Admin مدير المنتدى
عدد المساهمات : 19025 التقييم : 35575 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Classical Mechanics - Second Edition الخميس 09 يناير 2025, 12:06 am | |
|
أخواني في الله أحضرت لكم كتاب Classical Mechanics - Second Edition Tai L. Chow
و المحتوى كما يلي :
Contents Preface xv Author xvii Chapter 1 Kinematics: Describing the Motion .1 1.1 Introduction .1 1.2 Space, Time, and Coordinate Systems 1 1.3 Change of Coordinate System (Transformation of Components of a Vector) 3 1.4 Displacement Vector 8 1.5 Speed and Velocity 8 1.6 Acceleration . 10 1.6.1 Tangential and Normal Acceleration 11 1.7 Velocity and Acceleration in Polar Coordinates . 14 1.7.1 Plane Polar Coordinates (r, θ) 14 1.7.2 Cylindrical Coordinates (ρ, ϕ, z) 15 1.7.3 Spherical Coordinates (rr, θ, ϕ) 16 1.8 Angular Velocity and Angular Acceleration . 18 1.9 Infinitesimal Rotations and the Angular Velocity Vector . 19 Chapter 2 Newtonian Mechanics 25 2.1 The First Law of Motion (Law of Inertia) .25 2.1.1 Inertial Frames of Reference 26 2.2 The Second Law of Motion; the Equations of Motion 27 2.2.1 The Concept of Force .28 2.3 The Third Law of Motion 32 2.3.1 The Concept of Mass 32 2.4 Galilean Transformations and Galilean Invariance 34 2.5 Newton’s Laws of Rotational Motion 36 2.6 Work, Energy, and Conservation Laws .37 2.6.1 Work and Energy 38 2.6.2 Conservative Force and Potential Energy 39 2.6.3 Conservation of Energy 40 2.6.4 Conservation of Momentum . 42 2.6.5 Conservation of Angular Momentum 42 2.7 Systems of Particles .46 2.7.1 Center of Mass 46 2.7.2 Motion of CM .48 2.7.3 Conservation Theorems .49 References 56 Chapter 3 Integration of Newton’s Equation of Motion 57 3.1 Introduction . 57 3.2 Motion Under Constant Force .58viii Contents 3.3 Force Is a Function of Time 63 3.3.1 Impulsive Force and Green’s Function Method .66 3.4 Force Is a Function of Velocity . 67 3.4.1 Motion in a Uniform Magnetic Field . 71 3.4.2 Motion in Nearly Uniform Magnetic Field 73 3.5 Force Is a Function of Position 74 3.5.1 Bounded and Unbounded Motion 75 3.5.2 Stable and Unstable Equilibrium . 76 3.5.3 Critical and Neutral Equilibrium . 78 3.6 Time-Varying Mass System (Rocket System) .79 Chapter 4 Lagrangian Formulation of Mechanics: Descriptions of Motion in Configuration Space .85 4.1 Generalized Coordinates and Constraints .85 4.1.1 Generalized Coordinates 85 4.1.2 Degrees of Freedom .85 4.1.3 Configuration Space .86 4.1.4 Constraints 86 4.1.4.1 Holonomic and Nonholonomic Constraints .86 4.1.4.2 Scleronomic and Rheonomic Constraints 88 4.2 Kinetic Energy in Generalized Coordinates .88 4.3 Generalized Momentum 90 4.4 Lagrangian Equations of Motion . 91 4.4.1 Hamilton’s Principle . 91 4.4.2 Lagrange’s Equations of Motion from Hamilton’s Principle .92 4.5 Nonuniqueness of the Lagrangian . 102 4.6 Integrals of Motion and Conservation Laws . 104 4.6.1 Cyclic Coordinates and Conservation Theorems . 104 4.6.2 Symmetries and Conservation Laws 106 4.6.2.1 Homogeneity of Time and Conservation of Energy . 106 4.6.2.2 Spatial Homogeneity and Momentum Conservation 107 4.6.2.3 Isotropy of Space and Angular Momentum Conservation 108 4.6.2.4 Noether’s Theorem . 110 4.7 Scale Invariance 111 4.8 Nonconservative Systems and Generalized Potential . 112 4.9 Charged Particle in Electromagnetic Field 112 4.10 Forces of Constraint and Lagrange’s Multipliers 114 4.11 Lagrangian versus Newtonian Approach to Classical Mechanics 119 Reference 123 Chapter 5 Hamiltonian Formulation of Mechanics: Descriptions of Motion in Phase Spaces 125 5.1 The Hamiltonian of a Dynamic System 125 5.1.1 Phase Space 126 5.2 Hamilton’s Equations of Motion .126 5.2.1 Hamilton’s Equations from Lagrange’s Equations .126 5.2.2 Hamilton’s Equations from Hamilton’s Principle 128Contents ix 5.3 Integrals of Motion and Conservation Theorems 132 5.3.1 Energy Integrals . 132 5.3.2 Cyclic Coordinates and Integrals of Motion 132 5.3.3 Conservation Theorems of Momentum and Angular Momentum 133 5.4 Canonical Transformations . 135 5.5 Poisson Brackets 140 5.5.1 Fundamental Properties of Poisson Brackets . 141 5.5.2 Fundamental Poisson Brackets . 141 5.5.3 Poisson Brackets and Integrals of Motion 141 5.5.4 Equations of Motion in Poisson Bracket Form 144 5.5.5 Canonical Invariance of Poisson Brackets . 144 5.6 Poisson Brackets and Quantum Mechanics 145 5.7 Phase Space and Liouville’s Theorem . 147 5.8 Time Reversal in Mechanics (Optional) 150 5.9 Passage from Hamiltonian to Lagrangian . 151 References 154 Chapter 6 Motion Under a Central Force 155 6.1 Two-Body Problem and Reduced Mass 155 6.2 General Properties of Central Force Motion . 157 6.3 Effective Potential and Classification of Orbits 159 6.4 General Solutions of Central Force Problem . 163 6.4.1 Energy Method . 163 6.4.2 Lagrangian Analysis 164 6.5 Inverse Square Law of Force . 167 6.6 Kepler’s Three Laws of Planetary Motion 172 6.7 Applications of Central Force Motion . 174 6.7.1 Satellites and Spacecraft 174 6.7.2 Communication Satellites 178 6.7.3 Flyby Missions to Outer Planets 179 6.8 Newton’s Law of Gravity from Kepler’s Laws 182 6.9 Stability of Circular Orbits (Optional) 183 6.10 Apsides and Advance of Perihelion (Optional) . 188 6.10.1 Advance of Perihelion and Inverse-Square Force 189 6.10.2 Method of Perturbation Expansion 190 6.11 Laplace–Runge–Lenz Vector and the Kepler Orbit (Optional) 192 References 198 Chapter 7 Harmonic Oscillator . 199 7.1 Simple Harmonic Oscillator 199 7.1.1 Motion of Mass m on the End of a Spring . 199 7.1.2 The Bob of Simple Pendulum Swinging through a Small Arc 200 7.1.3 Solution of Equation of Motion of SHM 201 7.1.4 Kinetic, Potential, Total, and Average Energies of Harmonic Oscillator 203 7.2 Adiabatic Invariants and Quantum Condition .206 7.3 Damped Harmonic Oscillator .209x Contents 7.4 Phase Diagram for Damped Oscillator . 218 7.5 Relaxation Time Phenomena .220 7.6 Forced Oscillations without Damping .220 7.6.1 Periodic Driving Force . 221 7.6.2 Arbitrary Driving Forces .223 7.7 Forced Oscillations with Damping 225 7.7.1 Resonance .227 7.7.2 Power Absorption . 231 7.8 Oscillator Under Arbitrary Periodic Force 235 7.8.1 Fourier’s Series Solution 236 7.9 Vibration Isolation . 239 7.10 Parametric Excitation 241 Chapter 8 Coupled Oscillations and Normal Coordinates 249 8.1 Coupled Pendulum .249 8.1.1 Normal Coordinates . 251 8.2 Coupled Oscillators and Normal Modes: General Analytic Approach . 254 8.2.1 The Equation of Motion of a Coupled System .254 8.2.2 Normal Modes of Oscillation . 255 8.2.3 Orthogonality of Eigenvectors . 257 8.2.4 Normal Coordinates .259 8.3 Forced Oscillations of Coupled Oscillators .264 8.4 Coupled Electric Circuits 266 Chapter 9 Nonlinear Oscillations . 273 9.1 Qualitative Analysis: Energy and Phase Diagrams . 274 9.2 Elliptical Integrals and Nonlinear Oscillations .280 9.3 Fourier Series Expansions .283 9.3.1 Symmetrical Potential: V(x) = V(−x) .284 9.3.2 Asymmetrical Potential: V(−x) = −V(x) 287 9.4 The Method of Perturbation 288 9.4.1 Bogoliuboff–Kryloff Procedure and Removal of Secular Terms .292 9.5 Ritz Method .295 9.6 Method of Successive Approximation .297 9.7 Multiple Solutions and Jumps 299 9.8 Chaotic Oscillations 301 9.8.1 Some Helpful Tools for an Understanding of Chaos 301 9.8.2 Conditions for Chaos 306 9.8.3 Routes to Chaos 307 9.8.4 Lyapunov Exponentials 308 References 312 Chapter 10 Collisions and Scatterings 313 10.1 Direct Impact of Two Particles 313 10.2 Scattering Cross Sections and Rutherford Scattering . 318 10.2.1 Scattering Cross Sections . 319 10.2.2 Rutherford’s α-Particle Scattering Experiment 320 10.2.3 Cross Section Is Lorentz Invariant .324Contents xi 10.3 Laboratory and Center-of-Mass Frames of Reference 324 10.4 Nuclear Sizes . 328 10.5 Small-Angle Scattering (Optional) 329 References 336 Chapter 11 Motion in Non-Inertial Systems . 337 11.1 Accelerated Translational Coordinate System 337 11.2 Dynamics in Rotating Coordinate System 341 11.2.1 Centrifugal Force . 345 11.2.2 The Coriolis Force 349 11.2.2.1 Trade Winds and Circulation of Ocean Currents . 351 11.2.2.2 Weather Systems . 352 11.2.2.3 Hurricanes 354 11.2.2.4 Bathtub Vortex and Earth Rotation 354 11.3 Motion of Particle Near the Surface of the Earth . 355 11.4 Foucault Pendulum 361 11.5 Larmor’s Theorem .364 11.6 Classical Zeeman Effect 365 11.7 Principle of Equivalence 368 11.7.1 Principle of Equivalence and Gravitational Red Shift .369 Chapter 12 Motion of Rigid Bodies 377 12.1 Independent Coordinates of Rigid Body . 378 12.2 Eulerian Angles . 379 12.3 Rate of Change of Vector 382 12.4 Rotational Kinetic Energy and Angular Momentum 384 12.5 Inertia Tensor .394 12.5.1 Diagonalization of a Symmetric Tensor .396 12.5.2 Moments and Products of Inertia .397 12.5.3 Parallel-Axis Theorem . 398 12.5.4 Moments of Inertia about an Arbitrary Axis . 401 12.5.5 Principal Axes of Inertia 403 12.6 Euler’s Equations of Motion 407 12.7 Motion of a Torque-Free Symmetrical Top .409 12.8 Motion of Heavy Symmetrical Top with One Point Fixed 414 12.8.1 Precession without Nutation . 417 12.8.2 Precession with Nutation 419 12.9 Stability of Rotational Motion .420 References 425 Chapter 13 Theory of Special Relativity 427 13.1 Historical Origin of Special Theory of Relativity . 427 13.2 Michelson–Morley Experiment . 430 13.3 Postulates of Special Theory of Relativity 433 13.3.1 Time Is Not Absolute . 434 13.4 Lorentz Transformations . 434 13.4.1 Relativity of Simultaneity, Causality 437 13.4.2 Time Dilation, Relativity of Co-Locality . 438xii Contents 13.4.3 Length Contraction . 439 13.4.4 Visual Apparent Shape of Rapidly Moving Object 441 13.4.5 Relativistic Velocity Addition 441 13.5 Doppler Effect .445 13.6 Relativistic Space–Time (Minkowski Space) 446 13.6.1 Four-Velocity and Four-Acceleration .449 13.6.2 Four-Energy and Four-Momentum Vectors . 450 13.6.3 Particles of Zero Rest Mass 452 13.7 Equivalence of Mass and Energy 453 13.8 Conservation Laws of Energy and Momentum . 459 13.9 Generalization of Newton’s Equation of Motion . 459 13.9.1 Force Transformation . 461 13.10 Relativistic Lagrangian and Hamiltonian Functions .463 13.11 Relativistic Kinematics of Collisions 467 13.12 Collision Threshold Energies 470 References 474 Chapter 14 Newtonian Gravity and Newtonian Cosmology 475 14.1 Newton’s Law of Gravity . 475 14.2 Gravitational Field and Gravitational Potential . 477 14.3 Gravitational Field Equations: Poisson’s and Laplace’s Equations . 479 14.4 Gravitational Field and Potential of Extended Body .480 14.5 Tides 481 14.6 General Theory of Relativity: Relativistic Theory of Gravitation 487 14.6.1 Gravitational Shift of Spectral Lines (Gravitational Red Shift) .488 14.6.2 Bending of Light Beam 489 14.7 Introduction to Cosmology 491 14.8 Brief History of Cosmological Ideas .492 14.8.1 Newton and Infinite Universe 493 14.8.2 Newton’s Law of Gravity Predicts Nonstationary Universe 493 14.8.3 An Infinite Steady Universe Is an Empty Universe . 495 14.8.4 Olbers’ Paradox 496 14.9 Discovery of Expansion of the Universe, Hubble’s Law .497 14.10 Big Bang 499 14.10.1 Age of the Universe 499 14.11 Formulating Dynamical Models of the Universe 499 14.12 Cosmological Red Shift and Hubble Constant H 503 14.13 Critical Mass Density and Future of the Universe 504 14.13.1 Density Parameter Ω 505 14.13.2 Deceleration Parameter q0 505 14.13.3 An Accelerating Universe? .507 14.14 Microwave Background Radiation 507 14.15 Dark Matter . 511 Reference 514 Chapter 15 Hamilton–Jacobi Theory of Dynamics 515 15.1 Canonical Transformation and H-J Equation 515 15.2 Action and Angle Variables . 522Contents xiii 15.3 Infinitesimal Canonical Transformations and Time Development Operator 527 15.4 H-J Theory and Wave Mechanics 530 Reference 533 Chapter 16 Introduction to Lagrangian and Hamiltonian Formulations for Continuous Systems and Classical Fields 535 16.1 Vibration of Loaded String 535 16.2 Vibrating Strings and the Wave Equation . 541 16.2.1 Wave Equation 541 16.2.2 Separation of Variables 543 16.2.3 Wave Number and Phase Velocity . 543 16.2.4 Group Velocity and Wave Packets .544 16.3 Continuous Systems and Classical Fields 547 16.3.1 Lagrangian Formulation . 547 16.3.2 Hamiltonian Formulation . 550 16.3.3 Conservation Laws . 552 16.4 Scalar and Vector of Fields 553 16.4.1 Scalar Fields . 553 16.4.2 Vector Fields . 554 Appendix 1: Vector Analysis and Ordinary Differential Equations . 557 Appendix 2: D’Alembert’s Principle and Lagrange’s Equations 587 Appendix 3: Derivation of Hamilton’s Principle from D’Alembert’s Principle . 595 Appendix 4: Noether’s Theorem .599 Appendix 5: Conic Sections, Ellipse, Parabola, and Hyperbola .605
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Classical Mechanics - Second Edition رابط مباشر لتنزيل كتاب Classical Mechanics - Second Edition
|
|