Admin مدير المنتدى


عدد المساهمات : 18486 التقييم : 34050 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
 | موضوع: كتاب Computer-Generated Phase-Only Holograms for 3D Displays - A Matlab Approach الإثنين 03 مايو 2021, 1:48 am | |
| 
أخوانى فى الله أحضرت لكم كتاب Computer-Generated Phase-Only Holograms for 3D Displays - A Matlab Approach Peter Wai Ming Tsang
 و المحتوى كما يلي :
Contents Preface page ix Acknowledgments xi 1 Introduction to Digital Holography 1 1.1 Basic Concept of Holography 1 1.2 Optical Recording in Practice 5 1.3 Photography 6 1.4 Recording Setup in Optical Holography 7 1.5 Computer-Generated Holography 12 1.5.1 Point-Based Method 14 1.5.2 Layer-Based Method 16 1.6 Reconstruction of Digital Hologram 17 1.7 Capturing Digital Hologram of a Physical Object 19 1.7.1 Capture of Digital Off-Axis Hologram 19 1.7.2 Phase-Shifting Holography 21 1.7.3 Optical Scanning Holography 25 1.7.4 Non-diffractive Optical Scanning Holography 27 1.8 MATLAB Simulation 29 1.8.1 Simulation of Generating a Hologram with the Point-Based Method 29 1.8.2 Simulation of Capturing an Off-Axis Hologram 31 1.8.3 Simulation of Capturing a Digital Fresnel Hologram with Four-Step Phase-Shifting Holography 34 1.9 Summary 34 Exercises 37 References 38 2 Fast Methods for Computer-Generated Holography 40 2.1 Introduction 40 2.2 Realization of CGH with Fourier Transform 41 2.3 Direct Look-Up Table Method 42 2.4 Novel Look-Up Table Method 44 2.5 The Line Scanning Method 46 2.6 The Split-Look-Up-Table (S-LUT) Framework 472.7 Compressed Look-Up-Table Method 49 2.8 Wavefront Recording Plane Method 50 2.9 Interpolated WRP Method 55 2.10 The Warped WRP Method 56 2.11 MATLAB Simulation 61 2.11.1 Simulation of Computer-Generated Hologram with the WRP Method 62 2.11.2 Simulation of Computer-Generated Hologram with the Downsampled WRP Method 62 2.11.3 Simulation of Computer-Generated Hologram with the WWRP Method 69 2.12 Summary 69 Exercises 73 References 74 3 Generation of Phase-Only Fresnel Hologram 76 3.1 General View on Holographic Display System 76 3.1.1 Dual SLM Holographic Display System 76 3.1.2 Split SLM Holographic Display System 77 3.1.3 Amplitude-Only SLM Holographic Display System 78 3.2 Iterative Method for Generating Phase-Only Holograms 79 3.2.1 Generating Phase-Only Hologram for a Single-Depth Image 79 3.2.2 Enhanced IFTA: Mixed-Region Amplitude Freedom Method 81 3.2.3 Noise Reduction with IFTA Multiple Frame Averaging 83 3.2.4 Generating Phase-Only Hologram of a Multi-Depth Object with IFTA 85 3.3 Non-iterative Method for Generating Phase-Only Hologram 87 3.3.1 Random Noise Addition 88 3.3.2 Edge-Enhanced Noise-Addition Method 89 3.3.3 One-Step-Phase-Retrieval 90 3.3.4 Patterned Phase-Only Hologram 92 3.3.5 Sampled Phase-Only Hologram 93 3.3.6 Edge-Enhanced Sampled Phase-Only Hologram 96 3.3.7 Complementary Sampled Phase-Only Hologram 97 3.3.8 Binary Phase-Only Hologram 98 3.4 MATLAB Simulation 99 3.4.1 Simulation of Generating a Phase-Only Hologram with IFTA 100 3.4.2 Simulation of Generating a Phase-Only Hologram with the MRAF 100 3.4.3 Simulation of Generating a Phase-Only Hologram of a Two-Layer Object (Double-Depth Image) with the Noise-Addition Method 106 3.4.4 Simulation of Generating a Phase-Only Hologram of a Two-Layer Object with the PPOH Method 109 3.5 Summary 109 Exercises 110 References 111 vi Contents4 Conversion of Complex-Valued Holograms to Phase-Only Holograms 113 4.1 Introduction 113 4.2 Complex Amplitude Modulation 114 4.3 Double-Phase Macro-Pixel Hologram 116 4.4 Uni-directional Error Diffusion 121 4.5 Bi-directional Error Diffusion 123 4.6 Localized Error Diffusion 125 4.7 Converting a Complex-Valued Hologram to a Binary Phase-Only Hologram with Direct Binary Search 127 4.8 MATLAB Simulation 129 4.8.1 Simulation of Converting a Complex-Valued Hologram into a Phase-Only Hologram with the CAM Method 129 4.8.2 Simulation of Converting a Complex-Valued Hologram into a Phase-Only Hologram with the Double-Phase Macroblock Method 132 4.8.3 Simulation of Converting a Complex-Valued Hologram into a Phase-Only Hologram with the UERD Method 135 4.8.4 Simulation of Converting a Complex-Valued Hologram into a Phase-Only Hologram with the BERD Method 138 4.8.5 Simulation of Converting a Complex-Valued Hologram into a Binary Phase-Only Hologram with the DBS Method 141 4.9 Summary 141 Exercises 145 References 145 5 Applications of Phase-Only Hologram in Display, Holographic Encryption, and Steganography 147 5.1 Introduction 147 5.2 Holographic Projection and Display 147 5.2.1 Spatial Light Modulator 148 5.2.2 Holographic Projection 150 5.2.3 Holographic Display 150 5.3 Holographic Encryption 151 5.3.1 Optical Cryptography 153 5.3.2 Double Random Phase Optical Encryption 154 5.3.3 Single Random Phase Holographic Encryption 155 5.3.4 Enhanced Single Random Phase Holographic Encryption 160 5.3.5 Multiple-Image Holographic Encryption with Arnold Transform 163 5.4 Holographic Steganography 168 5.4.1 Data Embedded Error Diffusion Hologram 169 5.4.2 Image Embedded Error Diffusion Hologram 172 5.5 MATLAB Simulation 176 5.5.1 Simulation of the SRPE Method 176 Contents vii5.5.2 Simulation on the ESRPE Method 179 5.5.3 Simulation of Multiple-Image Holographic Encryption with Arnold Transform 183 5.5.4 Simulation of Generating a DEED Hologram that Embeds an Image 186 5.6 Summary 190 Exercises 190 References 191 Index Index amplitude constraint, 80, 82–83, 86, 100, 104 amplitude-only SLM, 76–78 arithmetical circle algorithm, 47 Arnold transform, 155, 163–167, 176, 183–186, 190–191 Arrizón, V., 118, 146 Awatsuji, Y., 24 beam splitter, 5, 8, 21, 150 BERD (bi-directional error diffusion), 114, 123–125, 129, 138, 145, 158 Bessel function, 115–116, 130 bi-directional error diffusion (BERD), 114, 123–125, 129, 138, 145, 158 binary phase-only hologram (BPOH), 98, 110, 114, 127–129, 141–142, 145 block truncation coding (BTC), 172–174, 191, 193 BPOH (binary phase-only hologram), 98, 110, 114, 127–129, 141–142, 145 Bragg, 3, 38 Bresenham, J., 47, 74 Bresenham’s line algorithm, 47 Brown, B.R., 12, 38 BTC (block truncation coding), 172–174, 191, 193 Buckley, E., 90, 111 CAM (complex amplitude modulation), 114, 115–117, 121, 122, 129–130, 142, 144–145, 183, 187 CGH (computer-generated holography), 12–14, 19, 34, 40–41, 42, 70–73, 92, 113 chosen plaintext attack (CPA), 154–157, 161 ciphertext, 152–157, 158, 161–162, 191 circular directrix. See directrix. C-LUT, 49–50 complementary sampled phase-only hologram (CSPOH), 97 complex amplitude modulation (CAM), 114, 115–117, 121, 122, 129–130, 142, 144–145, 183, 187 compressed look-up table, 49–50 computer-generated holography (CGH), 12–14, 19, 34, 40–41, 42, 70–73, 92, 113 conversion to phase-only hologram methods bi-directional error diffusion (BERD), 123 complex amplitude modulation (CAM), 114 direct binary search (DBS), 127 double phase macro-pixel hologram, 116 localized error diffusion (LERD), 125 uni-directional error diffusion (UERD), 121 CPA (chosen plaintext attack), 154–157, 161 cryptography, 147, 151–153, 190 CSPOH (complementary sampled phase-only hologram), 97 data embedded error diffusion (DEED), 169–172, 176–177, 186–187, 191, 193 DBS (direct binary search), 98–99, 110, 112, 114, 127–129, 141–142, 145, 146 decryption key, 152–153 DEED (data embedded error diffusion), 169–172, 176–177, 186–187, 191, 193 Denisyuk, Y., 7, 38 depth cues, 3 digital holography, xi, x, 114, 146, 147 Dirac impulse, 154 direct binary search (DBS), 98–99, 110, 112, 114, 127–129, 141–142, 145, 146 directrix, 51 disparity, 1, 3, 7, 151 double-depth image, 15 double-phase hologram, 118–121, 145 double-phase-only hologram (DPH), 118–121, 145 double random phase encoding (DRPE), 154–157, 190–191 downsampled WRP (DS-WRP), 54 DPH (double-phase-only hologram), 118 DRPE (double random phase encoding), 154–157, 190–191 dual SLM holographic display, 76 edge-enhanced noise addition, 89 edge-enhanced sampled phase-only hologram (EESPOH), 96–97EESPOH (edge-enhanced sampled phase-only hologram), 96–97 encryption key, 152–158, 161–162, 190 enhanced single random phase encryption (ESRPE), 160, 161–163, 176–177, 179–180, 190, 192 error diffusion, 114, 121–127, 135–138, 145, 158–161, 162, 169–172, 174–177, 183 ESRPE (enhanced single random phase encryption), 160, 161–163, 176–177, 179–180, 190, 192 fill factor, 148–149 Florence, J.M., 118, 146 Floyd–Steinberg, 121–122, 126, 145, 175, 191 Fourier cell, 118 four-step PSH, 21–24, 25 fractional Fourier transform, 155 free space impulse response, 65, 68, 73, 102, 104, 106, 108–109, 127–128, 131, 133–134, 136–137, 144, 158, 179, 182, 186, 188 Fresnel zone plate (FZP), 31, 33–34, 44–47, 50–51, 65, 68, 72–73, 102, 104, 106, 108–109, 131, 133–134, 136–137, 141, 144, 179, 182, 186–187 FZP (Fresnel zone plate), 31, 33–34, 44–47, 50–51, 65, 68, 72–73, 102, 104, 106, 108–109, 131, 133–134, 136–137, 141, 144, 179, 182, 186–187 Gabor, Denis, 3, 38 GCD (grid-cross downsampling), 95, 163–165, 167, 191, 193 gelatin emulsion, 6 Gerchberg, R.W., 79, 110, 111, 114 Gerchberg–Saxton algorithm (GSA), 79, 110, 114 GPU (graphical processing unit), 41, 52, 125 graphical processing unit (GPU), 41, 52, 125 grid-cross downsampling (GCD), 95, 163–165, 167, 190–191 grid-cross lattice, 94, 97, 111, 165, 167, 186 grid-cross pattern, 97 GSA (Gerchberg–Saxton algorithm), 79, 110, 114 hologram, 3 hologram capture non-diffractive optical scanning holography, 27–29, 37 off-axis hologram, 19 optical scanning holography, 25–29, 37, 113, 190–191 phase-shifting holography, 21–22, 29, 34–35, 37–38, 144 holographic display, ix–x, 38, 109, 113–145, 150 holographic encryption, 147, 151, 153–155, 160, 163, 190, 192 holographic projection, 147, 149–150, 190 holographic steganography, 168 holography digital, xi, x, 114, 146, 147 optical, 1, 3, 6–7, 11–12, 14, 19, 34–38, 40, 78 horizontal light modulation factor, 48–49 Hsueh, C., 118, 146 IFTA (iterative Fourier/Fresnel transform algorithm), 79–88, 100, 110, 113 IFTA multiple frame averaging (IFTA-MFA), 83 integrated sampled phase-only hologram (ISPOH), 164, 166–168, 191 interference pattern, 4, 8, 21 interferograms, 21–25, 34–35 interpolated wavefront recording plane (IWRP), 55–56 isotropic point sources, 4 ISPOH (integrated sampled phase-only hologram), 164, 166–168, 191 iterative Fourier transform algorithm (IFTA), 79–88, 100, 110, 113 iterative Fresnel transform algorithm, 100, 110, 113 IWRP (interpolated wavefront recording plane), 55–56 Javidi, B., 154, 191–192 Juday, R.D., 118, 146 known plaintext attack (KPA), 153, 154–157 Korpel, 26, 39 KPA (known plaintext attack), 153, 154–157 Laplacian kernel, 97 layer-based method, 14, 16–18, 20, 23, 34, 41, 69–73 LCoS (liquid crystal on silicon), 13, 76, 148–149, 150 Leith, E., 7, 38 Leportier, T., 112, 146 LERD (localized error diffusion), 114, 125, 146, 192 light utilization efficiency, 148–149 line scanning method (LS), ix liquid crystal on silicon (LCoS), 13, 76, 148–149, 150 Liu, J.-P., 24, 39, 77, 112, 145–146, 193 localized error diffusion (LERD), 114, 125, 146, 192 Lohmann, A.W., 12 look-up-table methods compressed look-up table, 49 direct look-up table, 42 novel look-up table, 44 split look-up table, 47 LS method, 47 macro-pixel, 42, 74, 116–121, 134, 145 Makowski, M., 77, 111 Index 195Matoba, O., 39 mean and standard deviation, 172 mixed-region amplitude freedom (MRAF), 81–84, 100–103, 110 monochromatic light, 1, 2 morphological dilation, 90 MRAF (mixed-region amplitude freedom), 81–84, 100–103, 110 multiple-image holographic encryption, 163, 167, 183 ND-OSH. See non-diffractive optical scanning holography N-LUT, 45–46, 74 noise-addition method, 89–91, 92–94, 106 noise region, 82–83, 103 non-diffractive optical scanning holography, 27–29, 37, 39 novel look-up table, 45–46, 74 numerical reconstruction, 18, 159, 162 off-axis hologram, 8–10, 19–21, 29, 31–32, 37, 76, 78, 115, 125, 160–162, 167, 179–180 one-step phase shifting holography, 25 one-step phase retrieval (OSPR), 90–92, 110 optical encryption, 153–155, 191–192 optical holography, 1, 3, 6–7, 11–12, 14, 19, 34–38, 40, 78 optical interference, 4 optical reconstruction, 9, 18, 124, 149, 167 optical recording, 5–6 optical scanning holography (OSH), 26–29, 37, 113, 190–191 OSH (optical scanning holography), 26–29, 37, 113 OSPR (one-step phase retrieval), 90–92, 110 Pan, Y., 38, 47, 146 parallel phase shifting hologram (PPSH), 24–25 Park, M.C., 112, 146 patterned phase-only hologram, 92–94, 100, 109 peak-signal-to-noise-ratio (PSNR), 116, 131 persistence of vision, 85, 91–92, 98 PFP (principal fringe patterns), 45–47 phase reservation and compression, 155, 192 phase shifting hologram (PSH), 21–25, 29, 34–35, 37 phase-only Fourier hologram, 79, 81 phase-only hologram (POH), 100–103, 106–111, 113–145, 150–151, 155–164, 167–170, 176–177, 183 phase-only hologram generation iterative methods direct binary search (DBS), 98 Gerchberg–Saxton algorithm (GSA), 79 IFTA multi-depth object, 85 IFTA multiple-frame averaging (IFTA-MF), 83 iterative Fourier/Fresnel transform algorithm (IFTA), 80 mixed-region amplitude freedom (MRAF), 81 non-iterative methods complementary sampled phase-only hologram (CSPOH), 97 edge-enhanced noise addition, 89 edge-enhanced sampled phase-only hologram (EESPOH), 96 one-step phase retrieval (OSPR), 90 patterned phase-only hologram, 92 random noise addition, 88 sampled phase-only hologram, 93 phase-shifting holography (PSH), 21–22, 29, 34–35, 37–38, 144 photographic film, 1, 6–9, 10–12, 19, 37, 78, 147 photographic films, 6 photography, 1, 6–7, 34 photon counting, 155, 192 pinhole, 6–7 pinhole camera, 6–7 pixel pitch, 74, 148 point-based method, 14–17, 29–30, 34–37, 40–41, 52, 69 Poon, T.-C., 24, 26, 39, 75, 111, 112, 121 PPSH (parallel phase-shifting hologram), 24–25 principal fringe patterns (PFP), 45–47 PSH (phase shifting hologram), 21–25, 29, 34–35, 37 random noise addition, 88 randomized lens-phase function, 155, 192 reflection, 1–2 refraction, 1–2 Refregier, P., 154, 191 sampled phase-only hologram, 93–97, 110, 164, 191, 192 Sanchez-de-la-Llave D., 118, 146 Sawchuk, A., 118, 146 Saxton, W.O., 79, 110, 111, 114 SBP (space–bandwidth product), 78, 150 scattering, 1–2, 69, 88–91 selective interpolation algorithm, 25 Shimobaba, T., 51, 74–75 Siemion, A., 77, 111 signal region, 82–83, 100–103, 110 silver halide, 6 single random phase encryption (SRPE), 155–157, 159–160, 163, 176–177, 190 SLM (spatial light modulator), 12–13, 76–78, 85, 109, 118, 145, 148–151 S-LUT, 47–50, 74 Snell’s law, 1 Song, H., 78, 111 space–bandwidth product (SBP), 78, 150 196 Indexspatial light modulator (SLM), 12–13, 76–78, 85, 109, 118, 145, 148–151 split SLM holographic display, 77 split look-up-table method, 47–50, 74 SPOH, 93–97, 110, 164, 191, 192 SRPE (single random phase encryption), 155–157, 159–160, 163, 176–177, 190 steganography, 147, 168, 190, 192 Stolz, C., 76, 111 symmetric encryption, 153 three-step PSH, 24, 25 Tsang, P.W.M., 29, 75, 121, 111–112, 145–146, 192–193 Tudela, R., 76, 111 twin image, 9–10, 11, 19–21, 78 two-step PSH, 24 UERD (uni-directional error diffusion), 114, 121–125, 129, 135, 138, 159, 162, 176–177, 183 uni-directional error diffusion (UERD), 114, 121–125, 129, 135, 138, 159, 162, 176–177, 183 Upatnieks, J., 7, 38 vertical light modulation factor, 48–49 virtual image, 3, 9–11, 19–21, 78, 150–151 virtual window, 50–51 warped wavefront recording plane (WWRP), 56–58, 60–62, 69–70, 73 Waters, J., 12, 190–191 wavefront recording plane (WRP), 51–74 wavefront recording plane (WRP) methods basic WRP, 50 downsampled WRP, 54 interpolated WRP, 55 warped WRP, 56 WRP (wavefront recording plane), 51–74 WWRP (warped wavefront recording plane), 56–58, 60–62, 69–70, 73 Xia, P., 25, 39 Yamaguchi, T., 75 Yang, Z., 46, 74 Yoshikawa, H., 75 zero-order beam, 9–10, 11, 19–21, 78, 125 Zhu, L., 77, 111 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Computer-Generated Phase-Only Holograms for 3D Displays - A Matlab Approach رابط مباشر لتنزيل كتاب Computer-Generated Phase-Only Holograms for 3D Displays - A Matlab Approach 
|
|