كتاب Fundamentals of Metal Machining and Machine Tools
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Fundamentals of Metal Machining and Machine Tools

اذهب الى الأسفل 
انتقل الى الصفحة : 1, 2, 3  الصفحة التالية
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18717
التقييم : 34685
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Fundamentals of Metal Machining and Machine Tools Empty
مُساهمةموضوع: كتاب Fundamentals of Metal Machining and Machine Tools   كتاب Fundamentals of Metal Machining and Machine Tools Emptyالخميس 04 نوفمبر 2010, 11:09 pm

أخواني في الله
أحضرت لكم كتاب
Fundamentals of Machining and Machine Tools
Second Edition
Geoffrey Boothroyd
Winston A. Knight
University of Rhode Island
Kingston, Rhode Island  

كتاب Fundamentals of Metal Machining and Machine Tools F_m_m_11
و المحتوى كما يلي :

Contents
Preface iii
Conventions Used in This Book xi
Standardization xi
Introduction to the International (SI) System of Units xiv
1
Machine Tools and Machining Operations
1
1.1 Introduction 1
1.2 Generating Motions of Machine Tools 2
1.3 Machines Using Single-Point Tools 5
1.4 Machines Using Multipoint Tools 26
1.5 Machines Using Abrasive Wheels 47
1.6 Summary of Machine Tool Characteristics and Machining Equations 58
Problems 66
Reference 71
f2
Mechanics of Metal Cutting
73
2.1 Introduction 73
2.2 Terms and Definitions 75
2.3 Chip Formation 77
2.4 The Forces Acting on the Cutting Tool and Their Measurement 81
2.5 Specific Cutting Energy 82
2.6 Plowing Force and the "Size Effect" 83
2.7 The Apparent Mean Shear Strength of the Work Material 86
2.8 Chip Thickness 90
2.9 Friction in Metal Cutting 99
Problems 104
References 107
3
Temperatures in Metal Cutting
109
3.1 Heat Generation in Metal Cutting 109
3.2 Heat Transfer in a Moving Material 110
3.3 Temperature Distribution in Metal Cutting 112
3.4 The Measurement of Cutting Temperatures 121Problems 125
References 127
4
Tool Life and Tool Wear
129
4.1 Introduction 129
4.2 Progressive Tool Wear 130
4.3 Forms of Wear in Metal Cutting 130
4.4 The Tool Material 140
4.5 The Work Material 148
Problems 151
References 152
5
Cutting Fluids and Surface Roughness
155
5.1 Cutting Fluids 155
5.2 The Action of Coolants 156
5.3 The Action of Lubricants 156
5.4 Application of Cutting Fluids 163
5.5 Surface Roughness 166page_vii
Page vii
Problems 173
References 173
6
Economics of Metal-Cutting Operations
175
6.1 Introduction 175
6.2 Choice of Feed 177
6.3 Choice of Cutting Speed 178
6.4 Tool Life for Minimum Cost and Minimum Production Time 182
6.5 Estimation of Factors Needed to Determine Optimum Conditions 184
6.6 Example of a Constant-Cutting-Speed Operation 185
6.7 Machining at Maximum Efficiency 188
6.8 Facing Operations 191
6.9 Operations with Interrupted Cuts 194
6.10 Economics of Various Tool Materials and Tool Designs 195
6.11 Machinability Data Systems 200
Problems 200
References 204
7
Nomenclature of Cutting Tools
205page_vii
7.1 Introduction 205
7.2 Systems of Cutting-Tool Nomenclature 207
7.3 International Standard 213
Problems 223
References 224
8
Chip Control
225
8.1 Introduction 225
8.2 Chip Breakers 226
8.3 Prediction of Radius of Chip Curvature 230
8.4 Tool Wear During Chip Breaking 234
Problems 237
References 237
9
Machine Tool Vibrations
239
9.1 Introduction 239
9.2 Forced Vibrations 240page_viii
9.3 Self-Excited Vibrations (Chatter) 245
9.4 Determination of Frequency Response Loci 264
9.5 Dynamic Acceptance Tests for Machine Tools 269
9.6 Improving Machine Tool Stability 270
Problems 277
References 279
10
Grinding
281
10.1 Introduction 281
10.2 The Grinding Wheel 281
10.3 Effect of Grinding Conditions on Wheel Behavior 286
10.4 Determination of the Density of Active Grains 290
10.5 Testing of Grinding Wheels 290
10.6 Analysis of the Grinding Process 290
10.7 Thermal Effects in Grinding 303
10.8 Cutting Fluids in Grinding 307
10.9 Grinding-Wheel Wear 308
10.10 Nonconventional Grinding Operations 311page_viii
Problems 315
References 315
11
Manufacturing Systems and Automation
317
11.1 Introduction 317
11.2 Types of Production 318
11.3 Types of Facilities Layout 319
11.4 Types of Automation 321
11.5 Transfer Machines 324
11.6 Automatic Machines 328
11.7 Numerically Controlled (NC) Machine Tools 331
11.8 Comparison of the Economics of Various Automation Systems 338
11.9 Handling of Components in Batch Production 339
11.10 Flexible Manufacturing Systems 340
Problems 350
References 351
12
Computer-Aided Manufacturing
353
12.1 Introduction 353
12.2 Scope of CAD/CAM 354page_viii
12.3 Process-Planning Tasks 356page_x
Page x
Problems 514
References 514
Nomenclature 517
Index 53
Index
A
Abrasive grains, chip formation by, 284
Abrasive jet machining, 478-80
applications of, 480
Abrasive particles, 281
Abrasives, hardness of, 285
Abrasive slurry, 475
Abrasive water-jet machining, 476-7
Abrasive wear, 130
Abrasive wheels, 47
Accelerated wear test, 149
Accuracy, cost of increased, 432-436
Active force control, 272-3
Active grains in grinding, 290
determination of density of, 290
plowing action of, 282-284
Adaptive control, 336, 337
Adhesion wear, 130
Air film barrier in grinding, 307-8
Aluminum oxide, 147, 284
Amonton's law of friction, 100, 159
AGVs (see Automatic guided vehicles)
APT, 379, 380-7
auxiliary statements in, 385
languages based on, 380-7Arc of contact in milling, 262
Area of contact,
apparent, 101
real, 159
Asperities, 101, 159
Assembly of components, 432
Automatically Programmed Tools (see APT)
Automatic guided vehicles, 341, 346-7
Automatic lathes, 328, 329
multispindle, 328
single-spindle, 328
Automatic machines, 328-30
economics of, 330
Automation, 317-51
fixed, 322-3
types of, 321-4economics of different systems, 338-9
B
Back engagement, 10, 37
Bonds for grinding wheels, 285
metallic, 285
resinoid, 285
rubber, 285
shellac, 285
silicate, 285
vitrified, 285
Boring, 11, 15
Boring bar, 20
Boring machines, 19-20
horizontal 19-20
Boundary lubrication, 156-9
Broaching machine, 43
Built-up-edge, 80, 168
continuous chip with, 80
effect of speed and feed on, 140
effect on surface roughness, 168
effect on tool life, 136
effect on tool wear, 136
C
CAD, 353
CAD/CAM, 354-5
scope of, 354-5
CAM, 353-97coated, 146
titanium, 145
tungsten, 145
Carbide tool inserts
brazed, 135
cost of sharp cutting edge, 185, 186
throw away, 135
cost of sharp cutting edge, 185
Carbon tetrachloride, 160
as a cutting fluid, 160-1
Carriage of a lathe, 5
Cast alloy tools, 145
Cellular layout of machines, 321
Center drilling, 32
Center lathe (see Engine lathe)
Ceramic tools, 147
Ceramic-ceramic composites, 147
Cermet tools, 147
Chemical blanking, 480
Chemical machining, 480-3
applications of, 482-3
etchants for, 481
masks for, 481
Chemical milling, 480
Chip, 2, 73
continuous, 79, 225
discontinuous, 80Chip breakers, 226-30
groove type, 226, 233, 235
obstruction type, 226, 230, 235
Chip breaking, tool wear during, 234-6
Chip control, 225-37
Chip flow angle, 207, 228
Chip formation, 77-81
by grains in grinding, 284
Chip radius of curvature, 230
Chips
bulk ratio of, 225
classification of, 230
overbroken, 230
underbroken, 230
various forms of, 226
standard coding system for, 226-7
types of
arc type, 230
conical type helical, 228
connected arc, 230
ribbon, 226
spiral, 226
straight, 226
tubular, 226
washer type helical, 226
Chip thickness, 90-7
Start of Citation[PU]Marcel Dekker, Inc.[/PU][DP]1989[/DP]End of Citationtheory of Ernst and Merchant, 90-4
theory of Lee and Shafer, 97
undeformed, 10
Chip thickness coefficient, 256, 263
Chuck, 5, 15
CIM, 356
Classification of machined parts, 403-32
Clearance angle of tool, 76
tool normal, 217
working normal, 76, 217
CNC systems, 336
Coated carbide tools, 146
Coefficient of merit of machine tools, 269-70
Collet, 16
Comparative performance of cutting processes, 511-4
Compound rest of lathe, 17
Computer-aided design (see CAD)
Computer-aided design and manufacturing (see CAD/CAM)
Computer-aided manufacturing (see CAM)
Computer-aided NC processing, 375-9
Computer-aided process planning, 354, 359-363
generative systems for, 360-3
retrieval systems for, 360-1
variant systems for, 360-1
Computer-integrated manufacturing (see CIM)
Computer numerical control systems (see CNC)
Computers in NC, 335-7real area of, 159
Continuous chip, 79, 225
with built-up-edge, 80
Coolants
action of, 156
effect on tool life, 156
Costs
of increased accuracy and surface finish, 432-6
of machine and operator, 184
of sharp cutting edge
for regrindable tools, 185, 186
for disposable insert tools, 185
Crater wear, 130-1, 234
effect of speed and feed on, 140
Creep feed grinding, 312
Cross feed in grinding, 49
Cross receptance, 259
Cubic boron nitride (CBN), 147, 284
Cut off, 11, 15
Cutter location (CL) file, 375
Cutting edge angle
major, 10
tool 217
working, 217
Cutting edge of tool, 2, 8, 75
major cutting edge, 8, 205, 214
minor cutting edge, 8, 205, 214working, 217
Cutting fluids
application of, 163-6
flood, 165
manual, 165
mist, 165
in grinding, 307-9
neat, 155, 307
general characteristics of, 163
guide to selection of, 164
water-miscible, 155, 307-309
general characteristics of, 156, 157
guide to selection of, 156, 158
carbon tetrachloride as a, 160, 161
Cutting force, 81
measurement of, 81-2
Cutting force dynamometer, 81
Cutting processes, comparative performance of, 511-14
Cutting ratio, 89, 90Cutting speed, 9
choice of, 178
effect on cratering and built-up-edge, 140
effect on tool life, 134-5
for minimum cost, 181, 402
for minimum production time, 182
Cutting temperatures, measurement of, 121-5
Cutting tool (see Tool), 2
Cutting tool nomenclature, 205-24
British maximum rake system for, 207, 208-11
example of calculation for, 221
German (DIN) system for, 211-12
ISO system for 205, 213-23
systems for, 207-13
tool and working systems, mathematical relationship between, 218-21
tool-in-hand system for, 213, 218-221
tool-in-use system for, 213, 218-221
Cylindrical grinding machine, 55-57
Cylindrical plunge grinding, idealized model of, 291
Cylindrical turning, 7, 11
D
Data base
design and manufacturing, 356-7
machinability, 200
Deformation zone
primary, 79, 110, 112
temperatures in, 114-6Depth of cut, 10
in milling, 36
Design and manufacturing data base, 356-7
Designation of grinding wheels, 286
Design for machining, 399-465
summary of guidelines, 436-8
Design for manufacture, 399
Design guidelines for machined parts, 436-8
Dies, 45
Diffusion wear, 130
Direct numerical control (see DNC systems)
Discontinuous chip, 80
DNC systems, 336, 342
Dog, 16
Dressing of grinding wheels, 283
Drilling, 27
center, 32
Drilling machine, 26-28
Dynamic acceptance tests for machine tools, 269-70
Dynamometer for cutting forces, 81
E
Early cost estimating for machining, 438-65
Economics of metal cutting operations, 175-204
comparison of automation systems, 338-9
of facing operations, 191-4
of operations with interrupted cuts, 194-5
of various tool designs, 195-200Electrical discharge machining (EDM), 491-9
applications of, 498-9
dielectrics for, 496-7
electrodes for, 493
metal removal rate for, 495
process parameters for, 497-8
tool materials for, 493-4
tool wear for, 493-4
Electrochemical machining (ECM), 483-9
applications of, 488-9
metal removal rate for, 485-6tool feed speed for, 485
tools for, 488
Electrolytic grinding, 489-91
metal removal rate for, 489
Electron beam machining, 505-11
Electromagnetic vibrator, 266-9
for milling machine, 269
Engine lathe, 5-18
Equivalent diameter of grinding wheels, 299
EXAPT, 379, 387-94
F
Face of tool, 8, 75
Face plate, 16
Facilities layout, types of, 319-22
cellular layout, 321
functional layout, 319
group layout, 321
line layout, 319
process layout, 319
Facing, 11, 14
economics of, 191-94
Feed, 7
choice of, 177
effect on built-up-edge formation, 140
effect on crater wear, 140
per tooth, 27, 35
Feed engagement, 10, 27, 35Fixed automation, 322-23
Fixed cycles, 371-2
Flank of tool, 8, 76
Flank wear, 131-2
Flexible manufacturing cell, 342
Flexible manufacturing systems (see FMS)
Flexible transfer line, 343
Flow angle of chip, 207, 228
FMS, 321, 340-350
features of, 341-2
flexibility in, 342, 345
layouts for, 347
machine tools in, 345
pallets and fixtures for, 349-50
tooling in, 347
work handling in, 345
AGVs, 347
rail carts, 347
roller conveyors, 347
tow carts, 347
Form cutting, 38
Free machining metals, 151
Frequency response
cross, 345
determination of, 264-8
direct, 345
polar diagram of, 242Amonton's law of, 100, 159
angle, 102
coefficient of, 101, 102
force, 101
in metal cutting, 99
Functional layout of machines, 319
G
Grain aspect ratio, 288
Grains, 281
Grain size, 285
Grain types, 284
aluminum oxide, 284
cubic boron nitride, 284
silicon carbide, 284
Grinding, 281-316
active grains in, 290
air film barrier in, 307-8
analysis of process, 290
creep feed, 312
cross feed in, 49
geometry of chip removal in, 289
high speed, 311-2
infeed in, 49, 53, 56, 57
low stress, 312-4
metal removal rate in, 293
metal removal parameter for, 293
Start of Citation[PU]Marcel Dekker, Inc.[/PU][DP]1989[/DP]End of Citationdifficult-to-grind materials, 303
easy-to-grind materials, 300
plunge, 49, 56
idealized model of, 291
residual stresses in, 306, 313, 314
specific cutting energy for, 295
thermal effects in, 303-7
wheel-workpiece contact zone, 291
length of, 299
workpiece removal parameter in, 293
Grinding cycles, 296-8
cylindrical 296
surface grinding, 298
Grinding fluids (see also Cutting fluids)
application of, 307-8
air deflector nozzle, 308
flooding, 308
high-pressure jet, 308
Grinding machine
cylindrical, 55-7
horizontal spindle surface, 49-52
internal, 57-8
Grinding ratio, 295, 308
Grinding wheel behavior, effect of
grinding conditions, 286
Grinding wheels, 47, 281-6
action of, 283equivalent diameter of, 298
grain size in, 285
hard behavior, 283
ISO standard marking system for, 286
removal parameter for, 293
self sharpening characteristics of, 282
soft behavior of, 283
structure of, 282, 286
testing of, 290
wear in, 290, 308-10
Group layout of machines, 321
Group technology, 360
H
Handling of components in batch production, 339
Hardness,
of abrasive grains, 285
changes in tool steels, 124-5
of tool materials, 143
Harmonic receptance locus, 242
Harmonic response locus, 242
Headstock, 5
Heat generation in metal cutting, 109-10
Heat transfer in a moving material, 110-12
High-speed grinding, 311-12
High-speed steel, 143-5
coated, 143
Horizontal boring machine, 19-20Hot hardness of tool materials, 143
I
Infeed in grinding, 49, 53, 56, 57
International Standards Organization (see ISO)
Internal grinding machine, 57-8
ISO
recommended roughness values, 173
standard for tool life testing, 134
standard marking system for grinding wheels, 286
system for tool nomenclature, 205
tool life test for turning, 149
L
Languages for NC processing, 379-87
APT, 379, 380-87
EXAPT, 379, 387-94
Laser beam machining, 501-5
applications of, 505
cutting operations with, 504-5percussion drilling by, 503-4
trepanning with, 504-5
Lasers, types of, 503
Lathe
automatic, 18, 323
single-spindle, 328
multispindle, 328
carriage of, 5
center (see Engine lathe)
compound rest of, 17
engine, 5-11
turret, 19
types of operation, 11
Limit of stability of machine tools, 258, 260, 263
Line layout of machines, 219
Low-stress grinding, 312-14
Lubricants, action of, 156-63
Lubrication
boundary, 156-9
characteristics of efficient, 161-3
in metal cutting, 159-63
M
Machinability, 148, 443
factors affecting, 150-1
index or number for, 148
testing for, 149
Machinability data systems, 200Machined components
classification of, 403-32
shape of, 403-32
Machine depreciation rate, 184
Machined surface, 11
Machine tool chatter, 240, 253-64
analysis of, 253-64
Machine tool instability, 245-80
improvement of, 269-72
Machine tools
automatic, 328-30
axes of, 3
chatter of, 240, 253-64
coefficient of merit for, 269-71
description of operations, 1-71
dynamic acceptance tests for, 269-71
generating motions of, 2-5
limit of stability of, 258, 260, 263
summary of characteristics, 58-66
summary of machining equations, 58-66
types of, 1-71
using abrasive wheels, 47-66
using multi-point tools, 26-46
using single-point tools, 5-25
vibrations of, 239-79
Machine tool vibrations, 239-79
MachiningMachining center, 333, 342
Machining costs, 442-5
cost of handling between machine, 442-3
cost of machine loading and unloading, 442
material cost, 442
minimum cost for production, 402
nonproductive costs, 442
Machining data, 447-51
Machining time
in broaching, 43
in drilling, 28
in face milling, 41
in internal plunge grinding, 57
in internal traverse grinding, 57
of lathe, 7
for maximum power, 450
in milling, 87
in plunge grinding, 51
of shaper, 23
in traverse grinding, 50
in vertical surface grinding, 54
Manual data input NC programming, 394-5
Manual programming of NC machines, 369-71
Manufacturing cells, 321
flexible, 342Manufacturing systems, 317-51
Materials requirements planning (MRP), 355
Maximum rate of profit, 189
Mechanics of metal cutting, 73-108
Metal cutting
forms of wear in, 130-2
friction in, 99
heat generation in, 109-10
lubrication in, 159-63
mechanics of, 73-108
temperature distribution in, 112-13
Metal removal rate
in broaching, 44
in cylindrical grinding, 56
in drilling, 28
for electrical discharge machining, 495
for electrochemical machining, 456
for electrolytic grinding, 489
in grinding, 293
in internal plunge grinding, 57
in internal traverse grinding, 57
in milling, 38
of shaper, 23
in traverse grinding, 49
in turning, 12
in vertical milling, 38
in vertical surface grinding, 53arc of contact in, 262
angular, 39
face, 40
gang, 39
straddle, 39
Milling cutters, variable pitch, 269, 272
Milling machine
horizontal, 33-40
Mode coupling instability, 264, 249-50, 254
Modes of vibration
closely coupled, 245
of a horizontal milling machine structure, 245, 250
natural, 245
Multi-point tools, 26
modification of stability analysis for, 261
N
NC, 323-4
NC controller, 331, 332
economics of, 337-8
main features of, 331-3
NC machines, 331-8
NC motions, 333-5
continuous path, 335
linear, 333
point-to-point, 333
positional, 333
NC processor, 375NC programming
languages for, 379-80
APT-based, 380-87
free format, 380
fixed format, 380
manual data input, 394-5
tasks for, 363-8
technological languages for, 387-94
Nonconventional machining processes, 467-515
range of processes, 468-9
reasons for choosing, 467-8
Normal rake angle recommended for roughing, 139
Normal wedge angle, 217
Numerical control (see NC)
O
Oblique cutting, 75, 207
Operative receptance, 258, 259
locus, 258Opitz classification system, 405-11
Optimum cutting conditions, factors needed for, 184
Optimum spindle speed, 193
Orthogonal cutting, 75, 207, 226, 251, 253
Overlap factor, 257
P
Photo-chemical machining, 481
Planing machine, 24-5
Plant layout (see Facilities layout)
Plasma arc cutting, 509-11
applications of, 509-11
Plowing action of grinding grains, 282-4
Plowing force, 83-6
Plunge grinding, 49, 56
Polycrystalline tools, 147-8
diamond, 147
cubic boron nitride (CBN), 147
Postprocessor, 375
functions of, 375-6
Premature tool failure, 135
Primary deformation zone, 79, 110, 112
temperatures in, 114-16
Primary motion
of machine tools, 2
of tool, 8
Process layout of machines, 319
Process planning, 256-63retrieval systems for, 360-61
tasks for, 256-57
variant systems for, 360-61
Product cycle, 354-5
Production
large batch, 318
mass or continuous, 318
small batch, 319
types of, 318-20
Production cost, 175
Production rate, maximum, 181
Production time, 175
cutting speed for minimum, 182
tool life for minimum, 183
Productivity, 317
Programmable automation, 323
Programming of NC machines, 363-95
tasks for, 367-8
Program point of tool, 367-8
Program sequence control, 323
Progressive flank wear, 131
Progressive tool wear, 130
Q
Quick stopping device, 77-9
R
Radial arm drilling machine, 33Rake
tool normal, 217
working normal, 76, 217
Rake angle, 76
effect on tool wear, 137
recommended for roughing, 139
Rapid wear test, 149
Real area of contact, 101
Reaming, 32
Receptance
cross, 259
operative, 258, 259
Regenerative effect, 252
modification of, 272
Regenerative instability, 248, 253, 269
Regrindable tools
cost of sharp cutting edge, 185, 186
Residual stresses in grinding, 306, 313, 314
Resonance, 241
Start of Citation[PU]Marcel Dekker, Inc.[/PU][DP]1989[/DP]End of CitationResultant cutting motion, 9
Resultant cutting speed, 10
angle of, 9
Resultant tool force, 81
Robots, 339, 340-1, 347
S
Screw cutting, 15
Secondary deformation zone, 80, 110, 112
temperatures in, 116-7
Self-excited vibrations, 245-64
Shaping machine (shaper), 21
Shear angle, 87
Shear plane, 87
Shear plane model of continuous cutting, 87-90
Shear strength of work material, 86-90
Shear zone, 110
Shop floor control, 355
Silicon nitride, 147
Single-degree-of-freedom system, 240
vibrations of, 240-5
Single point tools, 8-10
corner of, 8
cutting part of, 8
Size effect, 83-6, 284
Slab milling, 33
Sliding region of tool-chip contact, 102
Slotting, 38Sparking out time, 52, 296
Specific cutting energy, 82-3
of grinding process, 295
Spot facing, 33
Stability analysis, 259-62
modification for multiedge tools, 261
Stability charts, 253, 263
for horizontal milling machine, 252, 254
for irregular pitch milling cutters, 27
with vibration absorber, 275
Stabler's chip flow law, 207
Standardization, 400-1
Sticking region of tool-chip contact, 102
Surface
flaws in, 172
lay of, 172
profile of, 172
waviness of, 172
Surface asperities, 101, 159
Surface roughness, 166-73
arithmetic mean value for, 166
contributions to, 170
cost of improved, 432-6
effect of built-up-edge, 168
effect of cutting speed on, 170
ideal, 166
for sharp cornered tool, 166T
Tailstock of lathe, 5
redesign for improved stability, 271, 273
Taps, 45
Taylor's tool life relationship, 134, 178, 183, 191-2, 326, 446
Technological languages for NC
processing, 387-94
Temperatures in metal cutting, 107-27
distribution in, 112-13
effect of cutting speed on, 121
example of calculation of, 117-21
measurement of, 121-5
in primary deformation zone, 114- 16
in secondary deformation zone, 116-17
Thermal damage in grinding, 305-7
Thermal effects in grinding, 303-7Thermal number, 111
Thick shear-zone model of metal cutting, 100
Threading, 11, 15
Threshold of stability (see Limit of stability)
Thrust force, 81
Time
nonproductive, 175
total machining, 178
total to change worn tools, 178
Titanium carbide, 146
Tool
changing time for, 185
face of, 8, 75
flank of, 8
holder for, 7
included angle of, 217
post for, 7
Tool angles
calculation from working angles, 222-3
effect on tool wear, 137
Tool-in-hand planes, 214, 215
Tool-in-use planes, 216
Tool materials
cast alloy, 145
ceramic, 147
ceramic-ceramic composites, 147
cermets, 147diamond, 147
high-speed steel, 143-5
coated, 143
hot hardness of, 143
titanium carbide, 145
tungsten carbide, 145
Tool life, 129-53
criteria for, 132-4
effect of built-up-edge on, 136
effect of cutting speed on, 134-5
effect of coolants on, 156
for minimum cost, 182, 402
for minimum production time, 182
Taylor's relationship for, 134, 178, 183, 191-2
Tool life testing
ISO standard for, 134
ISO test for turning, 149
Tool materials, 140
basic requirements of, 140-4
major classes of, 142
Tool path coordinates, 367, 368, 372-5
Tool replacement costs, 445-7
Tool wear, 129-53
crater, 130-31, 234
during chip breaking, 234-6
effect of built-up-edge on, 136
effect of rake angle on, 137for electrical discharge machining, 494-4
forms of, 130-2
for single point tools, 133
Tools
cast alloy, 145
cemented carbide, 145
ceramic, 147
cermet, 147
coated carbide, 146
multipoint, 26
polycrystalline, 147-8
titanium-carbide, 145
tungsten-carbide, 145
Transfer machines, 324-8
economics of, 324-8
in-line, 324, 325
rotary, 324, 325
Transfer line, 323
flexible, 343
Transient surface, 11
Traverse, 49, 53
Traverse grinding, 49, 56, 57
Tungsten carbide, 145
Turning
approximate cost model for, 453-5
application to a typical component, 455-7
effect of component size on costs, 457-9
effect of work material on costs, 459-61
Twist drill, 27
U
Ultrasonic machining, 469-75
applications of, 475
basic features of, 469
tools for, 474-5
transducers for, 469-74
magnetostrictive transducers, 473-4
piezoelectric transducers, 469-73
Undeformed chip thickness, 10, 76
V
Variable-pitch milling cutters, 272
Vertical boring machine, 19
Vertical milling machine, 40
Vertical spindle surface grinding machine, 52
Vibration absorber, 272
Vibrations
effects on cutting process, 256
free, 239
forced, 239, 240-45
of complex structures, 245
of machine tools, 242
of single-degree-of-freedom system, 240-45
of machine tools, 239-79transient, 239
W
Water-jet machining, 475-78
applications of, 477-8
Wear
abrasive, 130
adhesion, 130
crater, 130-31, 234
criteria
for high speed steel and ceramic tools, 134
for sintered carbide tools, 134
flank, 131-2
forms of in metal cutting, 130-2
in grinding wheels, 290, 308-10
Wear test
accelerated, 149
rapid, 149
Wedge angle, 76
Wire-electrical discharge machining, 499-501
Word address format for NC machines, 369
Work engagement, 36
Work-in-progress, 319
Work material, 140-50
choice of, 401-3
effect of turning on costs, 459-61
Workpiece, 2
Workpiece removal parameter inWork-tool-thermocouple, 121-3
Conventions Used in This Book xi
Standardization xi
Introduction to the International (SI) System of Units xiv
1
Machine Tools and Machining Operations
1
1.1 Introduction 1
1.2 Generating Motions of Machine Tools 2
1.3 Machines Using Single-Point Tools 5
1.4 Machines Using Multipoint Tools 26
1.5 Machines Using Abrasive Wheels 47
1.6 Summary of Machine Tool Characteristics and Machining Equations 58
Problems 66
Reference 71
f2
Mechanics of Metal Cutting
73
2.1 Introduction 73
2.2 Terms and Definitions 75
2.3 Chip Formation 77
2.4 The Forces Acting on the Cutting Tool and Their Measurement 81
2.5 Specific Cutting Energy 82
2.6 Plowing Force and the "Size Effect" 83
2.7 The Apparent Mean Shear Strength of the Work Material 86
2.8 Chip Thickness 90
2.9 Friction in Metal Cutting 99
Problems 104
References 107
3
Temperatures in Metal Cutting
109
3.1 Heat Generation in Metal Cutting 109
3.2 Heat Transfer in a Moving Material 110
3.3 Temperature Distribution in Metal Cutting 112
3.4 The Measurement of Cutting Temperatures 121Problems 125
References 127
4
Tool Life and Tool Wear
129
4.1 Introduction 129
4.2 Progressive Tool Wear 130
4.3 Forms of Wear in Metal Cutting 130
4.4 The Tool Material 140
4.5 The Work Material 148
Problems 151
References 152
5
Cutting Fluids and Surface Roughness
155
5.1 Cutting Fluids 155
5.2 The Action of Coolants 156
5.3 The Action of Lubricants 156
5.4 Application of Cutting Fluids 163
5.5 Surface Roughness 166page_vii
Page vii
Problems 173
References 173
6
Economics of Metal-Cutting Operations
175
6.1 Introduction 175
6.2 Choice of Feed 177
6.3 Choice of Cutting Speed 178
6.4 Tool Life for Minimum Cost and Minimum Production Time 182
6.5 Estimation of Factors Needed to Determine Optimum Conditions 184



6.6 Example of a Constant-Cutting-Speed Operation 185
6.7 Machining at Maximum Efficiency 188
6.8 Facing Operations 191
6.9 Operations with Interrupted Cuts 194
6.10 Economics of Various Tool Materials and Tool Designs 195
6.11 Machinability Data Systems 200
Problems 200
References 204
7
Nomenclature of Cutting Tools
205page_vii
7.1 Introduction 205
7.2 Systems of Cutting-Tool Nomenclature 207
7.3 International Standard 213
Problems 223
References 224
8
Chip Control
225
8.1 Introduction 225
8.2 Chip Breakers 226
8.3 Prediction of Radius of Chip Curvature 230
8.4 Tool Wear During Chip Breaking 234
Problems 237
References 237
9
Machine Tool Vibrations
239
9.1 Introduction 239
9.2 Forced Vibrations 240page_viii
9.3 Self-Excited Vibrations (Chatter) 245
9.4 Determination of Frequency Response Loci 264
9.5 Dynamic Acceptance Tests for Machine Tools 269
9.6 Improving Machine Tool Stability 270
Problems 277
References 279
10
Grinding
281
10.1 Introduction 281
10.2 The Grinding Wheel 281
10.3 Effect of Grinding Conditions on Wheel Behavior 286
10.4 Determination of the Density of Active Grains 290
10.5 Testing of Grinding Wheels 290
10.6 Analysis of the Grinding Process 290
10.7 Thermal Effects in Grinding 303
10.8 Cutting Fluids in Grinding 307
10.9 Grinding-Wheel Wear 308
10.10 Nonconventional Grinding Operations 311page_viii
Problems 315
References 315
11
Manufacturing Systems and Automation
317
11.1 Introduction 317
11.2 Types of Production 318
11.3 Types of Facilities Layout 319
11.4 Types of Automation 321
11.5 Transfer Machines 324
11.6 Automatic Machines 328
11.7 Numerically Controlled (NC) Machine Tools 331
11.8 Comparison of the Economics of Various Automation Systems 338
11.9 Handling of Components in Batch Production 339
11.10 Flexible Manufacturing Systems 340
Problems 350
References 351
12
Computer-Aided Manufacturing
353
12.1 Introduction 353
12.2 Scope of CAD/CAM 354page_viii
12.3 Process-Planning Tasks 356page_x
Page x
Problems 514
References 514
Nomenclature 517
Index 531
page_531
Page 531
Index
A
Abrasive grains, chip formation by, 284
Abrasive jet machining, 478-80
applications of, 480
Abrasive particles, 281
Abrasives, hardness of, 285
Abrasive slurry, 475
Abrasive water-jet machining, 476-7
Abrasive wear, 130
Abrasive wheels, 47
Accelerated wear test, 149
Accuracy, cost of increased, 432-436
Active force control, 272-3
Active grains in grinding, 290
determination of density of, 290
plowing action of, 282-284
Adaptive control, 336, 337
Adhesion wear, 130
Air film barrier in grinding, 307-8
Aluminum oxide, 147, 284
Amonton's law of friction, 100, 159
AGVs (see Automatic guided vehicles)
APT, 379, 380-7
auxiliary statements in, 385
languages based on, 380-7
geometric statements in, 381
motion statements in, 381-4
Arc of contact in milling, 262
Area of contact,
apparent, 101
real, 159
Asperities, 101, 159
Assembly of components, 432
Automatically Programmed Tools (see APT)
Automatic guided vehicles, 341, 346-7
Automatic lathes, 328, 329
multispindle, 328
single-spindle, 328
Automatic machines, 328-30
economics of, 330
Automation, 317-51
fixed, 322-3
types of, 321-4
Page 532
economics of different systems, 338-9
B
Back engagement, 10, 37
Bonds for grinding wheels, 285
metallic, 285
resinoid, 285
rubber, 285
shellac, 285
silicate, 285
vitrified, 285
Boring, 11, 15
Boring bar, 20
Boring machines, 19-20
horizontal 19-20
Boundary lubrication, 156-9
Broaching machine, 43
Built-up-edge, 80, 168
continuous chip with, 80
effect of speed and feed on, 140
effect on surface roughness, 168
effect on tool life, 136
effect on tool wear, 136
C
CAD, 353
CAD/CAM, 354-5
scope of, 354-5
CAM, 353-97
Canned cycles, 372-3
Carbide
coated, 146
titanium, 145
tungsten, 145
Carbide tool inserts
brazed, 135
cost of sharp cutting edge, 185, 186
throw away, 135
cost of sharp cutting edge, 185
Carbon tetrachloride, 160
as a cutting fluid, 160-1
Carriage of a lathe, 5
Cast alloy tools, 145
Cellular layout of machines, 321
Center drilling, 32
Center lathe (see Engine lathe)
Ceramic tools, 147
Ceramic-ceramic composites, 147
Cermet tools, 147
Chemical blanking, 480
Chemical machining, 480-3
applications of, 482-3
etchants for, 481
masks for, 481
Chemical milling, 480
Chip, 2, 73
continuous, 79, 225
discontinuous, 80
helix angle of, 228
length of, 88
Chip breakers, 226-30
groove type, 226, 233, 235
obstruction type, 226, 230, 235
Chip breaking, tool wear during, 234-6
Chip control, 225-37
Chip flow angle, 207, 228
Chip formation, 77-81
by grains in grinding, 284
Chip radius of curvature, 230
Chips
bulk ratio of, 225
classification of, 230
overbroken, 230
underbroken, 230
various forms of, 226
standard coding system for, 226-7
types of
arc type, 230
conical type helical, 228
connected arc, 230
ribbon, 226
spiral, 226
straight, 226
tubular, 226
washer type helical, 226
Chip thickness, 90-7
Page 533
theory of Ernst and Merchant, 90-4
theory of Lee and Shafer, 97
undeformed, 10
Chip thickness coefficient, 256, 263
Chuck, 5, 15
CIM, 356
Classification of machined parts, 403-32
Clearance angle of tool, 76
tool normal, 217
working normal, 76, 217
CNC systems, 336
Coated carbide tools, 146
Coefficient of merit of machine tools, 269-70
Collet, 16
Comparative performance of cutting processes, 511-4
Compound rest of lathe, 17
Computer-aided design (see CAD)
Computer-aided design and manufacturing (see CAD/CAM)
Computer-aided manufacturing (see CAM)
Computer-aided NC processing, 375-9
Computer-aided process planning, 354, 359-363
generative systems for, 360-3
retrieval systems for, 360-1
variant systems for, 360-1
Computer-integrated manufacturing (see CIM)
Computer numerical control systems (see CNC)
Computers in NC, 335-7
Contact
apparent area of, 101
real area of, 159
Continuous chip, 79, 225
with built-up-edge, 80
Coolants
action of, 156
effect on tool life, 156
Costs
of increased accuracy and surface finish, 432-6
of machine and operator, 184
of sharp cutting edge
for regrindable tools, 185, 186
for disposable insert tools, 185
Crater wear, 130-1, 234
effect of speed and feed on, 140
Creep feed grinding, 312
Cross feed in grinding, 49
Cross receptance, 259
Cubic boron nitride (CBN), 147, 284
Cut off, 11, 15
Cutter location (CL) file, 375
Cutting edge angle
major, 10
tool 217
working, 217
Cutting edge of tool, 2, 8, 75
major cutting edge, 8, 205, 214
minor cutting edge, 8, 205, 214
Cutting edge inclination
tool, 217
working, 217
Cutting fluids
application of, 163-6
flood, 165
manual, 165
mist, 165
in grinding, 307-9
neat, 155, 307
general characteristics of, 163
guide to selection of, 164
water-miscible, 155, 307-309
general characteristics of, 156, 157
guide to selection of, 156, 158
carbon tetrachloride as a, 160, 161
Cutting force, 81
measurement of, 81-2
Cutting force dynamometer, 81
Cutting processes, comparative performance of, 511-14
Cutting ratio, 89, 90
Page 534
Cutting speed, 9
choice of, 178
effect on cratering and built-up-edge, 140
effect on tool life, 134-5
for minimum cost, 181, 402
for minimum production time, 182
Cutting temperatures, measurement of, 121-5
Cutting tool (see Tool), 2
Cutting tool nomenclature, 205-24
British maximum rake system for, 207, 208-11
example of calculation for, 221
German (DIN) system for, 211-12
ISO system for 205, 213-23
systems for, 207-13
tool and working systems, mathematical relationship between, 218-21
tool-in-hand system for, 213, 218-221
tool-in-use system for, 213, 218-221
Cylindrical grinding machine, 55-57
Cylindrical plunge grinding, idealized model of, 291
Cylindrical turning, 7, 11
D
Data base
design and manufacturing, 356-7
machinability, 200
Deformation zone
primary, 79, 110, 112
temperatures in, 114-6
secondary, 80, 110, 112
temperatures in, 116-7
Depth of cut, 10
in milling, 36
Design and manufacturing data base, 356-7
Designation of grinding wheels, 286
Design for machining, 399-465
summary of guidelines, 436-8
Design for manufacture, 399
Design guidelines for machined parts, 436-8
Dies, 45
Diffusion wear, 130
Direct numerical control (see DNC systems)
Discontinuous chip, 80
DNC systems, 336, 342
Dog, 16
Dressing of grinding wheels, 283
Drilling, 27
center, 32
Drilling machine, 26-28
Dynamic acceptance tests for machine tools, 269-70
Dynamometer for cutting forces, 81
E
Early cost estimating for machining, 438-65
Economics of metal cutting operations, 175-204
comparison of automation systems, 338-9
of facing operations, 191-4
of operations with interrupted cuts, 194-5
of various tool designs, 195-200
of various tool materials, 195-200
Economics of transfer machines, 324-8
Electrical discharge machining (EDM), 491-9
applications of, 498-9
dielectrics for, 496-7
electrodes for, 493
metal removal rate for, 495
process parameters for, 497-8
tool materials for, 493-4
tool wear for, 493-4
Electrochemical machining (ECM), 483-9
applications of, 488-9
metal removal rate for, 485-6
tool feed speed for, 485
tools for, 488
Electrolytic grinding, 489-91
metal removal rate for, 489
Electron beam machining, 505-11
Electromagnetic vibrator, 266-9
for milling machine, 269
Engine lathe, 5-18
Equivalent diameter of grinding wheels, 299
EXAPT, 379, 387-94
F
Face of tool, 8, 75
Face plate, 16
Facilities layout, types of, 319-22
cellular layout, 321
functional layout, 319
group layout, 321
line layout, 319
process layout, 319
Facing, 11, 14
economics of, 191-94
Feed, 7
choice of, 177
effect on built-up-edge formation, 140
effect on crater wear, 140
per tooth, 27, 35
Feed engagement, 10, 27, 35
Feed motion, 3, 7, 9
Feed speed, 9
Fixed automation, 322-23
Fixed cycles, 371-2
Flank of tool, 8, 76
Flank wear, 131-2
Flexible manufacturing cell, 342
Flexible manufacturing systems (see FMS)
Flexible transfer line, 343
Flow angle of chip, 207, 228
FMS, 321, 340-350
features of, 341-2
flexibility in, 342, 345
layouts for, 347
machine tools in, 345
pallets and fixtures for, 349-50
tooling in, 347
work handling in, 345
AGVs, 347
rail carts, 347
roller conveyors, 347
tow carts, 347
Form cutting, 38
Free machining metals, 151
Frequency response
cross, 345
determination of, 264-8
direct, 345
polar diagram of, 242
of single degree of freedom system, 243
Friction
Amonton's law of, 100, 159
angle, 102
coefficient of, 101, 102
force, 101
in metal cutting, 99
Functional layout of machines, 319
G
Grain aspect ratio, 288
Grains, 281
Grain size, 285
Grain types, 284
aluminum oxide, 284
cubic boron nitride, 284
silicon carbide, 284
Grinding, 281-316
active grains in, 290
air film barrier in, 307-8
analysis of process, 290
creep feed, 312
cross feed in, 49
geometry of chip removal in, 289
high speed, 311-2
infeed in, 49, 53, 56, 57
low stress, 312-4
metal removal rate in, 293
metal removal parameter for, 293
Page 536
difficult-to-grind materials, 303
easy-to-grind materials, 300
plunge, 49, 56
idealized model of, 291
residual stresses in, 306, 313, 314
specific cutting energy for, 295
thermal effects in, 303-7
wheel-workpiece contact zone, 291
length of, 299
workpiece removal parameter in, 293
Grinding cycles, 296-8
cylindrical 296
surface grinding, 298
Grinding fluids (see also Cutting fluids)
application of, 307-8
air deflector nozzle, 308
flooding, 308
high-pressure jet, 308
Grinding machine
cylindrical, 55-7
horizontal spindle surface, 49-52
internal, 57-8
Grinding ratio, 295, 308
Grinding wheel behavior, effect of
grinding conditions, 286
Grinding wheels, 47, 281-6
action of, 283
bonds for, 285
designation of, 286
equivalent diameter of, 298
grain size in, 285
hard behavior, 283
ISO standard marking system for, 286
removal parameter for, 293
self sharpening characteristics of, 282
soft behavior of, 283
structure of, 282, 286
testing of, 290
wear in, 290, 308-10
Group layout of machines, 321
Group technology, 360
H
Handling of components in batch production, 339
Hardness,
of abrasive grains, 285
changes in tool steels, 124-5
of tool materials, 143
Harmonic receptance locus, 242
Harmonic response locus, 242
Headstock, 5
Heat generation in metal cutting, 109-10
Heat transfer in a moving material, 110-12
High-speed grinding, 311-12
High-speed steel, 143-5
coated, 143
Horizontal boring machine, 19-20
Horizontal milling machine, 33-40
Horizontal spindle surface grinding machine, 49-52
Hot hardness of tool materials, 143
I
Infeed in grinding, 49, 53, 56, 57
International Standards Organization (see ISO)
Internal grinding machine, 57-8
ISO
recommended roughness values, 173
standard for tool life testing, 134
standard marking system for grinding wheels, 286
system for tool nomenclature, 205
tool life test for turning, 149
L
Languages for NC processing, 379-87
APT, 379, 380-87
EXAPT, 379, 387-94
Laser beam machining, 501-5
applications of, 505
cutting operations with, 504-5
Page 537
percussion drilling by, 503-4
trepanning with, 504-5
Lasers, types of, 503
Lathe
automatic, 18, 323
single-spindle, 328
multispindle, 328
carriage of, 5
center (see Engine lathe)
compound rest of, 17
engine, 5-11
turret, 19
types of operation, 11
Limit of stability of machine tools, 258, 260, 263
Line layout of machines, 219
Low-stress grinding, 312-14
Lubricants, action of, 156-63
Lubrication
boundary, 156-9
characteristics of efficient, 161-3
in metal cutting, 159-63
M
Machinability, 148, 443
factors affecting, 150-1
index or number for, 148
testing for, 149
Machinability data systems, 200
data base systems, 200
mathematical model systems, 200
Machined components
classification of, 403-32
shape of, 403-32
Machine depreciation rate, 184
Machined surface, 11
Machine tool chatter, 240, 253-64
analysis of, 253-64
Machine tool instability, 245-80
improvement of, 269-72
Machine tools
automatic, 328-30
axes of, 3
chatter of, 240, 253-64
coefficient of merit for, 269-71
description of operations, 1-71
dynamic acceptance tests for, 269-71
generating motions of, 2-5
limit of stability of, 258, 260, 263
summary of characteristics, 58-66
summary of machining equations, 58-66
types of, 1-71
using abrasive wheels, 47-66
using multi-point tools, 26-46
using single-point tools, 5-25
vibrations of, 239-79
Machine tool vibrations, 239-79
Machining
definition of, 5
for maximum efficiency, 188
Machining center, 333, 342
Machining costs, 442-5
cost of handling between machine, 442-3
cost of machine loading and unloading, 442
material cost, 442
minimum cost for production, 402
nonproductive costs, 442
Machining data, 447-51
Machining time
in broaching, 43
in drilling, 28
in face milling, 41
in internal plunge grinding, 57
in internal traverse grinding, 57
of lathe, 7
for maximum power, 450
in milling, 87
in plunge grinding, 51
of shaper, 23
in traverse grinding, 50
in vertical surface grinding, 54
Manual data input NC programming, 394-5
Manual programming of NC machines, 369-71
Manufacturing cells, 321
flexible, 342
Page 538
Manufacturing systems, 317-51
Materials requirements planning (MRP), 355
Maximum rate of profit, 189
Mechanics of metal cutting, 73-108
Metal cutting
forms of wear in, 130-2
friction in, 99
heat generation in, 109-10
lubrication in, 159-63
mechanics of, 73-108
temperature distribution in, 112-13
Metal removal rate
in broaching, 44
in cylindrical grinding, 56
in drilling, 28
for electrical discharge machining, 495
for electrochemical machining, 456
for electrolytic grinding, 489
in grinding, 293
in internal plunge grinding, 57
in internal traverse grinding, 57
in milling, 38
of shaper, 23
in traverse grinding, 49
in turning, 12
in vertical milling, 38
in vertical surface grinding, 53
Microstructure, changes in tool steels with temperature, 124-25
Milling
arc of contact in, 262
angular, 39
face, 40
gang, 39
straddle, 39
Milling cutters, variable pitch, 269, 272
Milling machine
horizontal, 33-40
Mode coupling instability, 264, 249-50, 254
Modes of vibration
closely coupled, 245
of a horizontal milling machine structure, 245, 250
natural, 245
Multi-point tools, 26
modification of stability analysis for, 261
N
NC, 323-4
NC controller, 331, 332
economics of, 337-8
main features of, 331-3
NC machines, 331-8
NC motions, 333-5
continuous path, 335
linear, 333
point-to-point, 333
positional, 333
NC processor, 375
NC program, 331, 363-95
processing of, 363-68
NC programming
languages for, 379-80
APT-based, 380-87
free format, 380
fixed format, 380
manual data input, 394-5
tasks for, 363-8
technological languages for, 387-94
Nonconventional machining processes, 467-515
range of processes, 468-9
reasons for choosing, 467-8
Normal rake angle recommended for roughing, 139
Normal wedge angle, 217
Numerical control (see NC)
O
Oblique cutting, 75, 207
Operative receptance, 258, 259
locus, 258
Page 539
Opitz classification system, 405-11
Optimum cutting conditions, factors needed for, 184
Optimum spindle speed, 193
Orthogonal cutting, 75, 207, 226, 251, 253
Overlap factor, 257
P
Photo-chemical machining, 481
Planing machine, 24-5
Plant layout (see Facilities layout)
Plasma arc cutting, 509-11
applications of, 509-11
Plowing action of grinding grains, 282-4
Plowing force, 83-6
Plunge grinding, 49, 56
Polycrystalline tools, 147-8
diamond, 147
cubic boron nitride (CBN), 147
Postprocessor, 375
functions of, 375-6
Premature tool failure, 135
Primary deformation zone, 79, 110, 112
temperatures in, 114-16
Primary motion
of machine tools, 2
of tool, 8
Process layout of machines, 319
Process planning, 256-63
computer aided systems for, 359-63
generative systems for, 360-63
retrieval systems for, 360-61
tasks for, 256-57
variant systems for, 360-61
Product cycle, 354-5
Production
large batch, 318
mass or continuous, 318
small batch, 319
types of, 318-20
Production cost, 175
Production rate, maximum, 181
Production time, 175
cutting speed for minimum, 182
tool life for minimum, 183
Productivity, 317
Programmable automation, 323
Programming of NC machines, 363-95
tasks for, 367-8
Program point of tool, 367-8
Program sequence control, 323
Progressive flank wear, 131
Progressive tool wear, 130
Q
Quick stopping device, 77-9
R
Radial arm drilling machine, 33
Radiation methods of temperature measurement, 124
Radius of curvature of chips, 230
Rake
tool normal, 217
working normal, 76, 217
Rake angle, 76
effect on tool wear, 137
recommended for roughing, 139
Rapid wear test, 149
Real area of contact, 101
Reaming, 32
Receptance
cross, 259
operative, 258, 259
Regenerative effect, 252
modification of, 272
Regenerative instability, 248, 253, 269
Regrindable tools
cost of sharp cutting edge, 185, 186
Residual stresses in grinding, 306, 313, 314
Resonance, 241
Page 540
Resultant cutting motion, 9
Resultant cutting speed, 10
angle of, 9
Resultant tool force, 81
Robots, 339, 340-1, 347
S
Screw cutting, 15
Secondary deformation zone, 80, 110, 112
temperatures in, 116-7
Self-excited vibrations, 245-64
Shaping machine (shaper), 21
Shear angle, 87
Shear plane, 87
Shear plane model of continuous cutting, 87-90
Shear strength of work material, 86-90
Shear zone, 110
Shop floor control, 355
Silicon nitride, 147
Single-degree-of-freedom system, 240
vibrations of, 240-5
Single point tools, 8-10
corner of, 8
cutting part of, 8
Size effect, 83-6, 284
Slab milling, 33
Sliding region of tool-chip contact, 102
Slotting, 38
Solid-state diffusion, 130
Sparking out, 52, 296
Sparking out time, 52, 296
Specific cutting energy, 82-3
of grinding process, 295
Spot facing, 33
Stability analysis, 259-62
modification for multiedge tools, 261
Stability charts, 253, 263
for horizontal milling machine, 252, 254
for irregular pitch milling cutters, 27
with vibration absorber, 275
Stabler's chip flow law, 207
Standardization, 400-1
Sticking region of tool-chip contact, 102
Surface
flaws in, 172
lay of, 172
profile of, 172
waviness of, 172
Surface asperities, 101, 159
Surface roughness, 166-73
arithmetic mean value for, 166
contributions to, 170
cost of improved, 432-6
effect of built-up-edge, 168
effect of cutting speed on, 170
ideal, 166
for sharp cornered tool, 166
for round nosed tool, 168
natural, 168
T
Tailstock of lathe, 5
redesign for improved stability, 271, 273
Taps, 45
Taylor's tool life relationship, 134, 178, 183, 191-2, 326, 446
Technological languages for NC
processing, 387-94
Temperatures in metal cutting, 107-27
distribution in, 112-13
effect of cutting speed on, 121
example of calculation of, 117-21
measurement of, 121-5
in primary deformation zone, 114- 16
in secondary deformation zone, 116-17
Thermal damage in grinding, 305-7
Thermal effects in grinding, 303-7
Page 541
Thermal number, 111
Thick shear-zone model of metal cutting, 100
Threading, 11, 15
Threshold of stability (see Limit of stability)
Thrust force, 81
Time
nonproductive, 175
total machining, 178
total to change worn tools, 178
Titanium carbide, 146
Tool
changing time for, 185
face of, 8, 75
flank of, 8
holder for, 7
included angle of, 217
post for, 7
Tool angles
calculation from working angles, 222-3
effect on tool wear, 137
Tool-in-hand planes, 214, 215
Tool-in-use planes, 216
Tool materials
cast alloy, 145
ceramic, 147
ceramic-ceramic composites, 147
cermets, 147
coated carbides, 146
cubic boron nitride (CBN), 147
diamond, 147
high-speed steel, 143-5
coated, 143
hot hardness of, 143
titanium carbide, 145
tungsten carbide, 145
Tool life, 129-53
criteria for, 132-4
effect of built-up-edge on, 136
effect of cutting speed on, 134-5
effect of coolants on, 156
for minimum cost, 182, 402
for minimum production time, 182
Taylor's relationship for, 134, 178, 183, 191-2
Tool life testing
ISO standard for, 134
ISO test for turning, 149
Tool materials, 140
basic requirements of, 140-4
major classes of, 142
Tool path coordinates, 367, 368, 372-5
Tool replacement costs, 445-7
Tool wear, 129-53
crater, 130-31, 234
during chip breaking, 234-6
effect of built-up-edge on, 136
effect of rake angle on, 137
effect of tool angles on, 137
flank, 131-2
for electrical discharge machining, 494-4
forms of, 130-2
for single point tools, 133
Tools
cast alloy, 145
cemented carbide, 145
ceramic, 147
cermet, 147
coated carbide, 146
multipoint, 26
polycrystalline, 147-8
titanium-carbide, 145
tungsten-carbide, 145
Transfer machines, 324-8
economics of, 324-8
in-line, 324, 325
rotary, 324, 325
Transfer line, 323
flexible, 343
Transient surface, 11
Traverse, 49, 53
Traverse grinding, 49, 56, 57
Tungsten carbide, 145
Turning
approximate cost model for, 453-5
application to a typical com
ponent, 455-7
effect of component size on costs, 457-9
effect of work material on costs, 459-61
Twist drill, 27
U
Ultrasonic machining, 469-75
applications of, 475
basic features of, 469
tools for, 474-5
transducers for, 469-74
magnetostrictive transducers, 473-4
piezoelectric transducers, 469-73
Undeformed chip thickness, 10, 76
V
Variable-pitch milling cutters, 272
Vertical boring machine, 19
Vertical milling machine, 40
Vertical spindle surface grinding machine, 52
Vibration absorber, 272
Vibrations
effects on cutting process, 256
free, 239
forced, 239, 240-45
of complex structures, 245
of machine tools, 242
of single-degree-of-freedom system, 240-45
of machine tools, 239-79
self-excited, 240
steady state, 241
transient, 239
W
Water-jet machining, 475-78
applications of, 477-8
Wear
abrasive, 130
adhesion, 130
crater, 130-31, 234
criteria
for high speed steel and ceramic tools, 134
for sintered carbide tools, 134
flank, 131-2
forms of in metal cutting, 130-2
in grinding wheels, 290, 308-10
Wear test
accelerated, 149
rapid, 149
Wedge angle, 76
Wire-electrical discharge machining, 499-501
Word address format for NC machines, 369
Work engagement, 36
Work-in-progress, 319
Work material, 140-50
choice of, 401-3
effect of turning on costs, 459-61
Workpiece, 2
Workpiece removal parameter in
grinding, 293
Work surface, 11
Work-tool-thermocouple  


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Metal Machining and Machine Tools
رابط مباشر لتنزيل كتاب Fundamentals of Metal Machining and Machine Tools
الرجوع الى أعلى الصفحة اذهب الى الأسفل
omdasport
مهندس فعال
مهندس فعال
omdasport

عدد المساهمات : 225
التقييم : 245
تاريخ التسجيل : 26/09/2010
العمر : 36
الدولة : مصر أم الدنيا
العمل : طالب
الجامعة : رايق

كتاب Fundamentals of Metal Machining and Machine Tools Empty
مُساهمةموضوع: رد: كتاب Fundamentals of Metal Machining and Machine Tools   كتاب Fundamentals of Metal Machining and Machine Tools Emptyالسبت 09 أبريل 2011, 8:05 pm

الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18717
التقييم : 34685
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Fundamentals of Metal Machining and Machine Tools Empty
مُساهمةموضوع: رد: كتاب Fundamentals of Metal Machining and Machine Tools   كتاب Fundamentals of Metal Machining and Machine Tools Emptyالسبت 09 أبريل 2011, 8:16 pm

الرجوع الى أعلى الصفحة اذهب الى الأسفل
khaled_1433
مهندس تحت الاختبار
مهندس تحت الاختبار
khaled_1433

عدد المساهمات : 1
التقييم : 1
تاريخ التسجيل : 12/03/2012
العمر : 36
الدولة : Saudi Arabia
العمل : petroleum engineer
الجامعة : KFUPM

كتاب Fundamentals of Metal Machining and Machine Tools Empty
مُساهمةموضوع: رد: كتاب Fundamentals of Metal Machining and Machine Tools   كتاب Fundamentals of Metal Machining and Machine Tools Emptyالإثنين 12 مارس 2012, 5:45 am

الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18717
التقييم : 34685
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Fundamentals of Metal Machining and Machine Tools Empty
مُساهمةموضوع: رد: كتاب Fundamentals of Metal Machining and Machine Tools   كتاب Fundamentals of Metal Machining and Machine Tools Emptyالإثنين 12 مارس 2012, 6:04 am

khaled_1433 كتب:
الرابط لا يعمل



الرابط يعمل لكن بعد الضغط عليه سيظهر لك زر
Skip AD
أعلى يمين الصفحة قم بالضغط عليه وستنتقل لصفحة التحميل
أو بنسخ الرابط من أعلى الصفحة ووضعه فى صقخة جديدة
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Fundamentals of Metal Machining and Machine Tools
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 3انتقل الى الصفحة : 1, 2, 3  الصفحة التالية
 مواضيع مماثلة
-
» كتاب Analysis of Machining and Machine Tools
» كتاب Machine Tools for High Performance Machining
» كتاب Machining and Machine Tools - Research and development
» كتاب Machining Technology - Machine Tools and Operations
» كتاب Fundamentals of Machine Tools

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: