Admin مدير المنتدى
عدد المساهمات : 18928 التقييم : 35294 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module الإثنين 02 مايو 2022, 2:35 am | |
|
أخواني في الله أحضرت لكم كتاب رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module (RVF Technology) for Intensification of Industrial Bioprocess Study of the hydrodynamics of a Dynamic Filtration module (RVF) Technology) to scale up industrial bioprocesses In order to obtain the DOCTORATE FROM THE UNIVERSITY OF TOULOUSE Issued by National Institute of Applied Sciences of Toulouse (INSA of Toulouse) Discipline or specialty: Microbial and enzymatic engineering Presented and supported by Xiaomin XIE May 22, 2017 JURY Christine MORESOLI (Professor) University! from Waterloo, Canada Rapporteur Luhui DING (Professor) University! of Technology of Compiègne, France Rapporteur Fethi ALOUI (Professor) University! from Valencienne, France Rapporteur Nicolas JITARIOUK (Dr.) RVF Filtration Co., France Examiner Audrey DEVATINE (MDC) ENSIACET, France Examiner Alain LINE (Professor) INSA de Toulouse, France Guest Member Henri BOISSON (DR CNRS) IMFT, France Guest Member Doctoral school: ED SEVAB Research unit: LISBP (INRA UMR792, CNRS UMR5504, INSA Toulouse) Thesis director(s): Dr. Luc FILLAUDEAU (INRA Research Director, Thesis Director) Teacher. Philippe SCHMITZ (INSA Toulouse Professor, Thesis Co-Director) Dr. Nicolas DIETRICH (INSA Toulouse Lecturer, Thesis Co-Director)
و المحتوى كما يلي :
Table of contents Acknowledgment V Abstract. VII Summary .IX List of scientific communications and publications XI Table of Contents XIII List of figures XVIII List of tables XXVII Bill of Materials .XXVIII Chapter I: Introduction .2 Chapter II: Literature review on Dynamic Filtration modules 8 1 Introduction of membrane filtration process 9 1.1 Aim and context .9 1.2 Scientific production related to DF 13 2 Specification and Application of Industrial and Commercial Dynamic Filtration Module 20 2.1 DF module with mobile membrane .26 2.1.1 Cylindrical membrane modules . 26 2.1.2 Rotating flat membrane modules . 27 2.1.3 Vibrating flat membrane modules . 30 2.1.4 Vibrating hollow fiber 31 2.2 DF modules with stationary membrane .32 2.2.1 Rotating flat disk modules 32 3 Theory: criteria to characterize internal fluid dynamics 35 3.1 Global approach 35 3.1.1 Dimensionless analysis in dynamic filtration. 35 3.1.1.1 Reynolds number in tube 37 3.1.1.2 Reynolds number in mixing and rotating system 37 3.1.1.3 Reynolds number for vibrating systems. 38 3.1.2 Friction curve and power consumption curve 38XIV 3.2 Semi-local approaches 40 3.2.1 Radial pressure and core velocity coefficient induced by mixing. 41 3.2.1.1 Radial pressure. 41 3.2.1.1 Discussion of core velocity coefficient 42 3.2.2 Shear rate and shear stress calculation. 46 3.2.2.1 Rotating systems. 46 3.2.2.2 Vibrating systems. 48 3.3 Local approaches 50 3.3.1 PIV/PTV 50 3.3.2 Molecular tagging velocimetry (MTV)/Planar laser-induced fluorescence imaging (PLIF). 50 3.3.3 Doppler Velocimetry (LDV) 51 3.3.4 Electrochemical method. 51 3.3.5 Computational Fluid Dynamics (CFD) 51 Chapter III: Materials and methods. 56 1 RVF module and experimental set-up 57 1.1 Specification of RVF module 57 1.2 Specification of membrane 58 1.3 General experimental set-up 58 2 Experiment fluids 62 2.1 Abiotic approach 62 2.1.1 Water. 62 2.1.2 BREOX solution 62 2.1.3 Trace solutions 63 2.1.3.1 Salt solution (RTD) . 63 2.1.3.2 Rhodamine suspensions (PIV). 64 2.2 Escherichia coli (E. coli WK6) cell suspension (partnership with Hazar KRAIEM, PhD IPT/LISBP) 64 3 Global investigations: Residence Time Distribution (RTD) and thermal balance .65 3.1 Theory of RTD .65XV 3.2 RTD set-up .67 3.3 Methodology 69 3.3.1 RTD: data processing and analysis 69 3.3.2 Power consumption and thermal balance. 71 3.3.2.1 Power consumption 71 3.3.2.2 Thermal balance. 71 3.3.3 Experiment strategy and operating procedure 72 3.3.4 Method of modeling: systematic analysis 73 4 Local investigations: Particle Image Velocimetry (PIV) .75 4.1 Principle of PIV 75 4.2 PIV set-up 76 4.2.2 Horizontal field configuration . 77 4.2.3 Vertical field configuration . 79 4.3 Experimental strategy and operating conditions .79 4.4 Data processing .80 4.4.1 From images to velocity fields 80 4.4.2 Interpolation. 81 4.4.3 Statistical analysis: convergence . 82 4.4.4 POD analysis 85 4.4.4.1 Principle of POD analysis. 85 4.4.4.2 POD data processing. 86 4.4.4.3 Reconstruction of instantaneous velocity field from POD 88 5 Local investigation: CFD simulation in laminar flow 89 5.1 Governing equations and boundary conditions 89 5.2 Numerical method and calculation mesh .91 5.3 Operating conditions .91 6 Application of RVF module with E.coli suspension .92 6.1 Experiment strategy 93 6.2 Operating procedures 93XVI Chapter IV: Results and Discussion. 96 1 Global approach: Thermal balance and RTD 97 1.1 Thermal balance .97 1.2 Residence Time Distribution (RTD) 98 1.2.1. Analytical studies 99 1.2.1.1 Distribution and cumulative distribution functions. 99 1.2.1.2 Discussion of moments . 102 1.2.1.3 Reduced signal of outlet distribution function 107 1.2.2 Systemic analysis and modeling of RTD . 109 1.2.2.1 Proposal of reactor models 109 1.2.2.2 Model adjustment and comparison 112 1.3 Simulation of fluid streamlines by CFD under laminar flow regime .114 2 Local approach with Particle Image Velocimetry (PIV) .119 2.1 Preliminary study-PIV with trigger strategy 120 2.1.1 Laminar regime 120 2.1.1.1 Velocity field 120 2.1.1.2. Velocity profiles 123 2.1.1.3 Comparison with CFD simulation . 126 2.1.2 Turbulent regime 132 2.1.2.1 Velocity field analyses 132 2.1.2.2. Velocity profiles 134 2.2 POD analysis (with non-trigger strategy) .138 2.2.1 Laminar regime 139 2.2.1.1 Mean laminar flow 139 2.2.1.2 Fluctuations in laminar flow (at N = 2 Hz) 145 2.2.2 Turbulent regime 159 2.2.2.1. Mean turbulent flow . 159 2.2.2.2 Organized flow versus turbulence . 165 3 Application to cell suspensions 180XVII 3.1 Observation of integrate and disrupted cells by microscopy .180 3.2 Particle size distribution (PSD) by DLS, impact of time and mixing rate .181 Chapter V: Conclusions 186 Reference . 193 Annexes 209 Extended Abstract . 227 Résumé Étendu En vue de l'obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse) Discipline ou spécialité : Ingénieries microbienne et enzymatique Présentée et soutenue par Xiaomin XIE Le 22 mai 2017 Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module (RVF Technology) for Intensification of Industrial Bioprocess Etude de l’hydrodynamique d’un module de Filtration Dynamique (RVF Technologie) pour intensifier les bioprocédés industriels JURY Christine MORESOLI (Professeure) Université! de Waterloo, Canada Rapporteur Luhui DING (Professeur) Université! de Technologie de Compiègne, France Rapporteur Fethi ALOUI (Professeur) Université! de Valencienne, France Rapporteur Nicolas JITARIOUK (Dr.) RVF Filtration Co., France Examinateur Audrey DEVATINE (MDC) ENSIACET, France Examinateur Alain LINE (Professeur) INSA de Toulouse, France Membre invité Henri BOISSON (DR CNRS) IMFT, France Membre invité Ecole doctorale : ED SEVAB Unité de recherche : LISBP (INRA UMR792, CNRS UMR5504, INSA de Toulouse) Directeur(s) de Thèse : Dr. Luc FILLAUDEAU (Directeur de recherche INRA, Directeur de thèse) Prof. Philippe SCHMITZ (Professeur INSA de Toulouse, Co-Directeur de thèse) Dr. Nicolas DIETRICH (Maitre de Conférences INSA de Toulouse, Co-Directeur de thèse) Table of Contents Acknowledgement V Abstract . VII Résumé .IX List of scientific communications and publications XI Table of Contents XIII List of figures XVIII List of tables XXVII Nomenclature .XXVIII Chapter I: Introduction .2 Chapter II: Literature review on Dynamic Filtration modules 8 1 Introduction of membrane filtration process 9 1.1 Aim and context .9 1.2 Scientific production related to DF 13 2 Specification and Application of Industrial and Commercial Dynamic Filtration Module 20 2.1 DF module with mobile membrane .26 2.1.1 Cylindrical membrane modules . 26 2.1.2 Rotating flat membrane modules . 27 2.1.3 Vibrating flat membrane modules . 30 2.1.4 Vibrating hollow fiber 31 2.2 DF modules with stationary membrane .32 2.2.1 Rotating flat disk modules 32 3 Theory: criteria to characterize internal fluid dynamics 35 3.1 Global approach 35 3.1.1 Dimensionless analysis in dynamic filtration . 35 3.1.1.1 Reynolds number in tube 37 3.1.1.2 Reynolds number in mixing and rotating system 37 3.1.1.3 Reynolds number for vibrating systems . 38 3.1.2 Friction curve and power consumption curve 38XIV 3.2 Semi-local approaches 40 3.2.1 Radial pressure and core velocity coefficient induced by mixing . 41 3.2.1.1 Radial pressure . 41 3.2.1.1 Discussion of core velocity coefficient 42 3.2.2 Shear rate and shear stress calculation . 46 3.2.2.1 Rotating systems . 46 3.2.2.2 Vibrating systems . 48 3.3 Local approaches 50 3.3.1 PIV/PTV 50 3.3.2 Molecular tagging velocimetry (MTV)/Planar laser-induced fluorescence imaging (PLIF). 50 3.3.3 Doppler velocimetry (LDV) 51 3.3.4 Electrochemical method . 51 3.3.5 Computational Fluid Dynamics (CFD) 51 Chapter III: Materials and methods . 56 1 RVF module and experimental set-up 57 1.1 Specification of RVF module 57 1.2 Specification of membrane 58 1.3 General experimental set-up 58 2 Experiment fluids 62 2.1 Abiotic approach 62 2.1.1 Water . 62 2.1.2 BREOX solution 62 2.1.3 Tracer solutions 63 2.1.3.1 Salt solutions (RTD) . 63 2.1.3.2 Rhodamine suspensions (PIV) . 64 2.2 Escherichia coli (E. coli WK6) cell suspension (partnership with Hazar KRAIEM, PhD IPT/LISBP) 64 3 Global investigations: Residence Time Distribution (RTD) and thermal balance .65 3.1 Theory of RTD .65XV 3.2 RTD set-up .67 3.3 Methodology 69 3.3.1 RTD: data treatment and analysis 69 3.3.2 Power consumption and thermal balance . 71 3.3.2.1 Power consumption 71 3.3.2.2 Thermal balance . 71 3.3.3 Experiment strategy and operating procedure 72 3.3.4 Method of modeling: systematic analysis 73 4 Local investigations: Particle Image Velocimetry (PIV) .75 4.1 Principle of PIV 75 4.2 PIV set-up 76 4.2.2 Horizontal field configuration . 77 4.2.3 Vertical field configuration . 79 4.3 Experimental strategy and operating conditions .79 4.4 Data treatments .80 4.4.1 From images to velocity fields 80 4.4.2 Interpolation . 81 4.4.3 Statistical analysis: convergence . 82 4.4.4 POD analysis 85 4.4.4.1 Principle of POD analysis . 85 4.4.4.2 POD data treatment . 86 4.4.4.3 Reconstruction of instantaneous velocity field from POD 88 5 Local investigation: CFD simulation in laminar flow 89 5.1 Governing equations and boundary conditions 89 5.2 Numerical method and calculation mesh .91 5.3 Operating conditions .91 6 Application of RVF module with E.coli suspension .92 6.1 Experiment strategy 93 6.2 Operating procedures 93XVI Chapter IV: Results and Discussion . 96 1 Global approach: Thermal balance and RTD 97 1.1 Thermal balance .97 1.2 Residence Time Distribution (RTD) 98 1.2.1. Analytical studies 99 1.2.1.1 Distribution and cumulative distribution functions . 99 1.2.1.2 Discussion of moments . 102 1.2.1.3 Reduced signal of outlet distribution function 107 1.2.2 Systemic analysis and modeling of RTD . 109 1.2.2.1 Proposal of reactor models 109 1.2.2.2 Model adjustment and comparison 112 1.3 Simulation of fluid streamlines by CFD under laminar flow regime .114 2 Local approach with Particle Image Velocimetry (PIV) .119 2.1 Preliminary study-PIV with trigger strategy 120 2.1.1 Laminar regime 120 2.1.1.1 Velocity field 120 2.1.1.2. Velocity profiles 123 2.1.1.3 Comparison with CFD simulation . 126 2.1.2 Turbulent regime 132 2.1.2.1 Velocity field analyses 132 2.1.2.2. Velocity profiles 134 2.2 POD analysis (with non-trigger strategy) .138 2.2.1 Laminar regime 139 2.2.1.1 Mean laminar flow 139 2.2.1.2 Fluctuations in laminar flow (at N = 2 Hz) 145 2.2.2 Turbulent regime 159 2.2.2.1. Mean turbulent flow . 159 2.2.2.2 Organized flow versus turbulence . 165 3 Application to cell suspensions 180XVII 3.1 Observation of integrate and disrupted cells by microscopy .180 3.2 Particle size distribution (PSD) by DLS, impact of time and mixing rate .181 Chapter V: Conclusions 186 Reference . 193 Annexes 209 Extended Abstract . 227 Résumé Étendu
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module رابط مباشر لتنزيل رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module
|
|