بحث بعنوان A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 بحث بعنوان A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18938
التقييم : 35320
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

بحث بعنوان A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals  Empty
مُساهمةموضوع: بحث بعنوان A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals    بحث بعنوان A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals  Emptyالخميس 27 أكتوبر 2022, 12:37 am

أخواني في الله
أحضرت لكم كتاب
بحث بعنوان
A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals
Muhammad Altaf 1, Tallha Akram 1, Muhammad Attique Khan 2 , Muhammad Iqbal 1,
M Munawwar Iqbal Ch 3 and Ching-Hsien Hsu 4,5,6,*
1 Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah 47000, Pakistan;
mohammadaltaf@gmail.com (M.A.); tallha@ciitwah.edu.pk (T.A.); miqbal1976@gmail.com (M.I.)
2 Department of Computer Sciences, HITEC University Taxila, Taxila 47080, Pakistan;
attique.khan@hitecuni.edu.pk
3 Institute of Information Technology, Quaid-i-Azam University, Islamabad 44000, Pakistan; mmic@qau.edu.pk
4 Department of Computer Science and Information Engineering, Asia University, Taichung 400-439, Taiwan
5 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 400-439, Taiwan
6 Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology,
School of Mathematics and Big Data, Foshan University, Foshan 528000, China
* Correspondence: chh@cs.ccu.edu.tw
These authors contributed equally to this work.

بحث بعنوان A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals  A_n_s_10
و المحتوى كما يلي :


Abstract: In condition based maintenance, different signal processing techniques are used to sense
the faults through the vibration and acoustic emission signals, received from the machinery. These
signal processing approaches mostly utilise time, frequency, and time-frequency domain analysis.
The features obtained are later integrated with the different machine learning techniques to classify
the faults into different categories. In this work, different statistical features of vibration signals
in time and frequency domains are studied for the detection and localisation of faults in the roller
bearings. These are later classified into healthy, outer race fault, inner race fault, and ball fault classes.
The statistical features including skewness, kurtosis, average and root mean square values of time
domain vibration signals are considered. These features are extracted from the second derivative
of the time domain vibration signals and power spectral density of vibration signals. The vibration
signal is also converted to the frequency domain and the same features are extracted. All three feature
sets are concatenated, creating the time, frequency and spectral power domain feature vectors. These
feature vectors are finally fed into the K- nearest neighbour, support vector machine and kernel
linear discriminant analysis for the detection and classification of bearing faults. With the proposed
method, the reduction percentage of more than 95% percent is achieved, which not only reduces the
computational burden but also the classification time. Simulation results show that the signals are
classified to achieve an average accuracy of 99.13% using KLDA and 96.64% using KNN classifiers.
The results are also compared with the empirical mode decomposition (EMD) features and Fourier
transform features without extracting any statistical information, which are two of the most widely
used approaches in the literature. To gain a certain level of confidence in the classification results, a
detailed statistical analysis is also provided.
Conclusions
In this work, the vibration signals were analysed to detect and classify faults in rotating
machinery. The signal was recorded and its statistical features, such as Average, Kurtosis,
Skewness and RMS, were calculated in the time domain and the frequency domain. These
features were also calculated by first finding the second derivative of the raw time domain
signal. The features were then fed to different machine learning algorithms and were
analysed for different patterns due to different faults and were used to train these machine
learning models, resulting in successful detection and classification into ball, inner race
and outer race faults. The Power Spectral Density features showed the best results for
KLDA, followed by the statistical features using KLDA. This result was compared with
that of the EMD, Fourier Transform and Power Spectral Density, in which the former one
is time-frequency while the latter two are frequency domain representation. It is also
important to note that the sizes of our proposed features are much less than those of the
EMD, Fourier and Power Spectral Density, showing the computational efficiency of our
proposed techniques. The proposed technique can be extended to time-frequency analyses
like Short Term Fourier Transform and Wavelet Transform and so forth; also other bearing
faults can be added, such as cage fault, which is not addressed here.


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل بحث بعنوان A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals
رابط مباشر لتنزيل بحث بعنوان A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
بحث بعنوان A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» بحث بعنوان Fault Diagnosis in Rotating Systems Based on Vibration Analysis
» مشروع تخرج بعنوان تشخيص عيوب الماكينات باستخدام تحليل الاهتزازت - Machinery Fault Diagnosis Using Vibration Analysis
» كتيب بعنوان Vibration Analysis Based Machine Unbalance Fault Detection and Correction
» بحث بعنوان Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors - A Comparative Study
» كتيب بعنوان Fault Diagnosis Methods

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الأبحاث الهندسية والرسائل العلمية-
انتقل الى: