كتاب Materials Science and Engineering - An Introduction
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Materials Science and Engineering - An Introduction

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18726
التقييم : 34712
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Materials Science and Engineering - An Introduction  Empty
مُساهمةموضوع: كتاب Materials Science and Engineering - An Introduction    كتاب Materials Science and Engineering - An Introduction  Emptyالأربعاء 07 أبريل 2021, 1:50 am

أخوانى فى الله
أحضرت لكم كتاب
Materials Science and Engineering - An Introduction
William D. Callister, Jr.
Department of Metallurgical Engineering
The University of Utah
David G. Rethwisch
Department of Chemical and Biochemical Engineering
The University of Iowa

كتاب Materials Science and Engineering - An Introduction  M_s_a_13
و المحتوى كما يلي :


Contents
List of Symbols Xix
1. Introduction 1
Learning Objectives 2
1.1 Historical Perspective 2
1.2 Materials Science and Engineering 3
1.3 Why Study Materials Science and
Engineering? 5
Case Study—Liberty Ship Failures 6
1.4 Classification of Materials 7
Case Study—Carbonated Beverage
Containers 12
1.5 Advanced Materials 14
1.6 Modern Materials’ Needs 16
Summary 17
References 18
2. Atomic Structure and Interatomic
Bonding 19
Learning Objectives 20
2.1 Introduction 20
ATOMIC STRUCTURE 20
2.2 Fundamental Concepts 20
2.3 Electrons in Atoms 22
2.4 The Periodic Table 28
ATOMIC BONDING IN SOLIDS 30
2.5 Bonding Forces and Energies 30
2.6 Primary Interatomic Bonds 32
2.7 Secondary Bonding or van der Waals
Bonding 39
Materials of Importance—Water (Its
Volume Expansion Upon Freezing) 42
2.8 Mixed Bonding 43
2.9 Molecules 44
2.10 Bonding Type-Material Classification
Correlations 44
Summary 45
Equation Summary 46
List of Symbols 46
Important Terms and Concepts 46
References 47
3. The Structure of Crystalline
Solids 48
Learning Objectives 49
3.1 Introduction 49
CRYSTAL STRUCTURES 49
3.2 Fundamental Concepts 49
3.3 Unit Cells 50
3.4 Metallic Crystal Structures 51
3.5 Density Computations 57
3.6 Polymorphism and Allotropy 57
Material of Importance—Tin (Its
Allotropic Transformation) 58
3.7 Crystal Systems 59
CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND
PLANES 61
3.8 Point Coordinates 61
3.9 Crystallographic Directions 64
3.10 Crystallographic Planes 70
3.11 Linear and Planar Densities 76
3.12 Close-Packed Crystal Structures 77
CRYSTALLINE AND NONCRYSTALLINE
MATERIALS 79
3.13 Single Crystals 79
3.14 Polycrystalline Materials 79
3.15 Anisotropy 81
3.16 X-Ray Diffraction: Determination of
Crystal Structures 82
3.17 Noncrystalline Solids 87
Summary 88
Equation Summary 90
List of Symbols 90
Important Terms and Concepts 91
References 91
4. Imperfections in Solids 92
Learning Objectives 93
4.1 Introduction 93
• xixii • Contents
POINT DEFECTS 93
4.2 Vacancies and Self-Interstitials 93
4.3 Impurities in Solids 95
4.4 Specification of Composition 98
MISCELLANEOUS IMPERFECTIONS 102
4.5 Dislocations—Linear Defects 102
4.6 Interfacial Defects 105
Materials of Importance—Catalysts (and
Surface Defects) 108
4.7 Bulk or Volume Defects 109
4.8 Atomic Vibrations 109
MICROSCOPIC EXAMINATION 110
4.9 Basic Concepts of Microscopy 110
4.10 Microscopic Techniques 111
4.11 Grain-Size Determination 115
Summary 118
Equation Summary 119
List of Symbols 120
Important Terms and Concepts 120
References 120
5. Diffusion 121
Learning Objectives 122
5.1 Introduction 122
5.2 Diffusion Mechanisms 123
5.3 Fick’s First Law 124
5.4 Fick’s Second Law—Nonsteady-State
Diffusion 126
5.5 Factors That Influence Diffusion 130
5.6 Diffusion in Semiconducting
Materials 135
Materials of Importance—Aluminum
for Integrated Circuit
Interconnects 138
5.7 Other Diffusion Paths 139
Summary 139
Equation Summary 140
List of Symbols 141
Important Terms and Concepts 141
References 141
6. Mechanical Properties of Metals 142
Learning Objectives 143
6.1 Introduction 143
6.2 Concepts of Stress and Strain 144
ELASTIC DEFORMATION 148
6.3 Stress–Strain Behavior 148
6.4 Anelasticity 151
6.5 Elastic Properties of Materials 151
PLASTIC DEFORMATION 154
6.6 Tensile Properties 154
6.7 True Stress and Strain 161
6.8 Elastic Recovery After Plastic
Deformation 164
6.9 Compressive, Shear, and Torsional
Deformations 165
6.10 Hardness 165
PROPERTY VARIABILITY AND DESIGN/SAFETY
FACTORS 171
6.11 Variability of Material Properties 171
6.12 Design/Safety Factors 173
Summary 177
Important Terms and Concepts 178
References 178
7. Dislocations and Strengthening
Mechanisms 180
Learning Objectives 181
7.1 Introduction 181
DISLOCATIONS AND PLASTIC DEFORMATION 181
7.2 Basic Concepts 182
7.3 Characteristics of Dislocations 184
7.4 Slip Systems 185
7.5 Slip in Single Crystals 187
7.6 Plastic Deformation of Polycrystalline
Materials 190
7.7 Deformation by Twinning 192
MECHANISMS OF STRENGTHENING IN METALS 193
7.8 Strengthening by Grain Size Reduction 193
7.9 Solid-Solution Strengthening 195
7.10 Strain Hardening 196
RECOVERY, RECRYSTALLIZATION, AND GRAIN
GROWTH 199
7.11 Recovery 199
7.12 Recrystallization 200
7.13 Grain Growth 204
Summary 206
Equation Summary 208
List of Symbols 208
Important Terms and Concepts 208
References 208
8. Failure 209
Learning Objectives 210
8.1 Introduction 210
FRACTURE 211
8.2 Fundamentals of Fracture 211Contents • xiii
8.3 Ductile Fracture 211
8.4 Brittle Fracture 213
8.5 Principles of Fracture Mechanics 215
8.6 Fracture Toughness Testing 224
FATIGUE 229
8.7 Cyclic Stresses 229
8.8 The S–N Curve 231
8.9 Crack Initiation and Propagation 235
8.10 Factors That Affect Fatigue Life 237
8.11 Environmental Effects 239
CREEP 240
8.12 Generalized Creep Behavior 240
8.13 Stress and Temperature Effects 241
8.14 Data Extrapolation Methods 244
8.15 Alloys for High-Temperature Use 245
Summary 246
Equation Summary 248
List of Symbols 249
Important Terms and Concepts 249
References 249
9. Phase Diagrams 251
Learning Objectives 252
9.1 Introduction 252
DEFINITIONS AND BASIC CONCEPTS 252
9.2 Solubility Limit 253
9.3 Phases 254
9.4 Microstructure 254
9.5 Phase Equilibria 254
9.6 One-Component (or Unary) Phase
Diagrams 255
BINARY PHASE DIAGRAMS 256
9.7 Binary Isomorphous Systems 257
9.8 Interpretation of Phase Diagrams 259
9.9 Development of Microstructure in
Isomorphous Alloys 263
9.10 Mechanical Properties of Isomorphous
Alloys 266
9.11 Binary Eutectic Systems 266
9.12 Development of Microstructure in
Eutectic Alloys 272
Materials of Importance—Lead-Free
Solders 273
9.13 Equilibrium Diagrams Having Intermediate
Phases or Compounds 279
9.14 Eutectoid and Peritectic Reactions 282
9.15 Congruent Phase Transformations 283
9.16 Ceramic and Ternary Phase
Diagrams 284
9.17 The Gibbs Phase Rule 284
THE IRON–CARBON SYSTEM 287
9.18 The Iron–Iron Carbide (Fe–Fe3C) Phase
Diagram 287
9.19 Development of Microstructure in
Iron–Carbon Alloys 290
9.20 The Influence of Other Alloying
Elements 298
Summary 298
Equation Summary 300
List of Symbols 301
Important Terms and Concepts 301
References 302
10. Phase Transformations: Development
of Microstructure and Alteration of
Mechanical Properties 303
Learning Objectives 304
10.1 Introduction 304
PHASE TRANSFORMATIONS 304
10.2 Basic Concepts 304
10.3 The Kinetics of Phase Transformations 305
10.4 Metastable Versus Equilibrium States 316
MICROSTRUCTURAL AND PROPERTY CHANGES IN
IRON–CARBON ALLOYS 317
10.5 Isothermal Transformation Diagrams 317
10.6 Continuous-Cooling Transformation
Diagrams 328
10.7 Mechanical Behavior of Iron–Carbon
Alloys 331
10.8 Tempered Martensite 335
10.9 Review of Phase Transformations and
Mechanical Properties for Iron–Carbon
Alloys 338
Materials of Importance—Shape-Memory
Alloys 341
Summary 344
Equation Summary 345
List of Symbols 346
Important Terms and Concepts 346
References 346
11. Applications and Processing
of Metal Alloys 347
Learning Objectives 348
11.1 Introduction 348
TYPES OF METAL ALLOYS 349
11.2 Ferrous Alloys 349
11.3 Nonferrous Alloys 361
Materials of Importance—Metal Alloys
Used for Euro Coins 372FABRICATION OF METALS 373
11.4 Forming Operations 373
11.5 Casting 375
11.6 Miscellaneous Techniques 376
11.7 3D Printing (Additive Manufacturing) 378
THERMAL PROCESSING OF METALS 382
11.8 Annealing Processes 382
11.9 Heat Treatment of Steels 384
11.10 Precipitation Hardening 394
Summary 401
Important Terms and Concepts 403
References 403
12. Structures and Properties of
Ceramics 405
Learning Objectives 406
12.1 Introduction 406
CERAMIC STRUCTURES 406
12.2 Crystal Structures 407
12.3 Silicate Ceramics 415
12.4 Carbon 419
12.5 Imperfections in Ceramics 420
12.6 Diffusion in Ionic Materials 424
12.7 Ceramic Phase Diagrams 425
MECHANICAL PROPERTIES 428
12.8 Brittle Fracture of Ceramics 429
12.9 Stress–Strain Behavior 433
12.10 Mechanisms of Plastic
Deformation 435
12.11 Miscellaneous Mechanical
Considerations 437
Summary 439
Equation Summary 440
List of Symbols 441
Important Terms and Concepts 441
References 441
13. Applications and Processing of
Ceramics 442
Learning Objectives 443
13.1 Introduction 443
TYPES AND APPLICATIONS OF CERAMICS 444
13.2 Glasses 444
13.3 Glass–Ceramics 444
13.4 Clay Products 446
13.5 Refractories 446
13.6 Abrasives 449
13.7 Cements 451
13.8 Ceramic Biomaterials 452
13.9 Carbons 453
13.10 Advanced Ceramics 456
FABRICATION AND PROCESSING OF
CERAMICS 461
13.11 Fabrication and Processing of Glasses and
Glass–Ceramics 462
13.12 Fabrication and Processing of Clay
Products 466
13.13 Powder Pressing 471
13.14 Tape Casting 473
13.15 3D Printing of Ceramic Materials 474
Summary 476
Important Terms and Concepts 478
References 478
14. Polymer Structures 479
Learning Objectives 480
14.1 Introduction 480
14.2 Hydrocarbon Molecules 480
14.3 Polymer Molecules 483
14.4 The Chemistry of Polymer
Molecules 483
14.5 Molecular Weight 487
14.6 Molecular Shape 490
14.7 Molecular Structure 492
14.8 Molecular Configurations 493
14.9 Thermoplastic and Thermosetting
Polymers 496
14.10 Copolymers 497
14.11 Polymer Crystallinity 498
14.12 Polymer Crystals 502
14.13 Defects in Polymers 504
14.14 Diffusion in Polymeric Materials 505
Summary 507
Equation Summary 509
List of Symbols 509
Important Terms and Concepts 510
References 510
15. Characteristics, Applications, and
Processing of Polymers 511
Learning Objectives 512
15.1 Introduction 512
MECHANICAL BEHAVIOR OF POLYMERS 512
15.2 Stress–Strain Behavior 512
15.3 Macroscopic Deformation 515
15.4 Viscoelastic Deformation 515
15.5 Fracture of Polymers 519
15.6 Miscellaneous Mechanical
Characteristics 521
xiv • ContentsMECHANISMS OF DEFORMATION AND FOR
STRENGTHENING OF POLYMERS 522
15.7 Deformation of Semicrystalline
Polymers 522
15.8 Factors That Influence the Mechanical
Properties of Semicrystalline
Polymers 524
Materials of Importance—Shrink-Wrap
Polymer Films 528
15.9 Deformation of Elastomers 528
CRYSTALLIZATION, MELTING, AND GLASSTRANSITION PHENOMENA IN POLYMERS 530
15.10 Crystallization 531
15.11 Melting 532
15.12 The Glass Transition 532
15.13 Melting and Glass Transition
Temperatures 532
15.14 Factors That Influence Melting and Glass
Transition Temperatures 534
POLYMER TYPES 536
15.15 Plastics 536
Materials of Importance—Phenolic
Billiard Balls 539
15.16 Elastomers 539
15.17 Fibers 541
15.18 Miscellaneous Applications 542
15.19 Polymeric Biomaterials 543
15.20 Advanced Polymeric Materials 545
POLYMER SYNTHESIS AND PROCESSING 549
15.21 Polymerization 549
15.22 Polymer Additives 551
15.23 Forming Techniques for Plastics 553
15.24 Fabrication of Elastomers 555
15.25 Fabrication of Fibers and Films 555
15.26 3D Printing of Polymers 557
Summary 560
Equation Summary 562
List of Symbols 562
Important Terms and Concepts 563
References 563
16. Composites 564
Learning Objectives 565
16.1 Introduction 565
PARTICLE-REINFORCED COMPOSITES 567
16.2 Large-Particle Composites 567
16.3 Dispersion-Strengthened Composites 571
FIBER-REINFORCED COMPOSITES 572
16.4 Influence of Fiber Length 572
16.5 Influence of Fiber Orientation and
Concentration 573
16.6 The Fiber Phase 581
16.7 The Matrix Phase 583
16.8 Polymer-Matrix Composites 583
16.9 Metal-Matrix Composites 589
16.10 Ceramic-Matrix Composites 590
16.11 Carbon–Carbon Composites 592
16.12 Hybrid Composites 592
16.13 Processing of Fiber-Reinforced
Composites 593
STRUCTURAL COMPOSITES 595
16.14 Laminar Composites 595
16.15 Sandwich Panels 597
Case Study—Use of Composites in the
Boeing 787 Dreamliner 599
16.16 Nanocomposites 600
Summary 602
Equation Summary 605
List of Symbols 606
Important Terms and Concepts 606
References 606
17. Corrosion and Degradation
of Materials 607
Learning Objectives 608
17.1 Introduction 608
CORROSION OF METALS 609
17.2 Electrochemical Considerations 609
17.3 Corrosion Rates 615
17.4 Prediction of Corrosion Rates 617
17.5 Passivity 624
17.6 Environmental Effects 625
17.7 Forms of Corrosion 625
17.8 Corrosion Environments 633
17.9 Corrosion Prevention 633
17.10 Oxidation 636
CORROSION OF CERAMIC MATERIALS 639
DEGRADATION OF POLYMERS 639
17.11 Swelling and Dissolution 640
17.12 Bond Rupture 642
17.13 Weathering 643
Summary 644
Equation Summary 646
List of Symbols 646
Important Terms and Concepts 647
References 647
18. Electrical Properties 648
Learning Objectives 649
18.1 Introduction 649
Contents • xvELECTRICAL CONDUCTION 649
18.2 Ohm’s Law 649
18.3 Electrical Conductivity 650
18.4 Electronic and Ionic Conduction 651
18.5 Energy Band Structures in
Solids 651
18.6 Conduction in Terms of Band and
Atomic Bonding Models 653
18.7 Electron Mobility 655
18.8 Electrical Resistivity of Metals 656
18.9 Electrical Characteristics of Commercial
Alloys 659
SEMICONDUCTIVITY 659
18.10 Intrinsic Semiconduction 659
18.11 Extrinsic Semiconduction 662
18.12 The Temperature Dependence of Carrier
Concentration 665
18.13 Factors That Affect Carrier Mobility 667
18.14 The Hall Effect 671
18.15 Semiconductor Devices 673
ELECTRICAL CONDUCTION IN IONIC CERAMICS
AND IN POLYMERS 679
18.16 Conduction in Ionic Materials 680
18.17 Electrical Properties of Polymers 680
DIELECTRIC BEHAVIOR 681
18.18 Capacitance 681
18.19 Field Vectors and Polarization 683
18.20 Types of Polarization 686
18.21 Frequency Dependence of the Dielectric
Constant 688
18.22 Dielectric Strength 689
18.23 Dielectric Materials 689
OTHER ELECTRICAL CHARACTERISTICS OF
MATERIALS 689
18.24 Ferroelectricity 689
18.25 Piezoelectricity 690
Material of Importance—Piezoelectric
Ceramic Ink-Jet Printer Heads 691
Summary 692
Equation Summary 695
List of Symbols 696
Important Terms and Concepts 696
References 697
19. Thermal Properties 698
Learning Objectives 699
19.1 Introduction 699
19.2 Heat Capacity 699
19.3 Thermal Expansion 703
Materials of Importance—Invar
and Other Low-Expansion Alloys 705
19.4 Thermal Conductivity 706
19.5 Thermal Stresses 709
Summary 711
Equation Summary 712
List of Symbols 712
Important Terms and Concepts 713
References 713
20. Magnetic Properties 714
Learning Objectives 715
20.1 Introduction 715
20.2 Basic Concepts 715
20.3 Diamagnetism and Paramagnetism 719
20.4 Ferromagnetism 721
20.5 Antiferromagnetism
and Ferrimagnetism 722
20.6 The Influence of Temperature on Magnetic
Behavior 726
20.7 Domains and Hysteresis 727
20.8 Magnetic Anisotropy 730
20.9 Soft Magnetic Materials 731
Materials of Importance—An
Iron–Silicon Alloy Used in
Transformer Cores 732
20.10 Hard Magnetic Materials 733
20.11 Magnetic Storage 736
20.12 Superconductivity 739
Summary 742
Equation Summary 744
List of Symbols 744
Important Terms and Concepts 745
References 745
21. Optical Properties 746
Learning Objectives 747
21.1 Introduction 747
BASIC CONCEPTS 747
21.2 Electromagnetic Radiation 747
21.3 Light Interactions with Solids 749
21.4 Atomic and Electronic Interactions 750
OPTICAL PROPERTIES OF METALS 751
OPTICAL PROPERTIES OF NONMETALS 752
21.5 Refraction 752
21.6 Reflection 754
21.7 Absorption 754
21.8 Transmission 758
21.9 Color 758
21.10 Opacity and Translucency in Insulators 760
xvi • ContentsAPPLICATIONS OF OPTICAL
PHENOMENA 761
21.11 Luminescence 761
21.12 Photoconductivity 761
Materials of Importance—Light-Emitting
Diodes 762
21.13 Lasers 764
21.14 Optical Fibers in Communications 768
Summary 770
Equation Summary 772
List of Symbols 773
Important Terms and Concepts 773
References 774
22. Environmental, and Societal
Issues in Materials Science
and Engineering 775
Learning Objectives 776
22.1 Introduction 776
22.2 Environmental and Societal
Considerations 776
22.3 Recycling Issues in Materials Science
and Engineering 779
Materials of Importance—Biodegradable
and Biorenewable Polymers/
Plastics 784
Summary 786
References 786
Appendix A The International System of
Units (SI) A-1
Appendix B Properties of Selected
Engineering Materials A-3
B.1 Density A-3
B.2 Modulus of Elasticity A-6
B.3 Poisson’s Ratio A-10
B.4 Strength and Ductility A-11
B.5 Plane Strain Fracture Toughness A-16
B.6 Linear Coefficient of Thermal
Expansion A-18
B.7 Thermal Conductivity A-21
B.8 Specific Heat A-24
B.9 Electrical Resistivity A-27
B.10 Metal Alloy Compositions A-30
Appendix C Costs and Relative Costs for
Selected Engineering Materials A-32
Appendix D Repeat Unit Structures for
Common Polymers A-37
Appendix E Glass Transition and Melting
Temperatures for Common Polymeric
Materials A-41
Glossary G-1
Index I-1
A
Abrasive ceramics, 443, 449, 476
manufactured, 449
naturally occurring, 449
Abrasives, G-1
Absorption coefficient, 757, 773
glass, 757
optical fibers, P-90
Absorption of light:
in metals, 751–752
in nonmetals, 752–753
Absorptivity, 750
ABS polymer, 537
A
mBnXp crystal structures, 411
Acceptors, 664, G-1
Acetic acid, 482
Acetylene, 481
Acid rain, as corrosion environment, 633
Acid refractories, 447
Acids (organic), 482
Acid slags, 447
Acrylics, see Poly(methyl methacrylate)
Acrylonitrile, see Polyacrylonitrile (PAN)
Acrylonitrile-butadiene rubber, 540
Acrylonitrile-butadiene-styrene
(ABS), 537
Activation energy, G-1
for creep, 243, 249
for diffusion, 130, 141, 309
free, 307, 311, 345, 346
for viscous flow, P-59
Activation polarization, 617-619,
644, G-1
Actuator, 15, 456
Addition polymerization, 549–550, G-1
Additive manufacturing. See
Three-dimensional printing.
Additives, polymer, 551–553, 562
Adhesives, 542, 561, G-1
and secondary bonds, 41
Adhesive tape, 19
Adipic acid (structure), 551
Adsorption, 108
Advanced ceramics, 443, 456–461, 477
Advanced materials, 14–16
Advanced polymers, 545–549, 561
Age hardening, see Precipitation
hardening
Air, as quenching medium, 389
AISI/SAE steel designation scheme,
351–352
Akermanite, 417
Alcohols, 482
Aldehydes, 482
Alkali metals, 28, 45
Alkaline earth metals, 29
Allotropic transformation (tin), 58
Allotropy, 57, G-1
Alloys, 7, 349, G-1. See also Solid
solutions; specific alloys
atomic weight equations, 100
cast, 361
composition specification, 98–99
compositions for various,
A-27–A-28
costs, A-32–A-34
defined, 95
density equations, 100
density values, A-3–A-5
ductility values, A-11–A-14
electrical resistivity values, A-27–A-28
fracture toughness values, 220,
A-16–A-17
heat treatable, 361
high-temperature, 245–246
linear coeffi cient of thermal
expansion values, A-18–A-19
low expansion, 705
modulus of elasticity values, A-6–A-8
Poisson’s ratio values, A-10
specifi c heat values, A-24–A-25
strengthening, see Strengthening of
metals
tensile strength values, A-11–A-14
thermal conductivity values, A-21–A-22
wrought, 361
yield strength values, A-11–A-14
Alloy steels, 325, 350, G-1. See also Steels
Alnico, 734, 735
???? Iron, see Ferrite (????)
Alternating copolymers, 497, 498, G-1
Alumina, 9. See also Aluminum oxide
Aluminosilicates, 467
Aluminum:
atomic radius and crystal structure, 51
bonding energy and melting
temperature, 34
elastic and shear moduli, 148
electrical conductivity, 656
for integrated circuit interconnects,
138–139
Poisson’s ratio, 148
recrystallization temperature, 203
slip systems, 186
superconducting critical temperature,
741
thermal properties, 702
yield and tensile strengths, ductility, 159
Aluminum alloys, 364–365, 366
plane strain fracture toughness, 220
precipitation hardening, 398–400
properties and applications, 366
temper designation scheme, 365
Aluminum antimonide, electrical
characteristics, 660
Aluminum-copper alloys, phase
diagram, 398
Aluminum-lithium alloys, 364, 366
Aluminum oxide:
as biomaterial, 452
electrical conductivity, 679
fl exural strength, 434
hardness, 438
index of refraction, 753
modulus of elasticity, 434
plane strain fracture toughness, 220
Index
Note: Some index numbers are preceded by a letter prefix—viz., an A, G, or P. These index entries appear near
the back of the book and each prefix letter designates a specific section, as follows:
A = Appendix
G = Glossary
P = Questions and Problems
• I-1I-2 • Index
corrosion of, 775
diffusion rate of CO2 through,
plastic, 506–507
stages of production, 347
Bifunctional repeat units, 485, 507, G-2
Billiard balls, 511, 539
Bimetallic strips, 698, 705
Binary eutectic alloys, 266–279, 299
tensile strength, P-42
Binary isomorphous alloys, 257–266, 299
mechanical properties, 266, 267
microstructure development,
equilibrium cooling, 263–264
microstructure development,
nonequilibrium cooling,
264–266
Bioceramics. See Ceramic biomaterials
Biocompatability, 15
Biodegradable beverage can, 775
Biodegradable polymers/plastics, 775,
781–782
Biomass, 785
Biomaterials, 15
applications, 15
ceramic, 443, 452–453
polymeric, 543–545
Bioprinting, 382
Biorenewable polymers/plastics,
784–785
Bioresorbability, 785
Block copolymers, 497, 498, G-2
Blowing, of glass, 463–464
Blow molding, plastics, 555
Body-centered cubic structure,
52–53, G-2
Burgers vector for, 186
interstitial sites, tetrahedral and
octahedral, 96–97, 288
slip systems, 186
twinning in, 192
Boeing 787 (Dreamliner), case study,
599–600
Bohr atomic model, 22, 24, G-2
Bohr magneton, 719, G-2
Boltzmann’s constant, 94, G-2
Bonding:
carbon-carbon, 483–484
cementitious, 451
covalent, 35–37, 406–407, G-3
hybrid sp, 27
hybrid sp2, 37–38
in graphite, 420
hybrid sp3, 36–37
in diamond, 419
hybridized in carbon, 36–38
hydrogen, 39–40, 41, 42, G-6
ionic, 31–32, 406, G-6
metallic, 38–39, G-7
van der Waals, see van der Waals
bonding
Atomic packing factor, 52, G-1
Atomic point defects, 93, 420–423
Atomic radii, of selected metals, 51
Atomic structure, 20–29
Atomic vibrations, 109, 700, G-1
Atomic weight, 21, G-1
metal alloys, equations for, 100
Atom percent, 99, G-1
Austenite, 287, 300, G-1
shape-memory phase transformations,
342
transformations, 317–331, 344
summary, 338
Austenitic stainless steels, 353–355
Austenitizing, 384, G-1
Automobiles, rusted and stainless
steel, 607
Automobile transmission, 121
Auxetic materials, 152
Average value, 171–172
Avogadro’s number, 21
Avrami equation, 315, 346, 531
AX crystal structures, 410–411
A
mXp crystal structures, 411
Azimuthal quantum number, 24
B
Bainite, 321–322, 329, 338, 344, G-1
ductility vs. transformation
temperature, 334
hardness vs. transformation
temperature, 334
mechanical properties, 334
Bakelite, see Phenol-formaldehyde
(Bakelite)
Balsa wood, sandwich panels, 598
Band gap, 653
Band gap energy, G-1
determination, P-78
selected semiconductors, 660
Bands, see Energy bands
Barcol hardness, 522
Barium ferrite (as magnetic storage
medium), 738
Barium titanate:
crystal structure, 411, 412, 689–690
as dielectric, 689
as ferroelectric, 689, 690
as piezoelectric, 691
Base (transistor), 675–676
Basic refractories, 448
Basic slags, 447
Bauxite ore, 447
Beachmarks (fatigue), 236
Bend strength, 433. See also Flexural
strength
Beryllium-copper alloys, 362, 363
Beverage containers, 1, 12, 180, 347, 775,
780
Poisson’s ratio, A-11
as a refractory, 447–448
sintered microstructure, 472
stress-strain behavior, 435
thermal properties, 702
translucency, 4, 760
as whiskers and fibers, 582
Aluminum oxide-chromium oxide phase
diagram, 425
Aluminum phosphide, electrical
characteristics, 660
Ammonia, bonding energy and melting
temperature, 34
Amorphous materials, 50, 87, G-1
Anelasticity, 151, G-1
Angle computation between two
crystallographic directions, 189
Angle-ply, laminar composite, 594, 596
Anions, 407, G-1
Anisotropy, 81, 89, G-1
of elastic modulus, 81, 152, P-22
magnetic, 81, 730, 732
Annealing, 329, 382–384, 402, G-1
ferrous alloys, 383–384, 402
glass, 465
Annealing point, glass, 462, G-1
Annealing twins, 109
Anodes, 609, 644, G-1
area effect, galvanic corrosion, 626
sacrifi cial, 634, G-10
Antiferromagnetism, 722, 742, G-1
temperature dependence, 726
Aramid:
cost, as a fiber, A-36
fiber-reinforced polymer-matrix
composites, 585–586
melting and glass transition
temperatures, A-41
properties as fiber, 582
repeat unit structure, 585, A-39
Argon, bonding energy and melting
temperature, 34
Argon-ion lasers, 767
Aromatic hydrocarbons (chain groups),
482, 535
Arrhenius equation, 313
Artifi cial aging, 401, G-1
Ashby chart. See Materials selection
chart
Asphaltic concrete, 570
ASTM standards, 144
Atactic confi guration, 494, G-1
Athermal transformation, 324, G-1
Atomic bonding, see Bonding
Atomic mass, 20–21
Atomic mass unit (amu), 21, G-1
Atomic models:
Bohr, 22, 24, G-2
wave-mechanical, 22, 24, G-13
Atomic number, 20, G-1Index • I-3
Cast irons, 290, 300, 349, 355–361
annealing, 384
compositions, mechanical properties,
and applications, 358
graphite formation in, 355
heat treatment effect on
microstructure, 360
phase diagram, 356, 360
stress-strain behavior (gray), P-22
Catalysts, 108
Catalytic converters (automobiles),
92, 108
Cathodes, 610, G-2
Cathodic protection, 626, 634–635, 645
Cations, 407, G-2
Cemented carbide, 568–569
Cementite, 288, G-2
decomposition, 355, 359
proeutectoid, 295–296
in white iron, 357, 359
Cementitious bond, 451–452
Cements, 443, 451–452, G-2
Ceramic biomaterials, 443, 452–453
Ceramic jet printing, 474
Ceramic-matrix composites, 590–592,
G-2
Ceramics, 9–10, 406, G-2. See also Glass
advanced, 443, 456–461, 477
application-classifi cation scheme, 443
brittle fracture, 429–433
coeffi cient of thermal expansion
values, 702, A-19–A-20
color, 759
corrosion, 639
costs, A-34–A-35
crystal structures, 406–414
summary, 412
defects, 420–424
defined, 9–10
density computation, 414–415
density values, A-5
elastic modulus values, 434, A-8–A-9
electrical conductivity values for
selected, 679
electrical resistivity values, A-28–A-29
fabrication techniques classification,
461
fl exural strength values, 434,
A-14–A-15
fractography of, 430–433
fracture toughness values, 220, A-17
impurities in, 423–424
indices of refraction, 753
as electrical insulators, 679, 689
magnetic, 722–725
mechanical properties of, 428–436
in MEMS, 457
phase diagrams, 284, 425–428
piezoelectric, 15, 690–691
plastic deformation, 435–436
Butadiene:
degradation resistance, 641
melting and glass transition
temperatures, A-41
repeat unit structure, 499, A-38
Butane, 481, P-65
C
Cadmium sulfide:
color, 759
electrical characteristics, 660
Cadmium telluride, electrical
characteristics, 660
Calcination, 451, G-2
Calcite, 449
Calcium fl uoride, bonding energy and
melting temperature, 34
Calendering, 556, 594
Capacitance, 681–683, G-2
Capacitors, 681–686
Carbon:
vs. graphite, 455, 582
graphitic, 455
nano, 457–461
polymorphism, 57, 419–420
pyrolytic, 455
turbostractic, 455–456
Carbon black, as reinforcement in
rubbers, 539, 569
Carbon-carbon composites, 592, G-2
Carbon diffusion, in steels, 291,
292, 336
Carbon dioxide (pressure-temperature
phase diagram), 303
Carbon dioxide lasers, 767
Carbon fiber-reinforced polymer-matrix
composites, 584–585, 586
Carbon fibers:
in composites, 564, 584
properties as fi ber, 453, 582
structure, 456
Carbon nanotubes, 16, 459–460
applications, 460
in nanocomposites, 601
properties, 459
Carborundum, 449. See also Silicon
carbide
Carburizing, 128, G-2
Case-hardened gear, 121
Case hardening, 121, 239, G-2
Case studies:
carbonated beverage containers, 12
Liberty ship failures, 6–7
Cast alloys, 361
Casting techniques:
metals, 375–376
plastics, 555
slip, 461, 468–469
tape, 473
Bonding energy, 31, G-2, P-2–P-3
and melting temperature for selected
materials, 34
Bonding forces, 30–31
Bonding tetrahedron, 43
Bond rupture, in polymers,
642–643
Bone, as composite, 566
Borazon, 449
Boron carbide:
hardness, 438
Boron:
boron-doped silicon semiconductors,
664
fi ber-reinforced composites, 590
properties as a fiber, 582
Borosilicate glass:
composition, 444
electrical conductivity, 679
viscosity, 463
Borsic fiber-reinforced composites,
590
Bosons, 20
Bottom-up science, 16
Bragg’s law, 83–84, G-2
Branched polymers, 492, G-2
Brass, 362, 363, G-2
annealing behavior, 202
elastic and shear moduli, 148
electrical conductivity, 656, P-77
phase diagram, 280, 281
Poisson’s ratio, 148
recrystallization temperature, 203
stress corrosion, 630
stress-strain behavior, 157
thermal properties, 702
yield and tensile strengths,
ductility, 159
Brazing, 377, G-2
Breakdown, dielectric, 674,
675, 689
Bridge, suspension, 142
Brinell hardness tests, 166–168,
169, 170
Brittle fracture, 158–159, 209, 213–215,
246, G-2
ceramics, 429–433
vs. leak-before-break, 221–224
Brittle materials, thermal shock,
710–711, 712
Bronze, 362, 363, G-2
photomicrograph, coring, 266
Bronze age, 2, 428
Bubble chart. See Materials selection
chart
Buckminsterfullerene, 458
Buckyball, 458
Burgers vector, 102, 103, 105, 186
for FCC, BCC, and HCP, 186
magnitude computation, P-29I-4 • Index
Concentration profi le, 125, G-2
Concrete, 569–571, G-2
electrical conductivity, 679
plane strain fracture toughness, 220
Condensation polymerization,
550–551, G-2
Conducting polymers, 680–681
Conduction:
electronic, 651
ionic, 651, 680
Conduction band, 653, G-3
Conductivity. See Electrical
conductivity; Thermal
conductivity
Confi guration, molecular, 493–495
Conformation, molecular, 491
Congruent phase transformations,
283, G-3
Constitutional diagrams. See Phase
diagrams
Continuous casting, 376
Continuous-cooling transformation
diagrams, 328–331, G-3
4340 steel, 331
1.13 wt% C steel, P-48
0.76 wt% C steel, 328
for glass-ceramic, 445
Continuous fibers, 572
Continuous liquid interface production,
3D printing of polymers, 559
Conventional hard magnetic
materials, 734
Conversion factors, magnetic units, 718
Cooling rate, of cylindrical rounds, 390
Coordinates, point, 61–63
Coordination numbers, 52, 55, 407–409,
G-3
Copolymers, 485, 497–498, G-3
styrenic block, 547–548
Copper:
atomic radius and crystal structure, 51
diffraction pattern, P-10
elastic and shear moduli, 148
electrical conductivity, 656
OFHC, 659
Poisson’s ratio, 148
recrystallization temperature, 203
recrystallization kinetics, 315
slip systems, 186
thermal properties, 702
yield and tensile strengths,
ductility, 159
Copper alloys, 362–363
properties and applications of, 363
Copper-aluminum phase diagram, 397
Copper-beryllium alloys, 362, 363
phase diagram, P-54
Copper-nickel alloys:
ductility vs. composition, 195, 267
electrical conductivity, 658
phase diagram, 257, 258
Cold working. See Strain hardening
Collector, 675–676
Color, G-2
metals, 752
nonmetals, 758–759
Colorants, 552, G-2
Compacted graphite iron, 349, 357,
359–360
Compact fl uorescence lights, 761
Compliance, creep, 519
Component, 252, 285, G-2
Composites:
aramid fiber-reinforced polymer,
585–586
carbon-carbon, 592
carbon fiber-reinforced polymer,
584–585
ceramic-matrix, 590–592
classifi cation scheme, 567
costs, A-36
defi nition, 12, 566
dispersion-strengthened, 567, 571
elastic behavior:
longitudinal, 575–576
transverse, 577–578
fiber-reinforced. See Fiber-reinforced
composites
glass fiber-reinforced polymer,
583–584
hybrid, 592–593, G-6
laminar, 581, 595–597
large-particle, 567–571
metal-matrix, 589–590
particle-reinforced, 567–571
production processes, 593–595
properties, glass-, carbon-, aramidfi ber reinforced, 586
recycling of, 782–783
rule of mixtures expressions, 568, 578,
580, P-44
strength:
longitudinal, 579
transverse, 579
stress-strain behavior, 573–574
structural, 567, 595–598
Composition, G-2
conversion equations, 99–100
specifi cation of, 98–99
Compressibility, 713
Compression molding, plastics, 553–554
Compression tests, 147
Compressive deformation, 145, 165
Computers,
semiconductors in, 677
magnetic drives in, 714, 736–738
Concentration, 98, G-2. See also
Composition
Concentration cells, 627
Concentration gradient, 125, G-2
Concentration polarization,
619–620, G-2
Poisson’s ratio values, A-11
porosity, 437–438, 472
porosity, infl uence on properties,
437–438
silicates, 415–419
specifi c heat values, 702, A-26
as superconductors, 741
thermal conductivity values,
702, A-23
thermal properties, 702, 704, 707,
708, 710
three-dimensional printing, 474–476
traditional, 9
traditional vs. new, 406
translucency and opacity, 760
Cercor (glass-ceramic), 445
Cermets, 568, G-2
Cesium chloride structure, 410,
411, 412
Chain-folded model, 502, G-2
Chain-reaction polymerization.
See Addition polymerization
Chain stiffening/stiffness, 491, 535
Charge carriers:
majority vs. minority, 663
temperature dependence, 665–666
Charpy impact test, 225, 226, G-2
Chevron markings, 213, 214
Chips, semiconductor, 678
Chlorine, bonding energy and melting
temperature, 34
Chloroprene, repeat unit structure,
499, A-38
Chloroprene rubber:
characteristics and applications, 540
melting and glass transition
temperatures, A-41
cis, 495, G-2
Clay, characteristics, 467
Clay extrusion, 3D printing of
ceramics, 476
Clay products, 443, 446
drying and fi ring, 446, 469–470
fabrication, 466–469
particles, 442
Cleavage (brittle fracture), 214
Clinker, 451
Close-packed ceramic crystal structures,
412–413
Close-packed metal crystal structures,
77–79
Coarse pearlite, 319, 320, 329, G-2
Coatings (polymer), 542
Cobalt:
atomic radius and crystal structure, 51
Curie temperature, 726
as ferromagnetic material, 721
magnetization curves
(single crystal), 730
Coercivity (coercive force), 728, G-2
Cold work, percent, 196Index • I-5
Crystal symmetry, 59
Crystal systems, 59–60, G-3
Cubic crystal system, 59, 60
Cubic ferrites, 722–725
Cunife, 734, 735
Cup-and-cone fracture, 212
Curie temperature, 726, G-3
ferroelectric, 690
ferromagnetic, 702, 726
Curing, plastics, 553
Current density, 650
Cyclic stresses, 229–230
D
Damping capacity, steel vs. cast
iron, 360
Data scatter, 171–172
Debye temperature, 701
Decarburization, P-17
Defects, see also Dislocations
atomic vibrations and, 109
dependence of properties on, 93
in ceramics, 420–424
interfacial, 105–109
point, 93–102, 420–423, G-9
in polymers, 504
surface, 108
volume, 109
Defect structure, 420, G-3
Deformation:
elastic, see Elastic deformation
elastomers, 528–529
plastic, see Plastic deformation
Deformation mechanism maps (creep),
244
Deformation mechanisms
(semicrystalline polymers),
elastic deformation, 523
plastic deformation, 523–524, 525
Degradation of polymers,
639–643, G-3
Degree of polymerization, 489, G-3
Degrees of freedom, 284–286
Delayed fracture, 429
Density:
computation for ceramics,
414–415
computation for metal alloys, 100
computation for metals, 57
computation for polymers, 501
of dislocations, 183
linear atomic, 76
planar atomic, 77
polymers (values for), 514, A-5–A-6
ranges for material types
(bar chart), 8
relation to percent crystallinity for
polymers, 500
values for various materials,
A-3–A-6
Creep rupture tests, 241
data extrapolation, 244–245
Crevice corrosion, 627–628, G-3
Cristobalite, 416, 417, 428
Critical cooling rate:
ferrous alloys, 330
glass-ceramics, 445
Critical crack length (equation)
leak-before-break, 223
Critical fi ber length, 572
Critical resolved shear stress,
188, G-3
as related to dislocation
density, P-31
Critical stress (fracture), 218
Critical temperature, superconductivity,
739, 741
Critical velocity (crack), 431
Crosslinking, 492, 493, G-3
elastomers, 528–529
infl uence on viscoelastic
behavior, 518
thermosetting polymers, 497
Cross-ply, laminar composite, 596
Crystalline materials, 49, 79, G-3
defects, 93–109
single crystals, 79, G-10
Crystallinity, polymers, 498–503, G-3
infl uence on mechanical
properties, 526
Crystallites, 502, G-3
Crystallization, polymers, 531–532
Crystallographic directions, 64–69
easy and hard magnetization, 730
families, 66–67
hexagonal crystals, 67–69
Crystallographic planes, 70–75
atomic arrangements, 73–74
close-packed, ceramics, 412–413
close-packed, metals, 77–79
diffraction by, 83–84
families, 73–74
hexagonal crystals, 74–75
Crystallographic point coordinates,
61–63
Crystal structures, 49–57, G-3. See also
Body-centered cubic structure;
Close-packed crystal structures;
Face-centered cubic structure;
Hexagonal close-packed
structure
ceramics, 407–415
close-packed, ceramics, 412–413
close-packed, metals, 77–79
determination by x-ray diffraction,
82–86
selected metals, 51
types, ceramics, 410–412
types, metals, 51–56, 77–79
Crystallization (ceramics), 444,
466, G-3
tensile strength vs. composition,
195, 267
yield strength vs. composition, 195
Copper-silver phase diagram, 266–268
Copper-zinc alloys, 362
electrical resistivity vs. composition,
P-77
Coring, 266
CorningWare (glass-ceramic), 445
Corrosion, G-3
of beverage cans, 775
ceramic materials, 639
electrochemistry of, 609–615
environmental effects, 625
environments, 633
forms of, 625–632
galvanic series, 615, 616
overview of, 608
passivity, 624–625
rates, 615, 616–617
prediction of, 617–623
Corrosion fatigue, 240, G-3
Corrosion inhibitors, 633–634
Corrosion penetration rate, 616, G-3
Corrosion prevention, 633–635
Corundum, 449. See also
Aluminum oxide
crystal structure, P-55
Cost of various materials, A-32–A-36
Coulombic force, 32, G-3
Covalency, degree of, 43
Covalent bonding, 35–37, 406,
480–481, G-3
Crack confi gurations, in ceramics, 431
Crack critical velocity, 431
Crack formation, 211
in ceramics, 431
fatigue and, 235–237
glass, 466
Crack propagation, 211. See also
Fracture mechanics
in brittle fracture, 213–215
in ceramics, 429–433
in ductile fracture, 211–212
fatigue and, 235–236
Cracks:
stable vs. unstable, 211
Crack surface displacement
modes, 219
Crazing, 520
Creep, 240–246, G-3
ceramics, 438
infl uence of temperature and
stress on, 241–244
mechanisms, 244
in polymers, 519
stages of, 240–241
steady-state rate, 241
viscoelastic, 519
Creep compliance, 519
Creep modulus, 519I-6 • Index
Dispersion (optical), 752–753
white light through a prism, 753
Dispersion-strengthened composites,
571, G-3
Disposal of materials, 777–778
Domain growth, 727–728
iron single crystal, 728
Domains (magnetic), 721, 727–729, G-4
photograph of, 728
Domain walls, 727
Donors, 662, G-4
Doping, 665, 667, 674, G-4
Double bonds, 481
Drain casting, 468
Drawing:
glass, 463, 464
infl uence on polymer properties,
526–527
metals, 373–374, G-4
polymer fi bers, 556, G-4
Dreamliner (Boeing 787), case study,
599–600
Drift velocity, electron, 655
Drive-in diffusion, 136
Driving force, 126, G-4
electrochemical reactions, 612
grain growth, 204
recrystallization, 200
sintering, 472
steady-state diffusion, 126
Dry corrosion, 636
Dry ice, 303
Drying, clay products, 469
Ductile fracture, 159, 211–212, G-4
Ductile iron, 349, 357, 359, G-4
compositions, mechanical properties,
and applications, 358
Ductile-to-brittle transition, 225–228,
G-4
failure of Liberty ships, 6
polymers, 521
and temper embrittlement, 338
Ductility, 158–159, G-4
bainite, pearlite vs. transformation
temperature, 334
fi ne and coarse pearlite, 333
precipitation hardened aluminum
alloy (2014), 400
selected materials, A-11–A-16
selected metals, 159
spheroidite, 333
tempered martensite, 337
Durometer hardness, 169, 522
E
Economics, materials selection:
pressurized cylindrical tube,
175–176
tubular composite shaft, 587–58 9
Eddy currents, 733
nonsteady-state, 126–130, G-8
in polymers, 505–507
predeposition, semiconductors, 136
in semiconductors, 135–138
short-circuit, 139
steady-state, 125, G-11
vacancy, 123, 124, 424, G-12
Diffusion coeffi cient, 125, G-3
data (tabulation), various metal
systems, 131
relation to ionic mobility, 680
temperature dependence, 130–135
Diffusion couples, 122, P-17
Diffusion fl ux, 124, G-3
for polymers, 505
Diffusivity, thermal, P-83
Digital camera, 648
Digitization of information/signals,
737, 768, 769
Dimethyl ether, 482
Dimethylsiloxane, 499. See also
Silicones; Silicone rubber
melting and glass transition
temperatures, A-41
Dimethyl terephthalate (structure), 551
Diode, 673, G-3
Diode lasers, 767
Dipole moment, 683
Dipoles:
electric, 39, G-3
induced, 40
magnetic, 715–716
permanent, 41
Direct energy deposition (3D printing
of metals), 379–380
Directional solidification, 246
Directions, see Crystallographic
directions
Discontinuous fibers, 572–573
Dislocation density, 183, G-3, P-29, P-31
Dislocation line, 102, 103, 104, G-3
Dislocation motion, 181, 182–183
caterpillar locomotion analogy, 183
in ceramics, 435–436
at grain boundaries, 193–195
infl uence on strength, 193–194
recovery and, 199–200
Dislocations, 102–105, G-3
in ceramics, 105, 183
characteristics of, 184–185
interactions, 184
multiplication, 184
at phase boundaries, 333, 336
pile-ups, 194
plastic deformation and, 154,
181–191
in polymers, 105, 504
strain fi elds, 184, 185
Dispersed phase, 566, G-3
definition, 566
geometry, 566
Desiccants, 41
Design examples:
cold work and recrystallization,
203–204
conductivity of a p-type
semiconductor, 670–671
cubic mixed-ferrite magnet, 725
creep rupture lifetime for an S-590
steel, 245
nonsteady-state diffusion, 134–135
pressurized cylindrical tube,
175–176
pressurized cylindrical tank,
leak-before-break, 221–224
steel shaft, alloy/heat treatment of,
393–394
tensile-testing apparatus, 174–175
tubular composite shaft, 587–589
Design factor, 173
Design stress, 173, G-3
Dezincifi cation, of brass, 629
Diamagnetism, 719, G-3
Diamond, 419, 420
as abrasive, 449
bonding energy and melting
temperature, 34
cost, A-34
hardness, 438
polycrystalline, 454
properties and applications,
453–454
thermal conductivity value,
453, A-23
Diamond cubic structure, 419, 420
Die casting, 375
Dielectric breakdown, 674, 689
Dielectric constant, 682, G-3
frequency dependence, 688
relationship to refractive
index, 753
selected ceramics and polymers,
683
Dielectric displacement, 684, G-3
Dielectric loss, 689
Dielectric materials, 681, 689, G-3
Dielectric strength, 689, G-3
selected ceramics and polymers, 683
Diffraction (x-ray), 48, 82–87, G-3
Diffraction angle, 85
Diffractometers, 85
Diffusion, 122–123, G-3
drive-in, 136
grain growth and, 204, 205
in ionic materials, 424–425
in integrated circuit interconnects,
138–139
in Si of Cu, Au, Ag, and Al, 139
interstitial, 123–124, G-6
mechanisms, 123–124
and microstructure development,
263–266, 275–276, 291–292Index • I-7
Energy band gap, see Band gap
Energy bands, 651–653
structures for metals, insulators,
and semiconductors, 653
Energy levels (states), 22–26,
652–653
Energy and materials, 777–779
Energy product, magnetic,
733–736
Engineering stress/strain,
146, G-11
Entropy, 254, 305, 528
Environmental considerations and
materials, 776–785
Epoxies:
degradation resistance, 641
polymer-matrix composites, 586
repeat unit structure, A-37
trade names, characteristics,
applications, 538
Equilibrium:
defi nition of, 254
phase, 254, G-4
Equilibrium diagrams, see Phase
diagrams
Erosion-corrosion, 630, G-4
Error bars, 172–173
Error function, Gaussian, 127
Etching, 111, 112
Ethane, 481
Ethers, 482
Ethylene, 481
polymerization, 483–484
Ethylene glycol (structure), 551
Euro coins, alloys used for, 372
Eutectic isotherm, 268
Eutectic phase, 277, G-4
Eutectic point, 268
Eutectic reactions, 268, 275, G-4
iron-iron carbide system, 289
Eutectic solders, 273
Eutectic structure, 275, G-4
Eutectic systems:
binary, 266–272
microstructure development,
272–279
Eutectoid, shift of position, 298
Eutectoid ferrite, 293
Eutectoid reactions, 282, 289, G-4
iron-iron carbide system, 289
kinetics, 318–319
Eutectoid steel, microstructure changes/
development, 290–292
Evans diagrams, 621
Exchange current density, 618
Excimer lasers, 767
Excited states, 751, G-4
Exhaustion, in extrinsic
semiconductors, 666
Expansion, thermal, see Thermal
expansion
Electroneutrality, 420–421, G-4
Electron gas, 654
Electronic waste, 273, 783
Electron orbital shapes, 24–25
Electronic conduction, 651, 680
Electronic polarization, 687, 688, 750, G-9
Electron microscopy, 112–113
Electron mobility, 655–656
infl uence of dopant content on,
667, 668
infl uence of temperature on, 667, 668
selected semiconductors, 660
Electron orbitals, 22
Electron probability distribution,
22–23, 24
Electrons, 20
conduction process, 661, 674
role, diffusion in ionic materials,
424, 425
energy bands, see Energy bands
energy levels, 22–23
free, see Free electrons
scattering, 655, 656, 700
in semiconductors, 661–665
temperature variation of
concentration, 665–666
spin, 25, 718, 719
valence, 26
Electron states, G-4
Electron transitions, 750–751
metals, 751–752
nonmetals, 755–757
Electron volt, 33, G-4
Electronic waste, 273, 783
Electropositivity, 29, G-4
Electrorheological fluids, 15
Elongation, percent, 158
selected materials, A-11–A-16
selected metals, 159
selected polymers, 514
Embrittlement:
hydrogen, 630–632
temper, 338
Embryo, phase particle, 307
Emery, 449
Emf series, 612–613
Emitter, 675–676
Emulsifiers, 41
Endurance limit, 231. See also
Fatigue limit
Energy:
activation, see Activation energy
bonding, 31, 32–34, G-2
current concerns about, 17, 777–779
free, 254, 305–310, G-5
grain boundary, 106
to magnetize ferromagnetic material,
P-87
photon, 749
surface, 106
vacancy formation, 94
Edge dislocations, 102, 182–183, G-4.
See also Dislocations
interactions, 184–185
EEPROM memory, 677
E-glass, 582
Elastic deformation, 148–153, G-4
Elastic modulus, see Modulus of
elasticity
Elastic (strain) recovery, 164, G-4
Elastomers, 513, 528–530, 539–541,
555, G-4
in composites, 569
deformation, 528–530
thermoplastic, 547–549
trade names, properties, and
applications, 540
Electrical conduction:
in insulators and semiconductors,
654–655
in metals, 654
Electrical conductivity, 650–651,
655–656, G-4
ranges for material types
(bar chart), 10
selected ceramics and polymers, 679
selected metals, 656
selected semiconductors, 660
temperature variation (Ge), P-79
Electrical resistivity, 650, G-10. See also
Electrical conductivity
metals:
infl uence of impurities, 658, P-77
infl uence of plastic deformation,
658
infl uence of temperature, 657–658
values for various materials, A-27–A-30
Electric dipole moment, 683
Electric dipoles, see Dipoles
Electric fi eld, 650, 655, G-4
Electrochemical cells, 611–612
Electrochemical reactions, 609–615
Electrodeposition, 611
Electrode potentials, 611–612
values of, 613
Electroluminescence, 762, G-4
in polymers, 681
Electrolytes, 611, G-4
Electromagnetic radiation, 747–749
interactions with atoms/electrons,
749–750
Electromagnetic spectrum, 747–748
Electron band structu re, see Energy
bands
Electron cloud, 23, 38
Electron confi gurations, 26–27, G-4
elements, 27
periodic table and, 28
stable, 26
Electronegativity, 29, 43, G-4
infl uence on solid solubility, 96
values for the elements, 29I-8 • Index
Fick’s fi rst law, 124–125, 706, G-5
for polymers, 505
Fick’s second law, 127, 136, G-5, P-83
solutions to, 127, 136, P-17
Fictive temperature, 462
Filament winding, 594–595
Fillers, 551–552, G-5
Films:
polymer, 543
shrink-wrap (polymer), 528
Fine pearlite, 319, 320, 329, 333, G-5
Fireclay refractories, 447
Firing, 446, 470–471, G-5
Flame retardants, 553, G-5
Flash memory, 648, 677
Flash memory cards, 648
Flexural defl ection, equation for,
588, P-57
Flexural strength, 433–434, G-5
infl uence of porosity on, ceramics,
437–438
values for selected ceramics, 434,
A-14–A-15
Float process (sheet glass), 464
Fluorescence, 761, G-5
Fluorescent lights, compact, 761
Fluorite structure, 411
Fluorocarbons, 485
trade names, characteristics,
applications, 537
Flux (clay products), 467
Foams, 543, G-5
Forces:
bonding, 30–32
coulombic, 32, G-3
Forging, 374, G-5
Formaldehyde, 482, 539
Forming operations (metals), 373–374
Forsterite, 417
Forward bias, 674, G-5
Fractographic investigations:
ceramics, 430–433
metals, 213
Fractographs:
cup-and-cone fracture surfaces, 213
fatigue striations, 236
glass rod, 432
intergranular fracture, 216
transgranular fracture, 215
Fracture. See also Brittle fracture;
Ductile fracture; Impact fracture
testing
delayed, 429
fundamentals of, 211
of Liberty ships, 6
polymers, 519–521
types, 158, 211–215
Fracture mechanics, 215–224, G-5
applied to ceramics, 429
polymers, 521
use in design, 220–224
Ferroelectric materials, 690
Ferromagnetic domain walls, 109
Ferromagnetism, 721, G-5
temperature dependence, 726
Ferrous alloys, G-5. See also Cast irons;
Iron; Steels
annealing, 383–384
classifi cation, 289–290, 349
continuous-cooling transformation
diagrams, 328–331
costs, A-32–A-33
hypereutectoid, 295–297, G-6
hypoeutectoid, 292–294, G-6
isothermal transformation diagrams,
317–328
microstructures, 290–297
mechanical properties of, 331–335,
A-11–A-12
Fiber effi ciency parameter, 580
Fiberglass, 444
Fiberglass-reinforced composites, 583–584
Fiber-reinforced composites, 572–595,
G-5
continuous and aligned, 573–579
discontinuous and aligned, 580
discontinuous and randomly oriented,
580–581
fi ber length effect, 572–573
fi ber orientation/concentration effect,
573–579
fi ber phase, 581–583
longitudinal loading, 573–577
matrix phase, 583
processing, 593–595
reinforcement efficiency, 581
transverse loading, 577–578, 579
Fibers, 541, G-5
carbon:
graphitic, 455, 456
structure, 456
turbostratic, 455, 456
coeffi cient of thermal expansion
values, A-20
in composites, 567
continuous vs. discontinuous,
572–573
fi ber phase, 581–583
length effect, 572–573
orientation and concentration,
573–581
costs, A-36
density values, A-6
elastic modulus values, 582, A-9
electrical resistivity values, A-30
optical, 768–770
polymer, 541
properties of selected, 582
specifi c heat values, A-26
spinning of, 555–556
tensile strength values, 582, A-15
thermal conductivity values, A-24
Extrinsic semiconductors, 662–665, G-4
electron concentration vs.
temperature, 666
exhaustion, 666
saturation, 666
Extrusion, G-4
clay products, 468
clay, 3D printing, 476
metals, 374
polymers, 554–555
F
Fabrication:
ceramics, 461
clay products, 466–470
fi ber-reinforced composites, 593–595
metals, 373–382
Face-centered cubic structure, 51–52, G-4
Burgers vector for, 186
close packed planes (metals), 77–79
interstitial sites, tetrahedral and
octahedral, 96–97
slip systems, 186
Factor of safety, 174, 223
Failure, mechanical, see Creep;
Fatigue; Fracture
Faraday constant, 614
Fatigue, 229–240, G-4
corrosion, 240
crack initiation and propagation,
235–237
cyclic stresses, 229–230
environmental effects, 239–240
low- and high-cycle, 234
polymers, 521–522
probability curves, 233–234
thermal, 240
Fatigue damage, commercial aircraft,
209
Fatigue life, 232, G-4
factors that affect, 237–239
Fatigue limit, 231–232, G-4
Fatigue S-N curves, 231–234
for metals, 233
for polymers, 521
Fatigue strength, 232, G-4
Fatigue testing, 231
Feldspar, 442, 467, 470
Fermi energy, 653, 657, 663, 665, 701, G-4
Ferrimagnetism, 722–725, G-4
temperature dependence, 726
Ferrite (α), 287–288, G-5
eutectoid/proeutectoid, 293, G-9
from decomposition of cementite, 355
Ferrites (magnetic ceramics),
722–724, G-4
Curie temperature, 726
as magnetic storage, 738–739
Ferritic stainless steels, 354, 355
Ferroelectricity, 689–690, G-5Index • I-9
Glass transition temperature, 462,
532, G-5
factors that affect, polymers, 534, 535
values for selected polymers, 533, A-41
Gold, 371
atomic radius and crystal structure, 51
electrical conductivity, 656
slip systems, 186
thermal properties, 702
Graft copolymers, 497, 498, G-5
Grain boundaries, 81, 106–107, G-5
Grain boundary energy, 107
Grain growth, 204–205, G-5
Grains, G-5
definition, 79
distortion during plastic deformation,
180, 190–191
Grain size, G-5
dependence on time, 204–205
determination of, 115–118
linear intercept method for
determination of, 115
mechanical properties and, 193–195,
204–205
reduction, and strengthening of
metals, 193–195
refinement by annealing, 384
Grain size number (ASTM), 115
Graphene, 460–461
applications, 461
in nanocomposites, 601–602
properties, 458
Graphite, 420
in cast irons, 355
compared to carbon, 455, 582
cost, A-35
from decomposition of cementite, 355
electrical conductivity, 679
properties/applications, 453
properties as whisker, 582
as a refractory, 448
structure of, 420
Gray cast iron, 356, 357, G-5
compositions, mechanical properties,
and applications, 358
Green ceramic bodies, 469, G-5
Green design, 778
Ground state, 26, 751, G-5
Growth, phase particle, 305, 313–314,
G-5
rate, 313
temperature dependence of rate, 313
Gutta percha, 495
H
Hackle region, 432–433
Half-cells, standard, 612–613
Half-reactions, 610
Hall coefficient, 671
Hall effect, 671–673, G-5
Gears, transmission, 121
Gecko lizard, 19
Geometric isomerism, 495, 496
Germanium:
crystal structure, 419
electrical characteristics, 660, 666,
P-79
Gibbs phase rule, 284–286, G-5
Gilding metal, 362
Glass:
as amorphous material, 88
annealing, 384, 465, G-1
as biomaterial, 452
blowing, 461, 463
classification, 444
color, 759
commercial, compositions and
characteristics, 444
corrosion resistance, 639
cost, A-34
dielectric properties, 683
electrical conductivity, 679
fl exural strength, 434
forming techniques, 463–464
fracture surface (photomicrograph),
432
hardness, 438
heat treatment, 465–466
melting point, 463
modulus of elasticity, 434
optical flint, 444
plane strain fracture toughness, 220
refractive index, 753
sheet forming (fl oat process), 464
soda-lime, composition, 444
softening point, 463
strain point, 463
stress-strain behavior, 435
structure, 417
surface crack propagation, 429
tempering, 465–466, P-60
thermal properties, 702
viscous properties, 463
working point, 463, G-13
Glass-ceramics, 444–445, G-5
as biomaterials, 452
composition (Pyroceram), 444
continuous-cooling transformation
diagram, 445
fabricating and heat treating, 466
fl exural strength, 434
modulus of elasticity, 434
optical transparency, conditions for,
760
properties and applications, 445
Glass fibers, 461
fiberglass-reinforced composites,
583–584, 586
forming, 465
properties as fiber, 582
Glass transition, polymers, 532
Fracture profi les, 212, 515
Fracture strength, 156. See also
Flexural strength
ceramics, 433
distribution of, 429–430
infl uence of porosity, 437–438
infl uence of specimen size, 430, 581
Fracture surface, ceramics, 431–432
Fracture toughness, 160, 218–220, G-5
ceramic-matrix composites, 590–592
ranges for material types
(bar chart), 9
testing, 224–228
values for selected materials, 220,
A-16–A-17
Free electrons, 654, G-5
contributions to heat capacity, 701
role in heat conduction, 706
Free energy, 254, 305–311, G-5
activation, 307, 310, 311
volume, 306
Freeze-out region, 666
Frenkel defects, 421, G-5
equilibrium number, 422
Full annealing, 329, 384, G-5
Fullerenes, 458–459
applications, 458
properties, 458
Functionality (polymers), 485, G-5
Furnace heating elements, 659
Fused deposition modeling, 3D printing
of polymers, 557–558
Fused silica, 416
characteristics, 444, 463
dielectric properties, 683
electrical conductivity, 679
fl exural strength, 434
index of refraction, 753
modulus of elasticity, 434
thermal properties, 702
G
Gadolinium, 721
Gallium arsenide:
cost, A-34
electrical characteristics, 660, 662
for lasers, 767
for light-emitting diodes, 762
Gallium phosphide:
electrical characteristics, 660
Galvanic corrosion, 625–626, G-5
Galvanic couples, 611
Galvanic series, 615, 616, G-5
Galvanized steel, 371, 633
Garnets, 724
Gas constant, 94, G-5
Gating system, 375
Gauge length, 144
Gauss (magnetic unit), 718
Gaussian error function, 127I-10 • Index
Hysteresis (magnetic), 728–729, G-6
Hysteresis, ferromagnetic, G-6
soft and hard magnetic materials, 731,
733–734
I
Ice, 42, 251, 256, 270, 303, P-43
Iceberg, 251
Impact energy, 225, G-6
fi ne pearlite, 332
temperature dependence:
high-strength materials, 228
low-strength FCC and HCP
metals, 228
low-strength steels, 228
Impact fracture testing, 225, 226
Impact strength, polymers, 521
Imperfections, see Defects;
Dislocations
Impurities:
in ceramics, 423–424
diffusion, 122
electrical resistivity, 658
in metals, 95–97
thermal conductivity, 707
Incongruent phase transformation,
283
Index of refraction, 752–753, G-6
selected materials, 753
Indices:
direction, 64–66
Miller, 70–73
point, 61–63
Indium antimonide,
bonding energy and melting
temperature, 34
electrical characteristics, 660
Indium phosphide,
electrical characteristics, 660
in light-emitting diodes, 762
Induced dipoles, 39–40
Inert gases, 28
Inhibitors, 633–634, G-6
Initial permeability, 727–728
Injection molding, 554
Ink-jet printer heads, piezoelectric
ceramics in, 691–692
Insulators (electrical), G-6.
See also Dielectric materials
ceramics and polymers as,
679–681, 689
color, 759
defined, 651
electron band structure, 652–653,
654–655
translucency and opacity, 760–761
Integrated circuits, 678–679, G-6
interconnects, 138–139
scanning electron micrograph,
648, 678
Hexagonal crystal system, 59, 60
direction indices, 67–69
planar indices, 74–75
Hexagonal ferrites, 724
Hexamethylene diamine, 551
Hexane, 481
High-carbon steels, 349, 352, 353
High-cycle fatigue, 234
High polymers, 490, G-6
High-strength, low-alloy (HSLA) steels,
350–351, G-6
High-temperature superconductors, 741
Holes, 654, 660–661, G-6
role, diffusion in ionic materials, 425
mobility:
infl uence of dopant concentration
on, 667, 668
infl uence of temperature on,
667–668
values for selected semiconductors,
660
temperature dependence of
concentration (Si, Ge), 666
Homogeneous nucleation, 305–311
Homopolymers, 485, 497, G-6
Honeycomb structure, 598, 600
use in Boeing Dreamliner, 600
Hooke’s law, 148, 154, 515
Hoop stress (equation for cylinder),
222
Hot pressing, 471, 473
Hot working, 202, 373, G-6. See also
Heat treatments
HSLA (high-strength, low-alloy) steels,
350–351, G-6
Hume-Rothery rules, 96, P-56
Hund’s rule, P-86
Hybrid composites, 592–593, G-6
Hybridized bonding, in carbon,
36–38
Hydration, of cement, 451–452
Hydrocarbons, 480–483
Hydrogen:
diffusive purifi cation, 126, P-16, P-19
reduction, 618
Hydrogen bonding, 34, 39–40, 41, G-6
water expansion upon freezing, 42
Hydrogen chloride, 40, 41
Hydrogen electrode, 612
Hydrogen embrittlement, 630–632, G-6
Hydrogen fl uoride, 41, P-3
bonding energy and melting
temperature, 34
Hydrogen induced cracking, 631
Hydrogen stress cracking, 631
Hydroplastic forming, 467–468, G-6
Hydroplasticity, 467
Hydrostatic powder pressing, 471
Hydroxyapatite, as biomaterial, 453
Hypereutectoid alloys, 295–297, G-6
Hypoeutectoid alloys, 292–294, G-6
Hall-Petch equation, 194
Hall voltage, 671
Halogens, 29
Hard disk drives, 714, 736–738
Hardenability, 385–389, G-5
Hardenability band, 389
Hardenability curves, 386–389
Hard magnetic materials, 733–736, G-5
properties, 735
Hardness, G-5
bainite, pearlite vs. transformation
temperature, 334
ceramics, 437–438
comparison of scales, 169–170
conversion diagram, 169
correlation with tensile strength, 170
fine and coarse pearlite, spheroidite, 333
pearlite, martensite, tempered
martensite, 335
polymers, 522
tempered martensite, 335–337
Hardness tests, 165–169
summary of tests, 167
Hard sphere model, 50
Head-to-head configuration, 493
Head-to-tail configuration, 493
Heat affected zone, 377
Heat capacity, 699–701, G-5
temperature dependence, 701
vibrational contribution, 700
Heat flux, 706
Heat of fusion, latent, 307
Heat transfer:
mechanism, 700, 706
nonsteady-state, P-83
Heat treatable, defi nition of, 361
Heat treatments, 122. See also
Annealing; Phase
transformations
dislocation density reduction, 183
glass, 465–466
hydrogen embrittlement, 632
intergranular corrosion and, 628
polymer morphology, 532
polymer properties, 527
for precipitation hardening,
396–398
recovery, recrystallization, and grain
growth during, 199–206
steel, 384–394
Henry (magnetic unit), 718
Hertz, 749
Heterogeneous nucleation, 311–312
Hexagonal close-packed structure,
53–55, G-5
anion stacking (ceramics), 412–413
Burgers vector for, 186
close-packed planes (metals), 78
slip systems, 186
twinning in, 192
unit cell volume, 56Index • I-11
L
Ladder polymer, 643
Lamellae (polymers), 503
Laminar composites, 595–597, G-6
angle-ply, 596
carbon fiber-epoxy, Boeing
Dreamliner, 599–600
cross-ply, 596
multidirectional, 596
unidirectional, 596
Large-particle composites, 567–571, G-7
Larson-Miller parameter, 244
plots of, 245, P-38
Lasers, 764–767, G-7
semiconductor, 765–767
types, characteristics, and applications,
767
Laser beam welding, 377
Latent heat of fusion, 307
Latex, 542
Lattice parameters, 59, 60, G-7
Lattice position coordinates, 61–63
Lattices, 50, G-7
Lattice strains, 184, 195–196, 401, G-7
Lattice waves, 700
Laue photograph, 48, 86
Layered silicates, 418–419
Lay-up, in prepreg processing, 594
Lead, 371
atomic radius and crystal structure, 51
diffraction pattern, 86
recrystallization temperature, 203
superconducting critical temperature,
741
Lead-free solders, 273
Lead-tin phase diagram, 269, 272–279
Lead titanate, 688, 691
Lead zirconate, 691
Lead-zirconate-titanate, 691
Leak-before-break design, 221–224
Leathery region, polymers, 517–518
LEDs, see Light-emitting diodes
Lever rule, 260, 261, G-7
Liberty ship failures, 6
Life cycle analysis/assessment, 778, 779
Light:
absorption, 754–758
reflection, 754
refraction, 752–754
scattering, 760
transmission, 758
Light-emitting diodes:
organic


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Materials Science and Engineering - An Introduction
رابط مباشر لتنزيل كتاب Materials Science and Engineering - An Introduction
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Materials Science and Engineering - An Introduction
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Materials Science and Engineering - An Introduction
» كتاب Basic Engineering Plasticity - An Introduction with Engineering and Manufacturing Applications
» كتاب Introduction to Materials Handling
» كتاب Introduction to Composite Materials Design
» كتاب Introduction to Fluoropolymers - Materials, Technology and Applications

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: