رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18928
التقييم : 35294
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module Empty
مُساهمةموضوع: رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module   رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module Emptyالإثنين 02 مايو 2022, 2:35 am

أخواني في الله
أحضرت لكم كتاب
رسالة دكتوراه بعنوان
Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module
(RVF Technology) for Intensification of Industrial Bioprocess
Study of the hydrodynamics of a Dynamic Filtration module (RVF)
Technology) to scale up industrial bioprocesses
In order to obtain the
DOCTORATE FROM THE UNIVERSITY OF TOULOUSE
Issued by
National Institute of Applied Sciences of Toulouse (INSA of Toulouse)
Discipline or specialty:
Microbial and enzymatic engineering
Presented and supported by
Xiaomin XIE
May 22, 2017
JURY
Christine MORESOLI (Professor) University! from Waterloo, Canada Rapporteur
Luhui DING (Professor) University! of Technology of Compiègne, France Rapporteur
Fethi ALOUI (Professor) University! from Valencienne, France Rapporteur
Nicolas JITARIOUK (Dr.) RVF Filtration Co., France Examiner
Audrey DEVATINE (MDC) ENSIACET, France Examiner
Alain LINE (Professor) INSA de Toulouse, France Guest Member
Henri BOISSON (DR CNRS) IMFT, France Guest Member
Doctoral school: ED SEVAB
Research unit: LISBP (INRA UMR792, CNRS UMR5504, INSA Toulouse)
Thesis director(s):
Dr. Luc FILLAUDEAU (INRA Research Director, Thesis Director)
Teacher. Philippe SCHMITZ (INSA Toulouse Professor, Thesis Co-Director)
Dr. Nicolas DIETRICH (INSA Toulouse Lecturer, Thesis Co-Director)

رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module I_o_l_10
و المحتوى كما يلي :


Table of contents
Acknowledgment V
Abstract. VII
Summary .IX
List of scientific communications and publications XI
Table of Contents XIII
List of figures XVIII
List of tables XXVII
Bill of Materials .XXVIII
Chapter I: Introduction .2
Chapter II: Literature review on Dynamic Filtration modules 8
1 Introduction of membrane filtration process 9
1.1 Aim and context .9
1.2 Scientific production related to DF 13
2 Specification and Application of Industrial and Commercial Dynamic Filtration Module 20
2.1 DF module with mobile membrane .26
2.1.1 Cylindrical membrane modules . 26
2.1.2 Rotating flat membrane modules . 27
2.1.3 Vibrating flat membrane modules . 30
2.1.4 Vibrating hollow fiber 31
2.2 DF modules with stationary membrane .32
2.2.1 Rotating flat disk modules 32
3 Theory: criteria to characterize internal fluid dynamics 35
3.1 Global approach 35
3.1.1 Dimensionless analysis in dynamic filtration. 35
3.1.1.1 Reynolds number in tube 37
3.1.1.2 Reynolds number in mixing and rotating system 37
3.1.1.3 Reynolds number for vibrating systems. 38
3.1.2 Friction curve and power consumption curve 38XIV
3.2 Semi-local approaches 40
3.2.1 Radial pressure and core velocity coefficient induced by mixing. 41
3.2.1.1 Radial pressure. 41
3.2.1.1 Discussion of core velocity coefficient 42
3.2.2 Shear rate and shear stress calculation. 46
3.2.2.1 Rotating systems. 46
3.2.2.2 Vibrating systems. 48
3.3 Local approaches 50
3.3.1 PIV/PTV 50
3.3.2 Molecular tagging velocimetry (MTV)/Planar laser-induced fluorescence imaging (PLIF). 50
3.3.3 Doppler Velocimetry (LDV) 51
3.3.4 Electrochemical method. 51
3.3.5 Computational Fluid Dynamics (CFD) 51
Chapter III: Materials and methods. 56
1 RVF module and experimental set-up 57
1.1 Specification of RVF module 57
1.2 Specification of membrane 58
1.3 General experimental set-up 58
2 Experiment fluids 62
2.1 Abiotic approach 62
2.1.1 Water. 62
2.1.2 BREOX solution 62
2.1.3 Trace solutions 63
2.1.3.1 Salt solution (RTD) . 63
2.1.3.2 Rhodamine suspensions (PIV). 64
2.2 Escherichia coli (E. coli WK6) cell suspension (partnership with Hazar KRAIEM, PhD
IPT/LISBP) 64
3 Global investigations: Residence Time Distribution (RTD) and thermal balance .65
3.1 Theory of RTD .65XV
3.2 RTD set-up .67
3.3 Methodology 69
3.3.1 RTD: data processing and analysis 69
3.3.2 Power consumption and thermal balance. 71
3.3.2.1 Power consumption 71
3.3.2.2 Thermal balance. 71
3.3.3 Experiment strategy and operating procedure 72
3.3.4 Method of modeling: systematic analysis 73
4 Local investigations: Particle Image Velocimetry (PIV) .75
4.1 Principle of PIV 75
4.2 PIV set-up 76
4.2.2 Horizontal field configuration . 77
4.2.3 Vertical field configuration . 79
4.3 Experimental strategy and operating conditions .79
4.4 Data processing .80
4.4.1 From images to velocity fields 80
4.4.2 Interpolation. 81
4.4.3 Statistical analysis: convergence . 82
4.4.4 POD analysis 85
4.4.4.1 Principle of POD analysis. 85
4.4.4.2 POD data processing. 86
4.4.4.3 Reconstruction of instantaneous velocity field from POD 88
5 Local investigation: CFD simulation in laminar flow 89
5.1 Governing equations and boundary conditions 89
5.2 Numerical method and calculation mesh .91
5.3 Operating conditions .91
6 Application of RVF module with E.coli suspension .92
6.1 Experiment strategy 93
6.2 Operating procedures 93XVI
Chapter IV: Results and Discussion. 96
1 Global approach: Thermal balance and RTD 97
1.1 Thermal balance .97
1.2 Residence Time Distribution (RTD) 98
1.2.1. Analytical studies 99
1.2.1.1 Distribution and cumulative distribution functions. 99
1.2.1.2 Discussion of moments . 102
1.2.1.3 Reduced signal of outlet distribution function 107
1.2.2 Systemic analysis and modeling of RTD . 109
1.2.2.1 Proposal of reactor models 109
1.2.2.2 Model adjustment and comparison 112
1.3 Simulation of fluid streamlines by CFD under laminar flow regime .114
2 Local approach with Particle Image Velocimetry (PIV) .119
2.1 Preliminary study-PIV with trigger strategy 120
2.1.1 Laminar regime 120
2.1.1.1 Velocity field 120
2.1.1.2. Velocity profiles 123
2.1.1.3 Comparison with CFD simulation . 126
2.1.2 Turbulent regime 132
2.1.2.1 Velocity field analyses 132
2.1.2.2. Velocity profiles 134
2.2 POD analysis (with non-trigger strategy) .138
2.2.1 Laminar regime 139
2.2.1.1 Mean laminar flow 139
2.2.1.2 Fluctuations in laminar flow (at N = 2 Hz) 145
2.2.2 Turbulent regime 159
2.2.2.1. Mean turbulent flow . 159
2.2.2.2 Organized flow versus turbulence . 165
3 Application to cell suspensions 180XVII
3.1 Observation of integrate and disrupted cells by microscopy .180
3.2 Particle size distribution (PSD) by DLS, impact of time and mixing rate .181
Chapter V: Conclusions 186
Reference . 193
Annexes 209
Extended Abstract . 227
Résumé Étendu
En vue de l'obtention du
DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE
Délivré par
Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)
Discipline ou spécialité :
Ingénieries microbienne et enzymatique
Présentée et soutenue par
Xiaomin XIE
Le 22 mai 2017
Investigation of Local and Global Hydrodynamics of a Dynamic Filtration
Module (RVF Technology) for Intensification of Industrial Bioprocess
Etude de l’hydrodynamique d’un module de Filtration Dynamique (RVF
Technologie) pour intensifier les bioprocédés industriels
JURY
Christine MORESOLI (Professeure) Université! de Waterloo, Canada Rapporteur
Luhui DING (Professeur) Université! de Technologie de Compiègne, France Rapporteur
Fethi ALOUI (Professeur) Université! de Valencienne, France Rapporteur
Nicolas JITARIOUK (Dr.) RVF Filtration Co., France Examinateur
Audrey DEVATINE (MDC) ENSIACET, France Examinateur
Alain LINE (Professeur) INSA de Toulouse, France Membre invité
Henri BOISSON (DR CNRS) IMFT, France Membre invité
Ecole doctorale : ED SEVAB
Unité de recherche : LISBP (INRA UMR792, CNRS UMR5504, INSA de Toulouse)
Directeur(s) de Thèse :
Dr. Luc FILLAUDEAU (Directeur de recherche INRA, Directeur de thèse)
Prof. Philippe SCHMITZ (Professeur INSA de Toulouse, Co-Directeur de thèse)
Dr. Nicolas DIETRICH (Maitre de Conférences INSA de Toulouse, Co-Directeur de thèse)
Table of Contents
Acknowledgement V
Abstract . VII
Résumé .IX
List of scientific communications and publications XI
Table of Contents XIII
List of figures XVIII
List of tables XXVII
Nomenclature .XXVIII
Chapter I: Introduction .2
Chapter II: Literature review on Dynamic Filtration modules 8
1 Introduction of membrane filtration process 9
1.1 Aim and context .9
1.2 Scientific production related to DF 13
2 Specification and Application of Industrial and Commercial Dynamic Filtration Module 20
2.1 DF module with mobile membrane .26
2.1.1 Cylindrical membrane modules . 26
2.1.2 Rotating flat membrane modules . 27
2.1.3 Vibrating flat membrane modules . 30
2.1.4 Vibrating hollow fiber 31
2.2 DF modules with stationary membrane .32
2.2.1 Rotating flat disk modules 32
3 Theory: criteria to characterize internal fluid dynamics 35
3.1 Global approach 35
3.1.1 Dimensionless analysis in dynamic filtration . 35
3.1.1.1 Reynolds number in tube 37
3.1.1.2 Reynolds number in mixing and rotating system 37
3.1.1.3 Reynolds number for vibrating systems . 38
3.1.2 Friction curve and power consumption curve 38XIV
3.2 Semi-local approaches 40
3.2.1 Radial pressure and core velocity coefficient induced by mixing . 41
3.2.1.1 Radial pressure . 41
3.2.1.1 Discussion of core velocity coefficient 42
3.2.2 Shear rate and shear stress calculation . 46
3.2.2.1 Rotating systems . 46
3.2.2.2 Vibrating systems . 48
3.3 Local approaches 50
3.3.1 PIV/PTV 50
3.3.2 Molecular tagging velocimetry (MTV)/Planar laser-induced fluorescence imaging (PLIF). 50
3.3.3 Doppler velocimetry (LDV) 51
3.3.4 Electrochemical method . 51
3.3.5 Computational Fluid Dynamics (CFD) 51
Chapter III: Materials and methods . 56
1 RVF module and experimental set-up 57
1.1 Specification of RVF module 57
1.2 Specification of membrane 58
1.3 General experimental set-up 58
2 Experiment fluids 62
2.1 Abiotic approach 62
2.1.1 Water . 62
2.1.2 BREOX solution 62
2.1.3 Tracer solutions 63
2.1.3.1 Salt solutions (RTD) . 63
2.1.3.2 Rhodamine suspensions (PIV) . 64
2.2 Escherichia coli (E. coli WK6) cell suspension (partnership with Hazar KRAIEM, PhD
IPT/LISBP) 64
3 Global investigations: Residence Time Distribution (RTD) and thermal balance .65
3.1 Theory of RTD .65XV
3.2 RTD set-up .67
3.3 Methodology 69
3.3.1 RTD: data treatment and analysis 69
3.3.2 Power consumption and thermal balance . 71
3.3.2.1 Power consumption 71
3.3.2.2 Thermal balance . 71
3.3.3 Experiment strategy and operating procedure 72
3.3.4 Method of modeling: systematic analysis 73
4 Local investigations: Particle Image Velocimetry (PIV) .75
4.1 Principle of PIV 75
4.2 PIV set-up 76
4.2.2 Horizontal field configuration . 77
4.2.3 Vertical field configuration . 79
4.3 Experimental strategy and operating conditions .79
4.4 Data treatments .80
4.4.1 From images to velocity fields 80
4.4.2 Interpolation . 81
4.4.3 Statistical analysis: convergence . 82
4.4.4 POD analysis 85
4.4.4.1 Principle of POD analysis . 85
4.4.4.2 POD data treatment . 86
4.4.4.3 Reconstruction of instantaneous velocity field from POD 88
5 Local investigation: CFD simulation in laminar flow 89
5.1 Governing equations and boundary conditions 89
5.2 Numerical method and calculation mesh .91
5.3 Operating conditions .91
6 Application of RVF module with E.coli suspension .92
6.1 Experiment strategy 93
6.2 Operating procedures 93XVI
Chapter IV: Results and Discussion . 96
1 Global approach: Thermal balance and RTD 97
1.1 Thermal balance .97
1.2 Residence Time Distribution (RTD) 98
1.2.1. Analytical studies 99
1.2.1.1 Distribution and cumulative distribution functions . 99
1.2.1.2 Discussion of moments . 102
1.2.1.3 Reduced signal of outlet distribution function 107
1.2.2 Systemic analysis and modeling of RTD . 109
1.2.2.1 Proposal of reactor models 109
1.2.2.2 Model adjustment and comparison 112
1.3 Simulation of fluid streamlines by CFD under laminar flow regime .114
2 Local approach with Particle Image Velocimetry (PIV) .119
2.1 Preliminary study-PIV with trigger strategy 120
2.1.1 Laminar regime 120
2.1.1.1 Velocity field 120
2.1.1.2. Velocity profiles 123
2.1.1.3 Comparison with CFD simulation . 126
2.1.2 Turbulent regime 132
2.1.2.1 Velocity field analyses 132
2.1.2.2. Velocity profiles 134
2.2 POD analysis (with non-trigger strategy) .138
2.2.1 Laminar regime 139
2.2.1.1 Mean laminar flow 139
2.2.1.2 Fluctuations in laminar flow (at N = 2 Hz) 145
2.2.2 Turbulent regime 159
2.2.2.1. Mean turbulent flow . 159
2.2.2.2 Organized flow versus turbulence . 165
3 Application to cell suspensions 180XVII
3.1 Observation of integrate and disrupted cells by microscopy .180
3.2 Particle size distribution (PSD) by DLS, impact of time and mixing rate .181
Chapter V: Conclusions 186
Reference . 193
Annexes 209
Extended Abstract . 227
Résumé Étendu


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module
رابط مباشر لتنزيل رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
رسالة دكتوراه بعنوان Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» رسالة دكتوراه بعنوان Structural Dynamic Analysis and Testing of Coupled Structures
» رسالة ماجستير بعنوان Investigation of Oil Flow and Heat Transfer in Transformer Radiator
»  رسالة دكتوراه بعنوان Switched Reluctance Motor - Design, Simulation and Control
» رسالة دكتوراه بعنوان Vibration Isolation and Shock Protection for MEMS
» رسالة دكتوراه بعنوان Learning, Cooperation and Feedback in Pattern Recognition

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الأبحاث الهندسية والرسائل العلمية-
انتقل الى: