° elbow pipes (4ea) at high-flow rate .92
Figure 5.27 : Pressure loss at gasket area at the high-flow rate .92
Figure 5.28 : Schematic diagram of tee-straight (left) and tee-branch (right) . 93
Figure 5.29 : Sum of pressure loss in tee-straight (8ea) at high-flow rate 94
Figure 5.30 : Pressure loss in tee-branch pipe at high-flow rate 94
Figure A-1: 3D View of component #1 core vessel 106
Figure A-2: 3D View of component #2 pipe with tee 107
Figure A-4: 3D View of component #4 pipe with tee and elbows 108
Figure A-10: 3D View of component #10 expansion tank .109
Figure A-12: 3D View of component #12 pipe with tee and elbow .110
Figure A-14: 3D View of component #14 pipe with tee .111
Figure A-15: 3D View of component #15 heat exchanger .112
Figure A-16: 3D View of component #16 pipe with tee and elbow .113
Figure A-18: 3D View of component #18 pipe with tee .114
Figure A-20: 3D View of component #20 pipe with tee and elbow .115
Figure A-21: 3D View of component #21 pipe with elbow 116
Figure A-23: 3D View of component #23 pipe with tee and elbow .117
Figure A-24: 3D View of component #24 pipe with tee, elbow and valve . 118
Figure A-25: 3D View of component #25 core 119
Figure B-1 . 121
Figure B-2 . 122
Figure B-3 . 123
Figure B-4 . 124
Figure B-5 . 125
Figure B-6 . 126
Figure B-7 . 127
Figure B-8 . 128
Figure B-9 . 129
Figure B-10 . 130
Figure B-11 . 131
Figure B-12 . 132
Figure B-13 . 133
Figure B-14 . 134
Figure B-15 . 135
Figure B-16 . 136
Figure B-17 . 137
Figure B-18 . 138
Figure B-19 . 139
Figure B-20 . 140
Figure B-21 . 141
Figure B-22 . 142
Figure B-23 . 143
Figure B-24 . 144
Figure B-25 . 145TABLE OF CONTENTS
Figure B-26 .146
Figure B-27 .147
Figure B-28 .148
Figure B-29 .149
Figure B-30 .150
Figure B-31 .151
Figure B-32 .152
Figure B-33 .153
Figure B-34 .154
Figure B-35 .155
Figure B-36 .156
Figure B-37 .157
List of tables
Table 1.1 : List of participants and code for the OECD/NEA benchmark on
LACANES . 12
Table 2.1: Comparison of design parameters for PEACER-300 and for HELIOS . 15
Table 2.2 : List of components and parts (component number is given in Figure 2.3) .17
Table 2.3 : Recommended conditions for the evaluation of pressure loss
coefficients under forced convection tests at 250 °C 20
Table 3.1 : Cell information 25
Table 3.2 : Single bend, values of A . 31
Table 3.3 : Single bend, values of B . 32
Table 3.4 : Single bend, values of Kre- 32
Table 3.5 : S-shaped bend, values of C . 33
Table 3.6 : Gate valve, values of K1 34
Table 3.7 : Flow meter calibration data .35
Table 3.8 : Orifice data . 35
Table 3.9 : Main component pressure loss at low-mass flow rate . 36
Table 3.10 : Main component pressure loss at high-mass flow rate 36
Table 3.11 : RELAP5 Correlations for friction factors . 40
Table 3.12 : Singular pressure loss coefficient for flow area variation .41
Table 3.13 : Form loss coefficient for sudden area change in MARS-LBE code 44
Table 3.14 : kRe for elbow form factor 45
Table 3.15 : X for elbow form factor 46
Table 3.16 : Form loss coefficient of the components 48
Table 3.17 : Formulas for calculation of form loss coefficients and friction loss
coefficients 50
Table 3.18 : Nodalisationof HELIOSmodel 51
Table 3.19 : Suggested conditions for the evaluation of pressure loss coefficients at
250 °C 55
Table 3.20 : Values of K for different components depending on the mass flow rate .58
Table 4.1 : Specification of differential pressure transducer, Rosemount model
3051 CD3A 65
Table 4.2 : Correlations with function of mass flow rate (Q) and pressure loss (DP) .70
Table 4.3 : Pressure losses at different mass flow rates 70
Table 5.1: Description on 11 main components and available data . 72TABLE OF CONTENTS
Table 5.7 : Pressure loss distribution in the core (from CFX® simulation) 77
Table 5.2 : Value of A1 for equation 5.4 89
Table 5.3 : Value of B1 for equation 5.4 89
Table 5.4: Value of kRe for equation 5.4 90
Table 5.5: Value of X for equation 5.4 90
Table 5.6: The recommended form loss coefficient for the tee-branch . 93
Table 6.1: Recommended correlations in the LACANES benchmarking phase-I .98
Table C-1: Friction loss coefficient (1) at low-mass flow rate condition - ENEA,
ERSE, GIDROPRESS . 159
Table C-2: Friction loss coefficient (II) at low-mass flow rate condition - IAEA, IPPE,
KIT/INR . 166
Table C-3: Friction loss coefficient (III) at low-mass flow rate condition - RRC KI,
SNU . 173
Table C-4: Form loss coefficient (I) at low-mass flow rate condition - ENEA, ERSE,
GIDROPRESS, IPPE 183
Table C-5: Form loss coefficient (II) at low-mass flow rate condition - KIT/INR, RRC
KI, SNU . 189
Table C-6: Friction loss coefficient (1) at high-mass flow rate condition - ENEA,
ERSE, GIDROPRESS . 197
Table C-7: Friction loss coefficient (II) at high-mass flow rate condition - IAEA,
IPPE, KIT/IKET .204
Table C-8: Friction loss coefficient (III) at high-mass flow rate condition - KIT/INR,
RRC KI, SNU 211
Table C-9: Form loss coefficient (I) at high-mass flow rate condition - ENEA, ERSE,
GIDROPRESS, IPPE 218
Table C-10: Form loss coefficient (II) at high-mass flow rate condition - KIT/IKET,
KIT/INR, RRC KI, SNU .225
Table C-11: Form loss coefficient of IAEA at low-and high-mass flow rate condition 229


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems
رابط مباشر لتنزيل كتاب Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Efficiency Evaluation of Energy Systems
» كتاب Power Electronics and Renewable Energy Systems
» كتاب Optimum Design of Renewable Energy Systems
»  كتاب Frequency Analysis of Vibration Energy Harvesting Systems
» كتاب Alloy Steels

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: