Admin مدير المنتدى


عدد المساهمات : 18312 التقييم : 33662 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
 | موضوع: رسالة دكتوراه بعنوان Learning, Cooperation and Feedback in Pattern Recognition السبت 27 أغسطس 2022, 3:31 am | |
| 
أخواني في الله أحضرت لكم رسالة دكتوراه بعنوان Learning, Cooperation and Feedback in Pattern Recognition Malcolm J. A. Strens Defence Evaluation & Research Agency and King’s College London Ph.D. Thesis
 و المحتوى كما يلي :
Contents 1 INTRODUCTION .15 1.1 Reinforcement learning for acquiring visual competence .16 1.2 Overview 17 1.3 Theory 19 1.4 Summary by chapter .20 PART I: MARKOV DECISION PROCESS MODELS FOR THE AGENT ENVIRONMENT INTERFACE .23 2 MODELLING THE AGENT ENVIRONMENT INTERFACE .25 2.1 Introduction 25 2.2 Markov system definition .25 2.3 Markov decision process definition 26 2.4 The agent environment interface 27 2.5 MDP model for agent reasoning .34 2.6 Visibility of the MDP to the agent 35 2.7 Value functions for Markov decision processes .35 2.8 Dynamic programming .36 2.9 Dynamic programming for value function estimation 37 2.10 Summary 39 3 REINFORCEMENT LEARNING .41 3.1 Introduction 41 3.2 Reinforcement learning process: formal definition 41 3.3 A Markov system prediction problem 42 3.4 Actor-critic reinforcement learning 47 3.5 Q-learning and Sarsa 49 3.6 Summary 56 4 DYNAMIC PROGRAMMING WITH ON-LINE MODELS 57 4.1 Introduction 57 4.2 Estimating reward models on line 57 4.3 Estimating transition probabilities on-line 58 4.4 Storing sparse data in hash tables .59 4.5 Dynamic programming with on-line models 60 4.6 Dyna .61 4.7 Prioritised Sweep and Queue-Dyna 62 4.8 Global propagation .63 4.9 Feedback loops in the MDP 64 4.10 Experimental comparison 67 4.11 Analysis of experimental results 71 4.12 Conclusions from experimental results 71 4.13 Summary 726 PART II: REPRESENTATIONS IN LEARNING . 73 5 UNSUPERVISED LEARNING . 75 5.1 Introduction 75 5.2 Motivation 75 5.3 Unsupervised learning process: formal definition 76 5.4 Goals for Unsupervised Learning . 76 5.5 The Input Process . 84 5.6 Summary 86 6 UNSUPERVISED LEARNING TECHNIQUES 87 6.1 Introduction 87 6.2 Techniques for redundancy reduction and minimum error reconstruction . 87 6.3 Techniques for novelty detection . 90 6.4 Competitive (anti-Hebbian) learning 91 6.5 Techniques for generalisation & discrimination . 93 6.6 Summary 94 7 STATE REPRESENTATION, LEARNING AND STABILITY 97 7.1 Introduction 97 7.2 Sampling a continuous state space . 98 7.3 Representing state in multiple sub-spaces 99 7.4 Generalisation in state representation . 100 7.5 Partially compressed codes 101 7.6 States as clusters in unsupervised learning . 102 7.7 Feedback in state learning 103 7.8 The state foundation problem . 104 7.9 The action foundation problem 108 7.10 The reward foundation problem 108 7.11 Summary . 109 8 ADAPTIVE RESONANCE THEORY CLUSTERING ALGORITHMS 111 8.1 Introduction 111 8.2 Magnitude-dependent distance measures . 111 8.3 The Stability-Plasticity Dilemma . 114 8.4 Adaptive Resonance Theory 114 8.5 ART1 algorithm . 114 8.6 Fuzzy ART algorithm . 117 8.7 Interpretation of fuzzy ART as ART1 applied to stack representation . 117 8.8 Information-theoretic considerations 119 8.9 Category proliferation 119 8.10 Modifying learning in fuzzy ART to inhibit category proliferation 120 8.11 ART2-A . 123 8.12 Other ART algorithms . 124 8.13 Summary . 125 9 ACTION REPRESENTATION AND LEARNING 127 9.1 Introduction 127 9.2 Action learning by correlation 128 9.3 Action learning by correlation in animals 131 9.4 Hierarchies of control . 132 9.5 Summary 1337 PART III: CASE STUDIES 135 10 LEARNING TO DETECT (CASE STUDY 1) 137 10.1 Introduction .137 10.2 A target detection process 137 10.3 Problem discussion 138 10.4 Synthetic data and synthetic environments 139 10.5 Potential modes of operation .140 10.6 Objectives of experiments .141 10.7 Configuration of experiments 142 10.8 State measurements .143 10.9 State estimation module .144 10.10 Action translation module 145 10.11 Reward calculation module .146 10.12 Trials 148 10.13 Training set description .149 10.14 Experimental procedure .151 10.15 Validation set performance 151 10.16 Test set performance 153 10.17 Conclusions from experimental results 154 10.18 Summary 155 11 MULTI-SCALE IMAGE REPRESENTATION (CASE STUDY 2) 157 11.1 Introduction .157 11.2 Requirements for the representation 157 11.3 Colour, motion, and other visual cues 159 11.4 Image filtering by convolution 159 11.5 Fast Fourier Transform for image convolution 160 11.6 Difference-of-Gaussian filters .161 11.7 Frequency domain image subsampling 162 11.8 Fractional scales 162 11.9 Multi-scale DoG stack .163 11.10 On-channel representation .166 11.11 Summary 167 12 ATTENTIONAL MECHANISMS FOR INVARIANT FEATURE EXTRACTION (CASE STUDY 2) 169 12.1 Introduction .169 12.2 Visual attention 170 12.3 Geometrical invariance 172 12.4 Foveation .174 12.5 Stack indexing and trilinear interpolation 175 12.6 Scale estimation .176 12.7 Stack calibration 179 12.8 Scale estimation accuracy 179 12.9 Orientation estimation .181 12.10 Feature image foveation and coding 186 12.11 Contrast invariance 187 12.12 Summary 187 13 LEARNING TO RECOGNISE (CASE STUDY 2) 189 13.1 Introduction .189 13.2 State estimation 190 13.3 Clustering algorithm 191 13.4 Feedback between RL agent and state estimation sub-systems .191 13.5 Reward calculation: supervised learning phase .192 13.6 Actions .196 13.7 Experimental regime 197 13.8 Training set description .199 13.9 Exploitation phase .200 13.10 Summary 201 14 EXPERIMENTS WITH THE RECOGNITION SYSTEM (CASE STUDY 2) .203 14.1 Introduction .203 14.2 Performance results .203 14.3 States self-organised by the system 206 14.4 Trajectory analysis .207 14.5 Testing the requirement for feedback 209 14.6 Behaviour in the presence of novel input .210 14.7 Conclusions from experimental results 211 14.8 Summary 2128 15 CONCLUSIONS 213 15.1 Introduction . 213 15.2 Requirements for learning states, actions and rewards 213 15.3 Acquiring visual competence 216 15.4 Implementation considerations 219 15.5 Unsupervised learning as a state estimation technique: discussion . 220 15.6 The control of visual processing: discussion . 221 15.7 Hierarchical visual processing . 222 15.8 Summary . 223 APPENDIX A: REFERENCE LIST 225 APPENDIX B: BIBLIOGRAPHY . 231 APPENDIX C: ACKNOWLEDGEMENTS .
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل رسالة دكتوراه بعنوان Learning, Cooperation and Feedback in Pattern Recognition رابط مباشر لتنزيل رسالة دكتوراه بعنوان Learning, Cooperation and Feedback in Pattern Recognition 
|
|