كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18726
التقييم : 34712
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed  Empty
مُساهمةموضوع: كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed    كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed  Emptyالإثنين 05 ديسمبر 2022, 3:47 pm

أخواني في الله
أحضرت لكم كتاب
Aircraft Propulsion and Gas Turbine Engines 1st ed
Ahmed E El-Sayed
Zagazig University
Zagazig, Egypt

كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed  A_c_p_11
و المحتوى كما يلي :


Contents
List of Figures xvii
Preface xxxi
Acknowledgment . xxxiii
Abstract . xxxv
Part I Aero Engines and Gas Turbines 1
Chapter 1 History and Classifications of Aero Engines 3
1.1 Prejet Engines—History 4
1.1.1 Early Activities in Egypt and China 4
1.1.2 Leonardo da Vinci . 5
1.1.3 Branca’s Stamping Mill . 5
1.1.4 Newton’s Steam Wagon . 6
1.1.5 Barber’s Gas Turbine 6
1.1.6 Miscellaneous Aero-Vehicles’Activities in the Eighteenth and Nineteenth
Centuries . 7
1.1.7 The Wright Brothers . 8
1.1.8 Significant Events up to the 1940s 10
1.1.8.1 Aero-Vehicle Activities 10
1.1.8.2 Reciprocating Engines . 12
1.2 Jet Engines 13
1.2.1 Jet Engine Inventors: Dr. Hans von Ohain and Sir Frank Whittle 13
1.2.1.1 Sir Frank Whittle (1907–1996) 13
1.2.1.2 Dr. Hans von Ohain (1911–1998) . 14
1.2.2 Turbojet Engines . 15
1.2.3 Turboprop and Turboshaft Engines . 18
1.2.4 Turbofan Engines 21
1.2.5 Propfan Engine 23
1.2.6 Pulsejet, Ramjet, and Scramjet Engines 24
1.2.6.1 Pulsejet Engine . 24
1.2.6.2 Ramjet and Scramjet Engines . 25
1.2.7 Industrial Gas Turbine Engines . 27
1.3 Classifications of Aerospace Engines 28
1.4 Classification of Jet Engines 29
1.4.1 Ramjet 29
1.4.2 Pulsejet . 30
1.4.3 Scramjet 31
1.4.4 Turboramjet 31
1.4.5 Turborocket 321.5 Classification of Gas Turbine Engines . 32
1.5.1 Turbojet Engines . 33
1.5.2 Turboprop 34
1.5.3 Turboshaft 35
1.5.4 Turbofan Engines 37
1.5.5 Propfan Engines . 41
1.5.6 Advanced Ducted Fan . 42
1.6 Industrial Gas Turbines . 43
1.7 Non–Air-Breathing Engines 44
1.8 Future of Aircraft and Power Plant Industries . 44
Closure 52
Problems 52
References 54
Chapter 2 Performance Parameters of Jet Engines . 57
2.1 Introduction . 57
2.2 Thrust Force . 57
2.3 Factors Affecting Thrust 67
2.3.1 Jet Nozzle 67
2.3.2 Air Speed . 68
2.3.3 Mass Air Flow . 68
2.3.4 Altitude . 68
2.3.5 Ram Effect . 69
2.4 Engine Performance Parameters . 70
2.4.1 Propulsive Efficiency 70
2.4.2 Thermal Efficiency 75
2.4.3 Propeller Efficiency 76
2.4.4 Overall Efficiency . 77
2.4.5 Takeoff Thrust . 80
2.4.6 Specific Fuel Consumption . 81
2.4.7 Aircraft Range . 82
2.4.8 Range Factor . 85
2.4.9 Endurance Factor 85
2.4.10 Specific Impulse . 87
Problems 91
References 94
Chapter 3 Pulsejet and Ramjet Engines . 97
3.1 Introduction . 97
3.2 Pulsejet Engines . 97
3.2.1 Introduction 97
3.2.2 Valved Pulsejet 98
3.2.3 Valveless Pulsejet 102
3.2.4 Pulse Detonation Engine 103
3.3 Ramjet Engines . 106
3.3.1 Ideal Ramjet . 107
3.3.2 Real Cycle . 110
3.4 Case Study . 129
3.5 Summary and Governing Equations for Shock Waves and Isentropic Flow . 141
3.5.1 Summary . 141
3.5.2 Normal Shock Wave Relations . 1413.5.3 Oblique Shock Wave Relations . 142
3.5.4 Rayleigh-Flow Equations . 142
3.5.5 Isentropic Relation 142
Problems 143
References 145
Chapter 4 Turbojet Engine . 147
4.1 Introduction . 147
4.2 Single Spool . 149
4.2.1 Examples of Engines 149
4.2.2 Thermodynamic Analysis . 150
4.2.3 Ideal Case 150
4.2.4 Actual Case 165
4.2.5 Comparison of Operative and Inoperative Afterburners . 175
4.3 Two-Spool Engine 178
4.3.1 Nonafterburning Engine . 179
4.3.1.1 Examples of Engines . 179
4.3.2.2 Thermodynamic Analysis 180
4.3.3 Afterburning Engine . 183
4.3.3.1 Examples of Two-Spool Afterburning Turbojet Engines . 183
4.3.2.2 Thermodynamic Analysis 184
4.4 Statistical Analysis 188
4.5 Thrust Augmentation . 189
4.5.1 Water Injection 189
4.5.2 Afterburning . 190
4.5.3 Pressure Loss in Afterburning Engine 191
4.6 Supersonic Turbojet . 195
4.7 Optimization of the Turbojet Cycle 198
Problems 209
References 213
Chapter 5 Turbofan Engines . 215
5.1 Introduction . 215
5.2 Forward Fan Unmixed Single-Spool Configuration . 216
5.3 Forward Fan Unmixed Two-Spool Engines . 221
5.3.1 The Fan and Low-Pressure Compressor on One Shaft . 221
5.3.2 Fan Driven by the LPT and the Compressor Driven by the HPT . 232
5.3.3 A Geared Fan Driven by the LPT and the Compressor Driven
by the HPT . 233
5.4 Forward Fan Unmixed Three-Spool Engine . 235
5.5 Forward Fan Mixed-Flow Engine 242
5.5.1 Mixed-Flow Two-Spool Engine 242
5.6 Mixed Turbofan with Afterburner 255
5.6.1 Introduction 255
5.6.2 Ideal Cycle . 256
5.6.3 Real Cycle . 258
5.7 AFT Fan . 258
5.8 V/STOL 261
5.8.1 Swiveling Nozzles . 261
5.8.2 Switch-In Deflector System . 2665.9 Performance Analysis . 273
Summary 294
Problems 297
References 305
Chapter 6 Turboprop, Turboshaft, and Propfan Engines . 307
6.1 Introduction to Turboprop Engines 307
6.2 Classification of Turboprop Engines . 310
6.3 Thermodynamic Analysis of Turboprop Engines 312
6.3.1 Single-Spool Turboprop . 312
6.3.2 Two-Spool Turboprop . 316
6.4 Analogy with Turbofan Engines 319
6.5 Equivalent Engine Power . 320
6.5.1 Static Condition 320
6.5.2 Flight Operation . 320
6.6 Fuel Consumption 320
6.7 Turboprop Installation 321
6.8 Performance Analysis . 329
6.9 Comparison of Turbojet, Turbofan, and Turboprop Engines . 330
6.10 Turboshaft Engines . 333
6.11 Power Generated by Turboshaft Engines 334
6.11.1 Single-Spool Turboshaft 334
6.11.2 Double-Spool Turboshaft . 335
6.12 Examples for Turboshaft Engines 336
6.13 Propfan Engines . 337
Summary of Turboprop Relations . 340
Problems 340
References 344
Chapter 7 High-Speed Supersonic and Hypersonic Engines . 345
7.1 Introduction . 345
7.2 Supersonic Aircraft and Programs . 345
7.2.1 Anglo-French Activities . 346
7.2.2 Russian Activities 347
7.2.3 U.S. Activities 347
7.3 Future of Commercial Supersonic Technology 349
7.4 Technology Challenges of the Future Flight . 350
7.5 High-Speed Supersonic and Hypersonic Propulsion 350
7.5.1 Introduction 350
7.5.2 Hybrid Cycle Engine 351
7.6 Turboramjet Engine . 352
7.7 Wraparound Turboramjet . 352
7.7.1 Operation as a Turbojet Engine . 352
7.7.2 Operation as a Ramjet Engine 355
7.8 Over/Under Turboramjet . 356
7.8.1 Turbojet Mode . 358
7.8.2 Dual Mode . 358
7.8.3 Ramjet Mode 358
7.9 Turboramjet Performance 358
7.9.1 Turbojet Mode . 3587.9.2 Ramjet Mode 359
7.9.3 Dual Mode . 359
7.10 Case Study . 360
7.11 Examples for Turboramjet Engines 365
7.12 Hypersonic Flight . 367
7.12.1 History of Hypersonic Vehicles . 367
7.12.2 Hypersonic Commercial Transport . 369
7.12.3 Military Applications 370
7.13 Scramjet Engines 370
7.13.1 Introduction 370
7.13.2 Thermodynamics 372
7.14 Intake of a Scramjet Engine 372
7.15 Combustion Chamber . 373
7.16 Nozzle . 376
7.17 Performance Parameters 376
Problems 380
References 383
Chapter 8 Industrial Gas Turbines . 385
8.1 Introduction . 385
8.2 Categories of Gas Turbines . 386
8.3 Types of Industrial Gas Turbines . 387
8.4 Single-Shaft Engine . 388
8.4.1 Single Compressor and Turbine 389
8.4.1.1 Ideal Cycle 389
8.4.1.2 Real Cycle 392
8.4.2 Regeneration . 395
8.4.3 Reheat 398
8.4.4 Intercooling 399
8.4.5 Combined Intercooling, Regeneration, and Reheat 401
8.5 Double-Shaft Engine 406
8.5.1 Free Power Turbine 406
8.5.2 Two Discrete Shafts (Spools) . 408
8.6 Three Spool . 415
8.7 Combined Gas Turbine . 422
8.8 Marine Applications 423
8.8.1 Additional Components for Marine Applications 424
8.8.2 Examples for Marine Gas Turbines . 426
8.9 Offshore Gas Turbines 427
8.10 Micro Gas Turbines (µ-Gas Turbines) . 428
8.10.1 Microturbines versus Typical Gas Turbines 429
8.10.2 Design Challenges . 429
8.10.3 Applications 430
Problems 431
References 433
Part II Component Design 435
Chapter 9 Power Plant Installation and Intakes . 437
9.1 Introduction . 437
9.2 Power Plant Installation 4379.3 Subsonic Aircraft 437
9.3.1 Turbojet and Turbofan Engines . 438
9.3.1.1 Wing Installation . 438
9.3.1.2 Fuselage Installation . 442
9.3.1.3 Combined Wing and Tail Installation (Three Engines) . 443
9.3.1.4 Combined Fuselage and Tail Installation . 444
9.3.2 Turboprop Installation . 444
9.4 Supersonic Aircraft . 446
9.4.1 Civil Transports 446
9.4.2 Military Aircrafts 447
9.5 Air Intakes or Inlets . 448
9.6 Subsonic Intakes 449
9.6.1 Inlet Performance 451
9.6.2 Performance Parameters . 453
9.6.3 Turboprop Inlets . 457
9.7 Supersonic Intakes 457
9.7.1 Review of Gas Dynamic Relations for Normal and Oblique Shocks . 460
9.7.1.1 Normal Shock Waves 460
9.7.1.2 Oblique Shock Waves 461
9.7.2 External Compression Intake (Inlet) 462
9.7.3 Internal Compression Inlet (Intake) 467
9.7.4 Mixed Compression Intakes 468
9.8 Matching Between Intake and Engine . 470
9.9 Case Study . 472
Problems 475
References 479
Chapter 10 Combustion Systems 481
10.1 Introduction . 481
10.2 Subsonic Combustion Chambers . 482
10.2.1 Tubular (or Multiple) Combustion Chambers 482
10.2.2 Tubo-Annular Combustion Chambers 483
10.2.3 Annular Combustion Chambers . 484
10.3 Supersonic Combustion Chamber 485
10.4 Combustion Process 485
10.5 Chemistry of Combustion 487
10.6 Combustion Chamber Performance 490
10.6.1 Pressure Losses 490
10.6.2 Combustion Efficiency 491
10.6.3 Combustion Stability 491
10.6.4 Combustion Intensity 492
10.7 Cooling 493
10.8 Material 495
10.9 Aircraft Fuels 496
10.10 Emissions and Pollutants . 497
10.10.1 Pollutant Formation . 497
10.11 The Afterburner . 498
10.12 Supersonic Combustion System 499
Problems 501
References 503Chapter 11 Exhaust System . 505
11.1 Introduction . 505
11.2 Nozzle . 507
11.2.1 Governing Equations 508
11.2.1.1 Convergent–Divergent Nozzle 508
11.2.1.2 Convergent Nozzle . 511
11.2.2 Variable Geometry Nozzles . 512
11.2.3 Afterburning Nozzles 514
11.3 Calculation of the Two-Dimensional Supersonic Nozzle . 517
11.3.1 Convergent Nozzle 518
11.3.2 Divergent Nozzle 522
11.3.2.1 Analytical Determination of the Contour of a Nozzle 525
11.3.2.2 Design Procedure for a Minimum Length Divergent Nozzle 527
11.3.2.3 Procedure of Drawing the Expansion Waves Inside the Nozzle . 528
11.4 Thrust Reversal . 529
11.4.1 Classification of Thrust Reverser Systems . 531
11.4.2 Calculation of Ground Roll Distance . 536
11.5 Thrust Vectoring 537
11.5.1 Governing Equations 540
11.6 Noise . 541
11.6.1 Introduction 541
11.6.2 Acoustics Model Theory 543
11.6.3 Methods Used to Decrease the Jet Noise . 544
Problems 547
References 548
Chapter 12 Centrifugal Compressors . 551
12.1 Introduction . 551
12.2 Layout of Compressor 553
12.2.1 Impeller 553
12.2.2 Diffuser 554
12.2.3 Scroll or Manifold . 556
12.3 Classification of Centrifugal Compressors 556
12.4 Governing Equations . 559
12.4.1 The Continuity Equation 562
12.4.2 The Momentum Equation or Euler’s Equation for Turbomachinery 562
12.4.3 The Energy Equation or the First Law of Thermodynamics . 563
12.4.4 Slip Factor σ . 567
12.4.5 Prewhirl 570
12.4.6 Types of Impeller 581
12.5 Diffuser 589
12.5.1 Vaneless Diffuser 590
12.5.2 Vaned Diffuser . 592
12.6 Discharge Systems 598
12.7 Characteristic Performance of a Centrifugal Compressor 598
12.8 Erosion 602
12.8.1 Introduction 602
12.8.2 Theoretical Estimation of Erosion 605
Problems 609
References 616Chapter 13 Axial-Flow Compressors and Fans . 619
13.1 Introduction . 619
13.2 Comparison of Axial and Centrifugal Compressors . 621
13.2.1 Advantages of the Axial-Flow Compressor Over
the Centrifugal Compressor . 621
13.2.2 Advantages of Centrifugal-Flow Compressor Over the Axial-Flow
Compressor 622
13.2.3 Main Points for Comparison of Centrifugal and Axial Compressors . 623
13.3 Mean Flow (Two-Dimensional Approach) 623
13.3.1 Types of Velocity Triangles . 625
13.3.2 Variation of Enthalpy Velocity and Pressure of an
Axial Compressor 627
13.4 Basic Design Parameters . 635
13.4.1 Centrifugal Stress 635
13.4.2 Tip Mach Number . 637
13.4.3 Fluid Deflection 638
13.5 Design Parameters 639
13.5.1 Degree of Reaction 640
13.6 Three-Dimensional Flow . 642
13.6.1 Axisymmetric Flow 643
13.6.2 Simplified Radial Equilibrium Equation . 644
13.6.3 Free Vortex Method . 646
13.6.4 General Design Procedure 651
13.7 Complete Design Process for Compressor . 659
13.8 Rotational Speed (RPM) and Annulus Dimensions . 659
13.9 Determine Number of Stages (Assuming Stage Efficiency) 662
13.10 Calculation of Air Angles for Each Stage at the Mean Section . 663
13.10.1 First Stage 663
13.10.2 Stages from (2) to (n − 1) . 664
13.10.3 Last Stage 665
13.11 Variation of Air Angles from Root to Tip Based on the Type of Blading (Free
Vortex–Exponential–First Power) 666
13.12 Blade Design 667
13.12.1 Cascade Measurements 667
13.12.2 Choosing the Type of Airfoil 672
13.12.3 Stage Performance . 672
13.12.3.1 Blade Efficiency and Stage Efficiency 677
13.13 Compressibility Effects . 679
13.14 Performance . 687
13.14.1 Single Stage 687
13.14.2 Multistage Compressor 689
13.14.3 Compressor Map 690
13.14.4 Stall and Surge . 691
13.14.5 Surge Control Methods 694
13.14.5.1 Multispool Compressor 694
13.14.5.2 Variable Vanes 694
13.14.5.3 Air Bleed 695
13.15 Case Study . 701
13.15.1 Mean Section Data 701
13.15.2 Variations from Hub to Tip . 701
13.15.3 Details of Flow in Stage Number 2 . 70313.15.4 Number of Blades and Stresses of the Seven Stages . 704
13.15.5 Compressor Layout 705
13.16 Erosion 708
13.17 Fouling 712
Problems 714
References 725
Chapter 14 Axial Turbines . 727
14.1 Introduction . 727
14.2 Comparison of Axial Flow Compressors and Turbines . 729
14.3 Aerodynamics and Thermodynamics for a Two-Dimensional Flow . 730
14.3.1 Velocity Triangles . 730
14.3.2 Euler’s Equation . 732
14.3.3 Efficiency, Losses, and Pressure Ratio . 734
14.3.4 Nondimensional Quantities . 738
14.3.5 Several Remarks . 746
14.4 Three Dimensional 752
14.4.1 Free Vortex Design 753
14.4.2 Constant Nozzle Angle Design (α2) 753
14.4.3 General Case . 756
14.4.4 Constant Specific Mass Flow Stage 757
14.5 Preliminary Design . 772
14.5.1 Main Design Steps . 772
14.5.2 Aerodynamic Design 772
14.5.3 Blade Profile Selection 774
14.5.4 Mechanical and Structural Designs . 775
14.5.4.1 Centrifugal Stresses 775
14.5.4.2 Centrifugal Stresses on Blades 776
14.5.4.3 Centrifugal Stresses on Discs 777
14.5.4.4 Gas Bending Stress . 779
14.5.4.5 Centrifugal Bending Stress 781
14.5.4.6 Thermal Stress 781
14.5.5 Turbine Cooling . 782
14.5.5.1 Turbine Cooling Techniques . 782
14.5.5.2 Mathematical Modeling 784
14.5.6 Losses and Efficiency . 790
14.5.6.1 Profile Loss (Y p) . 790
14.5.6.2 Annulus Loss . 791
14.5.6.3 Secondary Flow Loss 791
14.5.6.4 Tip Clearance Loss (Y k) . 792
14.6 Turbine Map . 793
14.7 Case Study . 797
14.7.1 Design Point . 797
Summary 804
Problems 805
References 811
Chapter 15 Radial Inflow Turbines . 813
15.1 Introduction . 813
15.2 Thermodynamics 814
15.3 Dimensionless Parameters 81815.4 Preliminary Design . 819
15.5 Breakdown of Losses . 822
15.6 Design for Optimum Efficiency 825
15.7 Cooling 829
Problems 830
References 832
Chapter 16 Module Matching . 833
16.1 Introduction . 833
16.2 Off-Design Operation of a Single-Shaft Gas Turbine Driving a Load . 833
16.2.1 Matching Procedure . 834
16.2.2 Different Loads 839
16.3 Off Design of Free Turbine Engine 839
16.3.1 Gas Generator 840
16.3.2 Free Power Turbine 841
16.4 Off Design of Turbojet Engine . 846
Problems 851
References 853
Appendix A 855
Appendix B 861
Appendix C 863
Index
Index
A
A321, 552
A-40, 42
A-53-L13B, 324
Acoustics model theory, 543–544
Aeolipile, 4
Aero engines, 3
aerospace engines
classification, 28–29
aircraft and power plant industry, 44–52
gas turbine engines
advanced ducted fan, 42–43
propfan engine, 23–24, 41–42
turbofan engines, 21–23, 37–41
turbojet engines, 15–18, 33–34
turboprop engines, 18–20, 34–35
turboshaft engines, 20–21, 35–36
industrial gas turbine engines, 27–28, 43–44
jet engines, 13
pulsejet engine, 24–25, 30
ramjet engines, 25–27, 29–30
scramjet engines, 27, 31
turboramjet engines, 31
turborocket engines, 32
prejet engines
history, 3–13
Aerospace engines
classification, 28–29
Aft fan, 258–261
Afterburner, 498–499
adiabatic efficiency
inoperative, 168–169
operative, 169
mixed turbofan engine with
ideal cycle, 256–258
real cycle, 258
single spool turbojet, 153
inoperative, 154
operative, 154–156
thrust augmentation, 189–190
pressure loss, 191–194
two-spool turbojet
example, 183–184
thermodynamic analysis, 184–186
Afterburning nozzles, 514–517
Air angle determination at mean section
first stage, 663–664
from (2) to (n–1), 664–665
last stage, 665–666
Air angle variation, 666–667
Air bleed, 695
Air intakes, 448–449
Air speed, 68
Air-breathing engines, 28
Airbus A330, 536
Airbus A380, 47
Aircraft range, 82–85
AlliedSignal, 19, 22
AlliedSignal 331, 552
AlliedSignal 731 turbofan engines, 552
Allison, 17, 19, 339
Allison T38, 322
Alstom, 27
Altitude, 68–69
Ames-Dryden-1 (AD-1), 348–349
AN-70, 338
Anglo-French activities, supersonic aircraft, 346–347
BAe-Aerospatiale AST, 346
Concorde, 346, 347
Annular combustion chamber, 390
Annulus loss, 791
Antonov AN-180, 322, 339
Antonov AN-20, 321
Antonov AN-38,-140, 307
ATREX, 365, 367
Aurora, 370
Avco Lycoming TF25, 386
Aviadvigatel D-30KPV, 41
Axial turbines, 727
aerodynamics and thermodynamics for
two-dimensional flow
Euler’s equation, 732–734
loss coefficient, 737–738
nondimensional quantities, 738–746
pressure ratio, 736–737
remarks, 746–752
stage efficiency, 734–736
velocity triangles, 730–732
axial-flow compressors, comparison with, 729–730
case study
design point, 797–804
mean line flow, 798–799
three-dimensional variations, 799–800
blade numbers for nozzle and rotor, 800
chord length, 801
blade material selection, 803
stresses on rotor blades, 803
losses calculations, 803
turbine efficiency, 804
preliminary design
aerodynamic design
mean line design analysis, 772–773
three-dimensional flow, 773
blade profile selection, 774–775
design steps, 772
loss and efficiency
annulus loss, 791
profile loss (Yp), 790–791
secondary flow loss, 791–792 867868 Index
Axial turbines (continued)
tip clearance loss (Yk), 792–793
mathematical modeling, 784–790
mechanical and structural designs
centrifugal bending stress, 781
centrifugal stress, 775–779
gas bending stress, 779–781
thermal stress, 781
thermal cooling
techniques, 782–784
three dimensional, 752
constant nozzle angle design, 753–756
constant specific mass flow stage, 757
free vortex design, 753
general case, 756–757
turbine map, 793–797
Axial–centrifugal compressor, 552
Axial-flow compressors and fans, 619
air angle determination at mean section
first stage, 663–664
stages from (2) to (n–1), 664–665
last stage, 665–666
air angle variation, 666–667
axial turbines, comparison with, 729–730
basic design parameters
centrifugal stress, 635–637
fluid deflection, 638–639
tip Mach number, 637–638
blade design
airfoil type, choosing, 672
cascade measurements, 667–672
stage performance, 672–679
blade efficiency and stage efficiency, 677–679
case study
blades and stresses of seven stages, 704
compressor layout, 705
flow details, in stage number 2, 703–704
mean section data, 701
variations from hub to tip, 701–703
centrifugal compressors, comparison with, 623
advantages of, over axial-flow compressors, 622
advantages over, 621–622
complete design process for compressor, 659
compressibility effects, 679–687
design parameters, 639–642
degrees of reaction, 640–642
erosion, 708–712
fouling, 712–714
mean flow (two-dimensional approach), 623–635
enthalpy velocity variations, 627–635
velocity triangle types, 625–627
performance
compressor map, 690–691
multistage compressor, 689–90
single stage, 687–689
surge
control methods, 694–701
and stall, 691–693
rotational speed (RPM) and annulus dimensions,
659–662
stage determination, 662–663
three-dimensional flow, 642
axisymmetric flow, 643–644
free vortex method, 646–651
general design procedure, 651–659
simplified radial equilibrium equation,
644–646
Axisymmetric flow, 643–644
Axisymmetric nozzle, 505
B
B-25 Mitchells, 602
B737-500, 552
BAe-Aerospatiale AST, 346
Balanced-beam nozzle, 515
Barber, John, 6
Barber’s gas turbine, 6, 7
Bell Aircraft Corporation X-2, 367
Bell X-1, 345, 346
Blackbird SR-71, 345, 346
Blade design
airfoil type, choosing, 672
cascade measurements, 667–672
stage performance, 672–679
blade efficiency and stage efficiency,
677–679
Blade material selection, 803
Blade numbers for nozzle and rotor, 800
Boeing 2707-100, 200, 300, 346
Boeing 2707-100/200, 347, 348
Boeing 2707-300, 348
Boeing 707, 552
Boeing 727, 603
Boeing 737, 552
Boeing 747, 603
Boeing 777, 536
Boeing 787 Dreamliner, 46–47
Boeing Pelican ULTRA, 45, 46
Boeing Vertol Chinook CH-47, 336
Boeing X-32, 539
Boeing, 339
Branca’s stamping mill, 5, 6
Brayton cycle, 388–389
Breguet’s equation, 83
Bristol 223, 346
Bristol Company’s, 346
Brittle erosion, 603
Bucket target system, 531
Buzz bombs, 97
C
Can combustion chamber, 390
Can-annular combustion chamber, 390
Cascade-type reverser, 532
Casing, 620
C-D nozzle, 508
Central plug, 513
Centrifugal bending stress, 781
Centrifugal compressors, 551
axial-flow compressors, comparison with, 623
advantages of, over centrifugal flow
compressors, 621–622
advantages over, 622Index 869
characteristic performance of, 598–601
classification of, 556–559, 559
diffuser, 589
vaned diffuser, 592–598
vaneless diffuser, 590–592
discharge systems, 598
erosion, 602–609
theoretical estimation of, 606–609
governing equations, 559
continuity equations, 562
energy equation, 563–567
momentum equations/Euler’s
equation, 562–563
prewhirl, 570–581
slip, 567–570
layout of, 560
diffuser, 554–556
impeller, 533–534
scroll/manifold, 556
Centrifugal stress, 635–637, 775–779
on blades, 776–777
on discs, 777–779
CF6-50C2, 861
CF6-80C2, 861
CF700 turbofan engine, 258
CFM56-5C2, 862
Channel and pipe diffusers, 555–556, 589
Chevrons, 545–546
Chimney jack, 5, 6
Choked nozzle, 67–68
Choking point, 602
Chord length, 801
Clamshell door system, 531
Coanda effect, 540
Combined gas turbines, 422–423
Combustion chamber performance
combustion efficiency, 491
combustion intensity, 492–493
combustion stability, 491–492
pressure losses, 490–491
Combustion chamber, 100, 115–116, 127, 181
adiabatic efficiency, 168
forward fan unmixed single-spool turbofan
engine, 217–218
single spool turbojet, 151–152
two-spool turbofan engines, 223
Combustion systems, 481
afterburner, 498–499
aircraft fuels, 496–497
chemistry of combustion, 487–490
combustion chamber performance
combustion efficiency, 491
combustion intensity, 492–493
combustion stability, 491–492
pressure losses, 490–491
combustion process, 485–487
cooling, 493–495
emissions, 497
material, 495–496
pollutant formation
NOx emissions, 497–498
SiO2 emissions, 498
subsonic combustion chambers
annular combustion chambers, 484–485
tubo-annular combustion chambers, 483–484
tubular combustion chambers, 482–483
supersonic combustion chamber, 485, 499–501
Compressibility effects, 679–687
Compressible flow, 590–591
Compressor
adiabatic efficiency, 167
forward fan unmixed single-spool turbofan
engine, 217
single spool turbojet, 151
Compressor fouling, 713
Compressor map, 600, 601
Concorde, 345, 346, 347, 513
Constant nozzle angle design, 753–756
Constant specific mass flow stage, 757
Continuity equation, 562
Continuum approach, 603
Control volume, 59
Convair BJ-58, 348, 352
Convection, 782–783
cooling, 787–790
Convection-film cooling, 494
Convergent nozzles, 508, 511, 518–522
Convergent–divergent nozzles, 508–511
CP-140 Aurora, 307
Cs-1 engine, 18
D
da Vinci, Leonardo, 5
Dash 8, 311
DC8, 552
DC9, 552
De Haller number, 639
De Havilland Canada Dash 8, 307
Degrees of reaction, 640–642
Diffuser efficiency, 455
Diffuser, 554–556, 589
vaned diffuser, 592–598
vaneless diffuser, 590–592
Diffuser/intake, 126–127
valved pulsejet, 99–100
Diffusion factor (DF), 6392
Disc, 620
Discharge systems, 598
Discrete approach, 603
Divergent nozzle, 522–529
expansion waves inside nozzle, drawing procedure
for, 528–529
minimum length divergent nozzle, design procedure
for, 527–528
nozzle contour, analytical determination of, 525–527
Double-shaft engine, 406–415
free power turbine, 406–408
two discrete shafts (spools), 408–415
Double-spool turboshaft, 335–336
free power turbine, 336
gas generator turbine, 335–336
Dual-entry impellers, 557
Ductile erosion, 604
simulation, 604
Dynamic compressors, 551–552870 Index
E
Eccentric coannular nozzle, 546
Effective cooling, 495
Effective Perceived Noise deciBel (EPNdB), 541
Ejector nozzle, 513
Ejector-suppressor, 544
Electron Beam (EB)-welded rotor, 390
Enclosed machines, 551
Endurance factor, 85–87
Energy balance
for high-pressure spool, 230
for low-pressure spool, 230–231
Energy equation, 563–567
Engine performance
adiabatic efficiency, 167–170
Enthalpy velocity variations
and axial compressor pressure, 627–635
Equivalent specific fuel consumption (ESFC), 82
Erosion rate, 603–604
theoretical estimation of, 605–609
Erosion, 602–609, 708–712
Euler’s equation, 732–734
for turbomachinery See Momentum equation
Eurocopter EC120 Colibri, 336
European hypersonic transport vehicle (EHTV), 369
Exhaust system, 505
arrangement of, 506
noise, 541–546
acoustics model theory, 543–544
jet noise reduction, methods for, 544–546
nozzle, 507–517
afterburning nozzles, 514–517
governing equations, 508–512
convergent–divergent nozzles, 508–511
convergent nozzle, 511
variable geometry nozzles, 512–514
thrust reversal, 529–537
classification of, 531–535
ground roll distance calculation, 536–537
methods of, 531
thrust vectoring, 537–541
governing equations, 540–541
two-dimensional supersonic nozzle calculation, 517
convergent nozzle, 518–522
divergent nozzle, 522–529
expansion waves inside nozzle, drawing
procedure for, 528–529
minimum length divergent nozzle, design
procedure for, 527–528
nozzle contour, analytical determination of,
525–527
Extended turbomachines, 551
External thrust vectoring, 537
F
F-111, 513
F-15, 448
F-15 S, 507
F-16, 539
F-18, 539
F-22, 539
F-22 Raptor, 507
F-35, 539
Fan
two-spool turbofan engines, 222
Fan nozzle, 227
forward fan unmixed single-spool turbofan engine,
219–221
Federal Aviation Administration (FAA), 258
Film cooling, 494, 784, 785–787
578-DX, 339
Flow coefficient, 818
Fluid deflection, 638–639
Fluidic thrust vectoring, 537, 540
Flush intake, 450
Flying bombs, 98
Fokker F-27, 321
Forward fan
mixed-flow turbofan engine, 242
two-spool engines, 242–245
unmixed turbofan engine
single-spool configuration, 216–221
three-spool engine, 235–237
two-spool engines
fan and low-pressure compressor on one shaft,
221–224
fan driven by LPT and compressor driven by
HPT, 232–233
geared fan driven by LPT and compressor driven
by HPT, 233–235
Fouling, 712–714
Four-stroke engine, 8
Frank Whittle engines, 552
Free power turbine, 841–846
Free turbine engine, 839
off-design
free power turbine, 841–846
gas generator, 840–841
Free vortex design, 646–651, 753
Front frame, 620
Fuel consumption, 102, 106
Fuel, 97, 99, 100
deflagration, 103
detonation, 103
Fuel-to-air ratio, 59, 100, 109
Full-coverage film cooling, 784
Full-induced impeller, 557
Fuselage installation, power plants, 442–443
and tail installation, combination, 444
Future flight, technology challenges of, 350
G
Garrett GTCP-85, 552
Gas bending stress, 779–781
Gas generator, 840–841
Gas turbine engines, 727
advanced ducted fan, 42–43
propfan engine, 23–24, 41–42
samples, 863–865
turbofan engines, 21–23, 37–41
turbojet engines, 15–18, 33–34
turboprop engines, 18–20, 34–35Index 871
turboshaft engines, 20–21, 35–36
See also Industrial gas turbines
GE engines, 21, 22, 24, 40, 44, 179, 183, 232, 256,
258–259, 273–274, 322, 339, 341, 428, 552,
602, 861
General Electric (GE), 15, 16–17, 18–19, 21, 22, 24, 27,
47, 103, 215, 339, 498
German sänger space transportation systems, 369
Gloster Aircraft Company, 14
Gloster E28/39, 14
Gravesand, Jacob, 6
H
Hamilton Standard 777 (ACTCS), 552
Harrier, 539
Hartzell propeller, 311
Heinkel’s He-178, 15
Hercules C-130, 307
Hero, 4
High-pressure compressor (HPC), 181
two-spool turbofan engines, 223
High-pressure turbine (HPT), 181–182
two-spool turbofan engines, 223
High-speed civil transport project (HSCT), 349
High-speed supersonic and hypersonic engines
commercial technology, future of, 349–350
future flight, technology challenges of, 350
hypersonic flight, 367–370
over/under turboramjet, 356–358
propulsion
hybrid cycle engine, 350–352, 351
multistage vehicle, 350, 351
scramjet engines, 370–372
supersonic aircraft and programs, 345–349
Anglo-French activities, 346–347
Russian activities, 347
U.S. activities, 347–349
turboramjet engine, 352, 358–367
wraparound turboramjet, 352–356
Hitachi, 553
Honeywell ALF502R, 234, 235
Hybrid cycle engine, 350–352, 351
HYCAT-1, 357
HYCAT-1-A, 361, 361
Hydraulic turbine, 727
Hydrocarbon fuel, 138
Hydrogen fuel, 138
Hyper soar aircraft, 47, 48
Hypersonic aurora aircraft, 47, 48
Hypersonic flight, 367–370
commercial transport, 369–370
history, 367–369
military applications, 370
Hypersonic vehicle, 47
I
Ideal ramjet, 107–109
Impeller, 533–534
types, 558, 581–589
Impingement cooling, 783
Impingement-film cooling, 494
Impulse blading, 642
Impulse turbine, 731
Incompressible flow, 590–591
Inducer duct, 553
Industrial gas turbines, 27–28, 43–44, 385–386
categories, 386–387
combined gas turbines, 422–423
marine applications, 423–427
additional components, 424–426
examples, 426–427
micro gas turbines (µ-gas turbines), 428–430
design challenges, 429–430
versus typical gas turbines, 429
offshore gas turbines, 427–428
types, 387–388
double-shaft engine, 406–415
single-shaft engine, 388–406
three spool, 415–421
Inlet
single spool turbojet, 151
Inlet guide vanes (IGVs), 557, 571, 620
Inlet lip, 449
Intake, 180
adiabatic efficiency, 167
forward fan unmixed single-spool turbofan
engine, 217
two-spool turbofan engines, 221
Integrated intake, 449–450
Internal thrust vectoring, 537
Inward-flow radial (IFR), 813
Iris nozzle, 513–514
IRR Torpedo Tube Vehicle, 27
Isentropic efficiency, 454
Isentropic flow, 107
Ishikawajima Ne-20, 17
J
J58-1, 345, 365
Jet engines, 13
factors affecting trust
air speed, 68
altitude, 68–69
jet nozzle, 67
mass airflow, 68
ram effect, 69–70
performance parameters, 70
aircraft range, 82–85
endurance factor, 85–87
overall efficiency, 77–80
propeller efficiency, 76–77
propulsive efficiency, 70–75
range factor, 85
specific fuel consumption, 81–82
specific impulse, 87–91
takeoff thrust, 80–81
thermal efficiency, 75–76
pulsejet engine, 24–25, 30
ramjet engines, 25–27, 29–30
scramjet engines, 27, 31872 Index
Jet engines (continued)
thrust force, 57–67
turboramjet engines, 31
turborocket engines, 32
Jet exhaust noise, 541, 544
Jet noise reduction, methods for, 544–546
Jet nozzle, 67
Jet pipe, 182, 514
Jetcruzer 500, 310, 322
JT-8D-17R, 862
JT-9D-7R4, 861 − −862
Jumo 004-B jet engine, 15
K
King Air A100, 307
KNAAPOAS-20P, 322, 323
L
LM2500, 386, 426
Lobe-tube nozzle, 544
Lockheed C-130 Hercules, 603
Lockheed F-104, 17
Lockheed L-2000, 346, 348
Lockheed Missiles & Space Co (X-7), 367
Lockheed P-3A, 307
LoFlyte, 369
Loss coefficient, 737–738
Louver cooling, 493
Low emissions combustor (LEC), 498
Low-pressure compressor (LPC), 181
two-spool turbofan engines, 222
Low-pressure turbine (LPT), 182
two-spool turbofan engines, 223–224
LTS101-600A, 324
Lycoming T-55-L-7C, 336
Lyulka AL-7, 16
M
Mach number, 111, 114, 523–524
Marine gas turbine, 423–427
additional components, 424–426
high hat assembly, 424
electric strip heater, 424
anti-icing manifold, 425
exhaust duct system, 425
expansion joint, 425
intake duct, 425
intake silencer, 425
examples, 426–427
Mass airflow, 68
McDonnell Douglas, 339
McDonnell XF-88B, 322
MD-80, 339, 340, 552
MD-94X, 339
Mean flow (two-dimensional approach),
623–635
enthalpy velocity variations, 627–635
velocity triangle types, 625–627
Mean line flow, 798–799
Mechanical thrust vectoring, 537–538
Messerschmitt Me 262, 15
Micro gas turbines (µ-gas turbines), 428–430
design challenges, 429–430
versus typical gas turbines, 429
MiG-29, 539
MiG-35, 539
Mitsubishi MU-2, 307
Mixed turbofan engine
with afterburner, 255–258
ideal cycle, 256–258
real cycle, 258
Module matching
off-design
of free turbine engine, 839
free power turbine, 841–846
gas generator, 840–841
of single-shaft gas turbine, 833–839
different loads, 839
matching procedure, 834–838
of turbojet engine, 846–850
Momentum equation, 562–563
MT30, 427
Multipurpose small power units (MPSPU), 552
Multispool compressor, 694
Multistage vehicle, 350, 351
N
National Aerospace Plane (NASP) X-30, 368
Newton, Sir Isaac, 4, 6
Newton’s steam wagon, 6, 7
NK144, 347
Noise, 541–546
acoustics model theory, 543–544
jet noise reduction, methods for, 544–546
Nonafterburner
two-spool turbojet
example, 179–180
thermodynamic analysis, 180–183
Non–air-breathing engines, 28, 44
Nondimensional quantities, 738–746
Nonfree vortex, 757
Normal shock waves, 460
North American Aviation X-10, 367
North American Aviation X-15, 367
NOx emissions, 497–498
Nozzle map, 846
Nozzle, 116–117, 127, 505, 507–517
adiabatic efficiency
inoperative, 169
operative, 169–170
afterburning nozzles, 514–517
choked, 67–68
governing equations, 508–512
convergent–divergent nozzles, 508–511
convergent nozzle, 511
single spool turbojet, 153–156
two-spool turbojet, 183, 185–186
unchoked, 60, 68, 76
variable geometry nozzles, 512–514Index 873
O
Oblique shock waves, 461–462
Offshore gas turbines, 427–428
Osprey V-22, 309
Otto-cycle engines, 8
Outlet guide vanes (IGVs), 620
Over/under turboramjet, 356–358
dual mode, 358
ramjet mode, 358
turbojet mode, 358
Overall efficiency, 77–80
P
P & W JT 9D-7A engines, 603
Particle trajectories, 603
Pegasus engine, 262
Pipe and channel diffusers, 556, 589
Pitot intakes, 449–450
Podded intakes, 449
flow characteristics, 450
Power JetW.1, 14
Power plant installation, 437
air intakes, 448–449
case study, 472–475
intake and engine, matching between, 470–471
subsonic aircraft, 437
turbojet and turbofan engines
fuselage and tail installation, combination, 444
fuselage installation, 442–443
wing and tail installation, combination, 443–444
wing installation, 438–442
turboprop installation, 444–446
subsonic intakes, 449–457
intakes performance, 451–453
performance parameters, 453–457
turboprop inlets, 457
supersonic aircraft
civil transports, 446–447
military aircrafts, 447–448
supersonic intakes, 457
external compression intake, 462–467
gas dynamic relations
normal shock waves, 460
oblique shock waves, 461–462
internal compression intake, 467–468
mixed compression intake, 468–470
Pratt & Whitney, 16, 20, 21, 49–50, 103, 234, 552, 603
Pressure ratio, 736–737
Prewhirl, 570–581
Primary combustion zone, 486–487
Profile loss (Yp), 790–791
Progress D-27, 339
Propeller efficiency, 76–77
Propeller thrust, 315, 319
Propelling nozzle, 514
Propfan engine, 23–24, 41–42, 337–340
Propulsive efficiency, 70–75, 128
PT 6B, 308
PT6, 552
Puller turboprop, 311
Pulse detonation engine, 97, 103
Pulsejet engine, 24–25, 30, 97
pulse detonation engine, 103
valved pulsejet, 98–102
valveless pulsejet, 102–103
Pusher turboprop, 310–311
PW 120A, 311
PW100, Pratt & Whitney, 552
PW200, 308
R
Radial inflow turbines, 813
cooling, 829–830
dimensionless parameters, 818–819
losses, breakdown of, 822–825
optimal efficiency, design for, 825–829
preliminary design, 819–822
thermodynamics, 814–818
Radial turbomachine, 551
Ram effect, 69–70, 106
Ramjet engines, 25–27, 29–30, 106
case study, 129
ideal, 107–109
real cycle, 110
Range factor, 85
Rayleigh flow, 115–116, 127
RB-211 series, 21, 235–236, 386, 435, 603, 861 − −862
Reaction engines, 57
Real cycle, of ramjet engines, 110
Rear frame, 620
Relative eddy, 567–568
RFA24, 553
RFA36, 553
Rolls-Royce, 17, 18, 21, 22, 47, 215
Rolls-Royce Dart, 321, 482
Rolls-Royce DART, 552
Rolls-Royce/Snecma Olympus 593 turbojet, 17, 18, 184
Rotational speed (RPM) and annulus dimensions,
659–662
Rotor blade, 619, 620–621
Rotor meridional velocity ratio, 818
Russian activities, supersonic aircraft, 347
Tupolev TU-144, 347
Russian TU-95, 307, 308
S
S-300P, 537
Saab 340, 307
Saab Viggen, 513
Scramjet engines, 27, 31, 370–372
combustion chamber, 373–375
fuel mixing, 375
intake, 372–373
nozzle, 376
performance parameter, 376–380
thermodynamics, 372
Scroll See Volute
Secondary flow loss, 791–792
Selective catalytic reduction (SCR), 498
Selective noncatalytic reduction (SNCR), 498
737–200 aircrafts, 602874 Index
Shaft power, 76, 315
Shenyang J-8 fighter, 17
Shock thrust vector control, 540
Shock wave
normal, 115, 126
oblique, 114–115
Shrouding, 557
Simplified radial equilibrium equation, 644–646
Single spool engine
turbojet
actual case, 165–175
example, 149–150
ideal case, 150
operative and inoperative afterburner, comparison,
175–178
thermodynamic analysis, 150
Single stage centrifugal compressor, 556, 557
Single-entry impeller, 557
Single-shaft engine, 388–406
combined intercooling, regeneration and reheat,
401–406
intercooling, 399–401
regeneration, 395–397
reheat, 398–399
single compressor and turbine
ideal cycle, 389–392
real cycle, 392–395
Single-shaft gas turbine
off-design, 833–839
Single-spool engine
turbofan
forward fan unmixed, 216–221
Single-spool turboprop, 312–316
combustion chamber, 313
compressor, 313
intake, 312–313
turbine, 314–316
Single-spool turboshaft, 334–335
combustion chamber, 335
compressor, 335
diffuser, 334–335
turbine, 335
Slip, 561, 567–570
Solar electric Helios Prototype, 46, 47
Specific impulse, 87–91
Specific speed, 819
Specific thrust, 198
Spike motion, 123
Splash cooling, 493
SR-71, 352
SR-71, 513
SRB space shuttle, 537
Stage efficiency, 734–736
Stage loading, 818
Stagnation pressure ratio, 454
Stanton number, 786, 787
Stator blade, 619
Steady-state stress, 775
Steam turbine, 727
Stoichiometric ratio, 487
Su-30, 539
Su-37, 539
Su-47, 539
Subsonic aircraft, 437
turbojet and turbofan engines
fuselage installation, 442–443
and tail installation, combination, 444
wing installation, 438–442
and tail installation, combination, 443–444
turboprop installation, 444–446
Subsonic combustion chambers
annular combustion chambers, 484–485
tubo-annular combustion chambers, 483–484
tubular combustion chambers, 482–483
Subsonic intakes, 449–457
intakes performance, 451–453
performance parameters, 453–457
turboprop inlets, 457
Subsonic nozzle, 517
Sud-Aviation of France, 346
Sukhoi SU-35, 507
Sulfur dioxide (SiO2) emissions, 498
Sunstrand Turbomach APS 200, 552
SunStrand Turbomach T-100, 552
Super Caravelle, 346
Supersonic aircraft
civil transports, 446–447
military aircrafts, 447–448
Supersonic combustion chamber, 485, 499–501
Supersonic compressor, 679
Supersonic intakes, 457
classification, 458
external compression intake, 462–467
gas dynamic
normal shock waves, 460
oblique shockwaves, 461–462
internal compression intake, 467–468
mixed compression intake, 468–470
Supersonic transport aircraft committee (STAC), 346
Surging, 603
Swingfire small battlefield, 537
Switch-in deflector system, 266
cruise, 267–270
takeoff conditions, 270–272
Swiveling nozzles, 261–262
T
T-31 flight, 18
T53 Honeywell engine, 552
Tabs, 545
Tail Pipe, 100
Takeoff thrust, 80–81
Thermal efficiency, 75–76
Thermal stress, 781
Thermodynamics, first law of See Energy equation
Three spool, 415–421
Three-dimensional flow, 642
axisymmetric flow, 643–644
free vortex method, 646–651
general design procedure, 651–659
simplified radial equilibrium equation, 644–646
Three-dimensional thrust vectoring, 539
Three-spool engine
turbofan
forward fan unmixed, 235–237Index 875
Thrust force, 57–67, 109, 231–232
Thrust reversal, 505, 529–537
classification of, 531–535
ground roll distance calculation, 536–537
methods of, 531
Thrust-specific fuel consumption (TSFC), 57, 81
Thrust vectoring, 505, 537–541
governing equations, 540–541
Tip clearance loss (Yk), 792–793
Tip Mach number, 637–638
Transonic compressor, 679
Transpiration cooling, 495, 784
Trents, 1, 18, 22, 23, 28, 236„ 427, 449, 861 − −862,
865
Trust specific fuel consumption, 81–82
Tupolev Tu-144, 345, 347
Turbine efficiency, 804
Turbine inlet temperature (TIT), 152
Turbine map, 793–797
Turbine nozzle, 227
forward fan unmixed single-spool turbofan engine,
219
Turbine, 727
adiabatic efficiency, 168
forward fan unmixed single-spool turbofan engine,
218
single spool turbojet, 152
See also Axial turbines
Turbofan engine, 21–23, 37–41, 215, 619
aft fan, 258–261
forward fan mixed-flow engine, 242
two-spool engines, 242–245
forward fan unmixed
single-spool configuration, 216–221
three-spool engine, 235–237
two-spool engines
fan and low-pressure compressor on one shaft,
221–224
fan driven by LPT and compressor driven by
HPT, 232–233
geared fan driven by LPT and compressor driven
by HPT, 233–235
fuselage installation, 442–443
and tail installation, combination, 444
mixed, with afterburner, 255–258
ideal cycle, 256–258
real cycle, 258
performance analysis, 273
V/STOL, 261
swiveling nozzles, 261–262
switch-in deflector system, 266–272
cruise, 267–270
takeoff conditions, 270–272
wing installation, 438–442
and tail installation, combination, 443–444
Turbojet engine, 15–18, 33–34, 147
classification, 148
fuselage installation, 442–443
and tail installation, combination, 444
off-design, 846–850
optimization, 198
single spool engine
actual case, 165–175
example, 149–150
ideal case, 150
operative and inoperative afterburner, comparison,
175–178
thermodynamic analysis, 150
statistical analysis, 188
supersonic, 195
thrust augmentation, 189
afterburning, 190–191
pressure loss, 191–194
water injection, 189–190
two-spool engine
afterburner
example, 183–184
nonafterburner
example, 179–180
thermodynamic analysis, 180–183
thermodynamic analysis, 184–186
wing installation, 438–442
and tail installation, combination, 443–444
Turbomachines, 551
Turbomeca, 20
Turbomeca Arrius 2K1, 336
Turboprop engines, 18–20, 34–35, 307–310
advantages, 309
analogy with turbofan engines, 319
classification based on
engine–aircraft configuration, 310–311
intake type, 311–312
number of spool, 311
propeller type, 311
propeller–engine coupling, 311
comparison with turbojet and turbofan engines,
330–333
disadvantages, 309–310
equivalent engine power
flight operation, 320
static condition, 320
fuel consumption, 320–321
installation, 321–329
installation, 444–446
performance analysis, 329–330
puller turboprop, 311
pusher turboprop, 310–311
specifications, 324
speed reduction, 309
summary of relation, 340
thermodynamic analysis, 312–319
single-spool turboprop, 312–316
two-spool turboprop, 316–319
Turboramjet engine, 31, 352
case study, 360–365
examples, 365–366
performance, 358–360
dual mode, 359–360
ramjet mode, 359
turbojet mode, 358–359
Turborocket engines, 32
Turboshaft engines, 20–21, 35–36, 309, 333–334
examples, 336–337
power generated by
double-spool turboshaft, 335–336
single-spool turboshaft, 334–335
Two stage centrifugal compressor, 556–557, 557
Two-dimensional nozzle, 505876 Index
Two-dimensional supersonic nozzle calculation, 517
convergent nozzle, 518–522
divergent nozzle, 522–529
expansion waves inside nozzle, drawing procedure
for, 528–529
minimum length divergent nozzle, design
procedure for, 527–528
nozzle contour, analytical determination of,
525–527
Two-dimensional thrust vectoring, 540–541
Two-spool engine
turbofan
forward fan mixed-flow engine, 242–245
forward fan unmixed
fan and low-pressure compressor on one shaft,
221–224
fan driven by LPT and compressor driven by
HPT, 232–233
geared fan driven by LPT and compressor driven
by HPT, 233–235
turbojet
afterburner
example, 183–184
nonafterburner
example, 179–180
thermodynamic analysis, 180–183
thermodynamic analysis, 184–186
Two-spool turboprop, 316–319
combustion chamber, 317
compressor, 317
free power turbine, 317–319
gas generator turbine, 317
intake, 316
U
UGM-27 Polaris nuclear ballistic missile, 537
Ultrahigh bypass (UHB) engines See Propfan engine
Ultra-high-bypass (UHBP) engines, 23
Unchoked nozzle, 60, 68, 76
Unducted fan (UDF) engines See Propfan engine
Unshrouded impeller, 557
Unsteady stress, 775
U.S. activities, supersonic aircraft, 347–349
Ames-Dryden-1 (AD-1), 348–349
Boeing 2707-100/200, 347, 348
Boeing 2707-300, 348
Convair BJ-58, 348
high-speed civil transport project (HSCT), 349
Lockheed L-2000, 348
V
V-22 Ospery, 19, 310
V2500, 22, 449, 862
Valved pulsejet, 97, 98–102
Valveless pulsejet, 97, 102–103
Vaned diffuser, 555, 589, 592–598
Vaneless diffuser, 589
compressible flow, 591–592
incompressible flow, 590–591
Variable geometry nozzles, 512–514
Variable vanes, 694–695
Velocity triangles, 560, 625–627, 730–732
Vergeltungswaffe 1 (Vengeance 1), 97
Vertical/short takeoff and landing (V/STOL)
switch-in deflector system, 266
cruise, 267–270
takeoff conditions, 270–272
swiveling nozzles, 261–262
Volute, 556
geometry, 598
von Ohain, Hans, 14–15
Voronezh Motor Plant M-9F, 322, 323
W
WAC Corporal, 367
Wan Hu, 5
Water injection
thrust augmentation, 189–190
Wet rating, 190
Whittle, Sir Frank, 13–14
Wiberg, Martin, 97
Wing installation, power plants, 438–442
above the wing installation, 440–442
buried wing installation, 438
pod installation, 438–440
and tail installation, combination, 443–444
Wraparound turboramjet, 352–356
operation
as turbojet engine, 352–355
as ramjet engine, 355–356
Wright brothers, 3, 8–10
X
X-15, 368
X-36, 507
X-43, 368
X-43 Hyper-X, 368–369
XF2R-1 (Dark Shark), 322, 322
Y
Yak-38, 539
Yak-46, 339
Yak-141, 539


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed
رابط مباشر لتنزيل كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Aircraft Propulsion and Gas Turbine Engines 1st ed
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Rocket Propulsion Elements
» كتاب Aircraft Propulsion and Gas Turbine Engines, Second Edition
» طلب كتاب elements of gas turbine propulsion mattingly pdf
»  كتاب Elements of Gas Turbine Propulsion - Jack Mattingly
» كتاب Jet Engines - Fundamentals of Theory

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى كتب ومحاضرات الأقسام الهندسية المختلفة-
انتقل الى: