Admin مدير المنتدى
عدد المساهمات : 19025 التقييم : 35575 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Identification of Dynamic Systems - An Introduction with Applications السبت 07 ديسمبر 2024, 2:10 pm | |
|
أخواني في الله أحضرت لكم كتاب Identification of Dynamic Systems - An Introduction with Applications Rolf Isermann · Marco Munchhof
و المحتوى كما يلي :
Contents 1 Introduction . 1 1.1 Theoretical and Experimental Modeling 1 1.2 Tasks and Problems for the Identification of Dynamic Systems 7 1.3 Taxonomy of Identification Methods and Their Treatment in This Book . 12 1.4 Overview of Identification Methods . 15 1.4.1 Non-Parametric Models . 15 1.4.2 Parametric Models . 18 1.4.3 Signal Analysis 19 1.5 Excitation Signals 21 1.6 Special Application Problems 23 1.6.1 Noise at the Input 23 1.6.2 Identification of Systems with Multiple Inputs or Outputs 23 1.7 Areas of Application 24 1.7.1 Gain Increased Knowledge about the Process Behavior 24 1.7.2 Validation of Theoretical Models . 25 1.7.3 Tuning of Controller Parameters 25 1.7.4 Computer-Based Design of Digital Control Algorithms 25 1.7.5 Adaptive Control Algorithms 26 1.7.6 Process Supervision and Fault Detection . 26 1.7.7 Signal Forecast 26 1.7.8 On-Line Optimization 28 1.8 Bibliographical Overview 28 Problems 29 References . 30 2 Mathematical Models of Linear Dynamic Systems and Stochastic Signals 33 2.1 Mathematical Models of Dynamic Systems for Continuous Time Signals . 33 2.1.1 Non-Parametric Models, Deterministic Signals . 34X Contents 2.1.2 Parametric Models, Deterministic Signals 37 2.2 Mathematical Models of Dynamic Systems for Discrete Time Signals 39 2.2.1 Parametric Models, Deterministic Signals 39 2.3 Models for Continuous-Time Stochastic Signals . 45 2.3.1 Special Stochastic Signal Processes . 51 2.4 Models for Discrete Time Stochastic Signals 54 2.5 Characteristic Parameter Determination 58 2.5.1 Approximation by a First Order System . 59 2.5.2 Approximation by a Second Order System . 60 2.5.3 Approximation by nth Order Delay with Equal Time Constants . 63 2.5.4 Approximation by First Order System with Dead Time . 68 2.6 Systems with Integral or Derivative Action . 69 2.6.1 Integral Action 69 2.6.2 Derivative Action 70 2.7 Summary . 71 Problems 71 References . 72 Part I IDENTIFICATION OF NON-PARAMETRIC MODELS IN THE FREQUENCY DOMAIN — CONTINUOUS TIME SIGNALS 3 Spectral Analysis Methods for Periodic and Non-Periodic Signals 77 3.1 Numerical Calculation of the Fourier Transform . 77 3.1.1 Fourier Series for Periodic Signals 77 3.1.2 Fourier Transform for Non-Periodic Signals 78 3.1.3 Numerical Calculation of the Fourier Transform 82 3.1.4 Windowing . 88 3.1.5 Short Time Fourier Transform . 89 3.2 Wavelet Transform . 91 3.3 Periodogram . 93 3.4 Summary . 95 Problems 96 References . 97 4 Frequency Response Measurement with Non-Periodic Signals . 99 4.1 Fundamental Equations . 99 4.2 Fourier Transform of Non-Periodic Signals . 100 4.2.1 Simple Pulses . 100 4.2.2 Double Pulse 104 4.2.3 Step and Ramp Function 106 4.3 Frequency Response Determination . 108 4.4 Influence of Noise 109 4.5 Summary . 117Contents XI Problems 119 References . 119 5 Frequency Response Measurement for Periodic Test Signals 121 5.1 Frequency Response Measurement with Sinusoidal Test Signals . 122 5.2 Frequency Response Measurement with Rectangular and Trapezoidal Test Signals . 124 5.3 Frequency Response Measurement with Multi-Frequency Test Signals . 126 5.4 Frequency Response Measurement with Continuously Varying Frequency Test Signals 128 5.5 Frequency Response Measurement with Correlation Functions . 129 5.5.1 Measurement with Correlation Functions 129 5.5.2 Measurement with Orthogonal Correlation . 134 5.6 Summary . 144 Problems 144 References . 144 Part II IDENTIFICATION OF NON-PARAMETRIC MODELS WITH CORRELATION ANALYSIS — CONTINUOUS AND DISCRETE TIME 6 Correlation Analysis with Continuous Time Models 149 6.1 Estimation of Correlation Functions . 149 6.1.1 Cross-Correlation Function 150 6.1.2 Auto-Correlation Function 153 6.2 Correlation Analysis of Dynamic Processes with Stationary Stochastic Signals 154 6.2.1 Determination of Impulse Response by Deconvolution . 154 6.2.2 White Noise as Input Signal . 157 6.2.3 Error Estimation . 158 6.2.4 Real Natural Noise as Input Signal 161 6.3 Correlation Analysis of Dynamic Processes with Binary Stochastic Signals . 161 6.4 Correlation Analysis in Closed-Loop 175 6.5 Summary . 176 Problems 177 References . 177 7 Correlation Analysis with Discrete Time Models . 179 7.1 Estimation of the Correlation Function . 179 7.1.1 Auto-Correlation Function 179 7.1.2 Cross-Correlation Function 181 7.1.3 Fast Calculation of the Correlation Functions . 184 7.1.4 Recursive Correlation 189XII Contents 7.2 Correlation Analysis of Linear Dynamic Systems 190 7.2.1 Determination of Impulse Response by De-Convolution 190 7.2.2 Influence of Stochastic Disturbances 195 7.3 Binary Test Signals for Discrete Time . 197 7.4 Summary . 199 Problems 199 References . 200 Part III IDENTIFICATION WITH PARAMETRIC MODELS — DISCRETE TIME SIGNALS 8 Least Squares Parameter Estimation for Static Processes . 203 8.1 Introduction . 203 8.2 Linear Static Processes 205 8.3 Non-Linear Static Processes 210 8.4 Geometrical Interpretation . 212 8.5 Maximum Likelihood and the Cramér-Rao Bound . 215 8.6 Constraints 218 8.7 Summary . 218 Problems 219 References . 220 9 Least Squares Parameter Estimation for Dynamic Processes 223 9.1 Non-Recursive Method of Least Squares (LS) . 223 9.1.1 Fundamental Equations . 223 9.1.2 Convergence 229 9.1.3 Covariance of the Parameter Estimates and Model Uncertainty . 236 9.1.4 Parameter Identifiability 246 9.1.5 Unknown DC Values . 255 9.2 Spectral Analysis with Periodic Parametric Signal Models 257 9.2.1 Parametric Signal Models in the Time Domain 257 9.2.2 Parametric Signal Models in the Frequency Domain . 258 9.2.3 Determination of the Coefficients . 259 9.2.4 Estimation of the Amplitudes 261 9.3 Parameter Estimation with Non-Parametric Intermediate Model 262 9.3.1 Response to Non-Periodic Excitation and Method of Least Squares 262 9.3.2 Correlation Analysis and Method of Least Squares (COR-LS) 264 9.4 Recursive Methods of Least Squares (RLS) . 269 9.4.1 Fundamental Equations . 270 9.4.2 Recursive Parameter Estimation for Stochastic Signals . 276 9.4.3 Unknown DC values . 278 9.5 Method of weighted least squares (WLS) . 279 Contents XIII 9.5.1 Markov Estimation . 279 9.6 Recursive Parameter Estimation with Exponential Forgetting 281 9.6.1 Constraints and the Recursive Method of Least Squares 283 9.6.2 Tikhonov Regularization 284 9.7 Summary . 284 Problems 285 References . 287 10 Modifications of the Least Squares Parameter Estimation 291 10.1 Method of Generalized Least Squares (GLS) 291 10.1.1 Non-Recursive Method of Generalized Least Squares (GLS) 291 10.1.2 Recursive Method of Generalized Least Squares (RGLS) . 294 10.2 Method of Extended Least Squares (ELS) 295 10.3 Method of Bias Correction (CLS) . 296 10.4 Method of Total Least Squares (TLS) 297 10.5 Instrumental Variables Method (IV) . 302 10.5.1 Non-Recursive Method of Instrumental Variables (IV) . 302 10.5.2 Recursive Method of Instrumental Variables (RIV) 305 10.6 Method of Stochastic Approximation (STA) 306 10.6.1 Robbins-Monro Algorithm 306 10.6.2 Kiefer-Wolfowitz Algorithm . 307 10.7 (Normalized) Least Mean Squares (NLMS) . 310 10.8 Summary . 315 Problems 316 References . 316 11 Bayes and Maximum Likelihood Methods 319 11.1 Bayes Method . 319 11.2 Maximum Likelihood Method (ML) . 323 11.2.1 Non-Recursive Maximum Likelihood Method 323 11.2.2 Recursive Maximum Likelihood Method (RML) 328 11.2.3 Cramér-Rao Bound and Maximum Precision . 330 11.3 Summary . 331 Problems 331 References . 332 12 Parameter Estimation for Time-Variant Processes . 335 12.1 Exponential Forgetting with Constant Forgetting Factor 335 12.2 Exponential Forgetting with Variable Forgetting Factor . 340 12.3 Manipulation of Covariance Matrix . 341 12.4 Convergence of Recursive Parameter Estimation Methods . 343 12.4.1 Parameter Estimation in Observer Form . 345 12.5 Summary . 349 Problems 350 References . 350XIV Contents 13 Parameter Estimation in Closed-Loop 353 13.1 Process Identification Without Additional Test Signals . 354 13.1.1 Indirect Process Identification (Case a+c+e) 355 13.1.2 Direct Process Identification (Case b+d+e) . 359 13.2 Process Identification With Additional Test Signals 361 13.3 Methods for Identification in Closed Loop 363 13.3.1 Indirect Process Identification Without Additional Test Signals . 363 13.3.2 Indirect Process Identification With Additional Test Signals . 364 13.3.3 Direct Process Identification Without Additional Test Signals 364 13.3.4 Direct Process Identification With Additional Test Signals 364 13.4 Summary . 365 Problems 365 References . 366 Part IV IDENTIFICATION WITH PARAMETRIC MODELS — CONTINUOUS TIME SIGNALS 14 Parameter Estimation for Frequency Responses . 369 14.1 Introduction . 369 14.2 Method of Least Squares for Frequency Response Approximation (FR-LS) 370 14.3 Summary . 374 Problems 376 References . 376 15 Parameter Estimation for Differential Equations and Continuous Time Processes . 379 15.1 Method of Least Squares 379 15.1.1 Fundamental Equations . 379 15.1.2 Convergence 382 15.2 Determination of Derivatives 383 15.2.1 Numerical Differentiation . 383 15.2.2 State Variable Filters . 384 15.2.3 FIR Filters 391 15.3 Consistent Parameter Estimation Methods 393 15.3.1 Method of Instrumental Variables . 393 15.3.2 Extended Kalman Filter, Maximum Likelihood Method 395 15.3.3 Correlation and Least Squares . 395 15.3.4 Conversion of Discrete-Time Models 398 15.4 Estimation of Physical Parameters 399 15.5 Parameter Estimation for Partially Known Parameters 404 15.6 Summary . 405 Problems 406Contents XV References . 406 16 Subspace Methods . 409 16.1 Preliminaries 409 16.2 Subspace 413 16.3 Subspace Identification 414 16.4 Identification from Impulse Response 418 16.5 Some Modifications to the Original Formulations 419 16.6 Application to Continuous Time Systems . 420 16.7 Summary . 423 Problems 423 References . 424 Part V IDENTIFICATION OF MULTI-VARIABLE SYSTEMS 17 Parameter Estimation for MIMO Systems 429 17.1 Transfer Function Models . 429 17.1.1 Matrix Polynomial Representation 431 17.2 State Space Models . 432 17.2.1 State Space Form 432 17.2.2 Input/Output Models . 438 17.3 Impulse Response Models, Markov Parameters 439 17.4 Subsequent Identification 441 17.5 Correlation Methods 441 17.5.1 De-Convolution . 441 17.5.2 Test Signals . 442 17.6 Parameter Estimation Methods . 443 17.6.1 Method of Least Squares 446 17.6.2 Correlation Analysis and Least Squares 446 17.7 Summary . 447 Problems 449 References . 449 Part VI IDENTIFICATION OF NON-LINEAR SYSTEMS 18 Parameter Estimation for Non-Linear Systems 453 18.1 Dynamic Systems with Continuously Differentiable Non-Linearities 453 18.1.1 Volterra Series . 454 18.1.2 Hammerstein Model 455 18.1.3 Wiener Model . 457 18.1.4 Model According to Lachmann 458 18.1.5 Parameter Estimation . 458 18.2 Dynamic Systems with Non-Continuously Differentiable Non-Linearities 460XVI Contents 18.2.1 Systems with Friction 460 18.2.2 Systems with Dead Zone 464 18.3 Summary . 465 Problems 465 References . 466 19 Iterative Optimization 469 19.1 Introduction . 469 19.2 Non-Linear Optimization Algorithms 471 19.3 One-Dimensional Methods . 473 19.4 Multi-Dimensional Optimization 476 19.4.1 Zeroth Order Optimizers 477 19.4.2 First Order Optimizers 478 19.4.3 Second Order Optimizers . 480 19.5 Constraints 484 19.5.1 Sequential Unconstrained Minimization Technique 484 19.6 Prediction Error Methods using Iterative Optimization 491 19.7 Determination of Gradients 494 19.8 Model Uncertainty . 495 19.9 Summary . 496 Problems 498 References . 499 20 Neural Networks and Lookup Tables for Identification . 501 20.1 Artificial Neural Networks for Identification 501 20.1.1 Artificial Neural Networks for Static Systems 502 20.1.2 Artificial Neural Networks for Dynamic Systems . 512 20.1.3 Semi-Physical Local Linear Models . 514 20.1.4 Local and Global Parameter Estimation 518 20.1.5 Local Linear Dynamic Models . 519 20.1.6 Local Polynomial Models with Subset Selection 524 20.2 Look-Up Tables for Static Processes . 530 20.3 Summary . 534 Problems 534 References . 535 21 State and Parameter Estimation by Kalman Filtering 539 21.1 The Discrete Kalman Filter 540 21.2 Steady-State Kalman Filter 545 21.3 Kalman Filter for Time-Varying Discrete Time Systems 546 21.4 Extended Kalman Filter . 547 21.5 Extended Kalman Filter for Parameter Estimation . 548 21.6 Continuous-Time Models 549 21.7 Summary . 549 Problems 550Contents XVII References . 550 Part VII MISCELLANEOUS ISSUES 22 Numerical Aspects . 555 22.1 Condition Numbers . 555 22.2 Factorization Methods for P . 557 22.3 Factorization methods for P1 . 558 22.4 Summary . 562 Problems 562 References . 563 23 Practical Aspects of Parameter Estimation 565 23.1 Choice of Input Signal 565 23.2 Choice of Sample Rate 567 23.2.1 Intended Application . 568 23.2.2 Fidelity of the Resulting Model 568 23.2.3 Numerical Problems 569 23.3 Determination of Structure Parameters for Linear Dynamic Models . 569 23.3.1 Determination of Dead Time . 570 23.3.2 Determination of Model Order . 572 23.4 Comparison of Different Parameter Estimation Methods 577 23.4.1 Introductory Remarks 577 23.4.2 Comparison of A Priori Assumptions . 579 23.4.3 Summary of the Methods Governed in this Book 581 23.5 Parameter Estimation for Processes with Integral Action 586 23.6 Disturbances at the System Input 588 23.7 Elimination of Special Disturbances . 590 23.7.1 Drifts and High Frequent Noise 590 23.7.2 Outliers 592 23.8 Validation . 595 23.9 Special Devices for Process Identification 597 23.9.1 Hardware Devices . 597 23.9.2 Identification with Digital Computers . 598 598 Problems 599 References . 599 Part VIII APPLICATIONS 23.10 Summary .XVIII Contents 24 Application Examples 605 24.1 Actuators . 605 24.1.1 Brushless DC Actuators . 606 24.1.2 Electromagnetic Automotive Throttle Valve Actuator 612 24.1.3 Hydraulic Actuators 617 24.2 Machinery 628 24.2.1 Machine Tool . 628 24.2.2 Industrial Robot . 633 24.2.3 Centrifugal Pumps . 636 24.2.4 Heat Exchangers . 639 24.2.5 Air Conditioning . 644 24.2.6 Rotary Dryer 645 24.2.7 Engine Teststand . 648 24.3 Automotive Vehicles 651 24.3.1 Estimation of Vehicle Parameters . 651 24.3.2 Braking Systems . 655 24.3.3 Automotive Suspension . 663 24.3.5 Internal Combustion Engines 674 24.4 Summary . 679 References . 680 Part IX APPENDIX A Mathematical Aspects 685 A.1 Convergence for Random Variables . 685 A.2 Properties of Parameter Estimation Methods 687 A.3 Derivatives of Vectors and Matrices . 688 A.4 Matrix Inversion Lemma 689 References . 690 B Experimental Systems 691 B.1 Three-Mass Oscillator . 691 References . 696 Index . 697 24.3.4 Tire Pressure 667List of Symbols Only frequently used symbols and abbreviations are given. Letter symbols a parameters of differential of difference equations, amplitude b parameters of differential or difference equations c spring constant, constant, stiffness, parameters of stochastic difference equations, parameters of physical model, center of Gaussian function d damping coefficient, direct feedthrough, parameters of stochastic difference equations, dead time, drift e equation error, control deviation e D w y e number e D 2:71828 : : : (Euler’s number) f frequency .f D 1=Tp; Tp period time), function f .: : :/ fS sample frequency g function g.: : :/, impulse response h step response, undisturbed output signal for method IV, h yu i index i D p1 imaginary unit j integer, index k discrete number, discrete-time k D t=T0 D 0; 1; 2; : : : (T0: sample time) l index m mass, order number, model order, number of states n order number, disturbance signal p probability density function, process parameter, order number of a stochastic difference equation, parameter of controller difference equation, number of inputs, p.x/ probability density function q index, parameter of controller difference equation, time shift operator with x.k/q1 D x.k 1/XX List of Symbols r number of outputs rP penalty multiplier s Laplace variable s D ı C i! t continuous time u input signal change U , manipulated variable w reference value, setpoint, weight, w.t/ window function x state variable, arbitrary signal y output signal change Y , signal yu useful signal, response due to u yz response due to disturbance ´ ´ disturbance variable change Z, Z-transform variable ´ D eT0s A denominator polynomial of process transfer function B numerator polynomial of process transfer function A denominator polynomial of closed-loop transfer function B numerator polynomial of closed-loop transfer function C denominator polynomial of stochastic filter equation, covariance function D numerator polynomial of stochastic filter equation, damping ratio F filter transfer function G transfer function I second moment of area J moment of inertia K constant, gain M torque N discrete number, number of data points P probability Q denominator polynomial of controller transfer function R numerator polynomial of controller transfer function, correlation function S spectral density, sum T time constant, length of a time interval T0 sample time TM measurement time TP period time U input variable, manipulated variable (control input) V cost function W complex rotary operator for DFT and FFT Y output variable, control variable Z disturbance variable a vector b biasList of Symbols XXI b; B input vector/matrix c; C output vector/matrix e error vector g vector of inequality constraints with g.x/ 0 h vector of equality constraints with h.x/ D 0 n noise vector s search vector u manipulated variables for neural net v output noise w state noise x vector of design variables y output vector z operating point variables for neural net A arbitrary matrix, state matrix C covariance matrix, matrix of measurements for TLS D direct feedthrough matrix G transfer function matrix G noise transfer function matrix H Hessian matrix, Hadamard matrix I identity matrix K gain matrix P correlation matrix, P D T S Cholesky factor T similarity transform U input matrix for subspace algorithms W weighting matrix X state matrix Y output matrix for subspace algorithms AT transposed matrix ˛ factor, coefficients of closed-loop transfer function ˇ factor, coefficients of closed-loop transfer function activation function ı decay factor, impulse function, time shift " correlation error signal, termination tolerance, small positive number damping ratio noise-to-signal ratio parameter forgetting factor, cycle time of PRBS generator membership function, index, time scaling factor for PRBS, order of controller transfer function index, white noise (statistically independent signal), order of controller transfer functionXXII List of Symbols measurement disturbance number D 3:14159 : : : % Step width factor for stochastic approximation algorithms time, time difference ' angle, phase ! angular frequency, ! D 2=TPI TP period, rotational velocity !.t/ D P '.t/ !0 undamped natural frequency change, deviation … product † sum ˚ validity function, activation function, weighting function wavelet correction vector data vector parameter vector augmented error matrix ˙ covariance matrix of a Gaussian distribution, matrix of singular values ˚ transition matrix data matrix Mathematical abbreviations exp .x/ D ex exponential function dim dimension adj adjoint † phase (argument) arg argument cond condition number cov covariance det determinant lim limit max maximum (also as index) min minimum (also as index) plim probability limit tr trace of a matrix var variance Ref: : :g real part Imf: : :g imaginary part QS controllability matrix QSk extended reversed controllability matrixList of Symbols XXIII Ef: : :g expected value of a statistical variable F Fourier transform H Hermitian matrix H Hankel matrix H.f .x// Hilbert transform H Heaviside function L Laplace transform QB observability matrix QBk extended observability matrix ´ transform directly from s transform T Markov parameter matrix, Töplitz matrix Z ´ transform G.i!/ conjugate complex, sometimes denoted as G.i!/ k k2 2-norm k kF Frobenius norm V first derivative of V with respect to V second derivative of V with respect to rf .x/ gradient of f .x/ r2f .x/ Hessian matrix of f .x/ xO estimated or observed variable xQ estimation error xN average, steady-state value xP first derivative with respect to time t x.n/ n-th derivative with respect to time t x0 amplitude or true value x00 value in steady state x mean value xS sampled signal xı Dirac series approximation x normalized, optimal xd discrete-time x00 steady state or DC value A pseudo-inverse f =A f =BA oblique projection Abbreviations ACF auto-correlation function, e.g. Ruu./ ADC analog digital converter ANN artificial neural network AGRBS amplitude modulated GRBS APRBS amplitude modulated PRBS AR auto regressive ARIMA auto regressive integrating moving average process orthogonal projectionXXIV List of Symbols ARMA auto regressive moving average process ARMAX auto regressive moving average with external input ARX auto regressive with external input BLUE best linear unbiased estimator CCF cross-correlation function, e.g. Ruy./ CDF cumulative distribution function CLS bias corrected least squares COR-LS correlation analysis and method of least squares CWT continuous-time wavelet transform DARE differential algebraic Riccatti equation DFT discrete Fourier transform DSFC discrete square root filter in covariance form DSFI discrete square root filter in information form DTFT discrete time Fourier transform DUDC discrete UD-factorization in covariance form EIV errors in variables EKF extended Kalman filter ELS extended least squares FFT Fast Fourier Transform FIR finite impulse response FLOPS floating point operations FRF frequency response function GLS generalized least squares GRBS generalized random binary signal GTLS generalized total least squares IIR infinite impulse response IV instrumental variables KW Kiefer-Wolfowitz algorithm LLM local linear model LPM local polynomial model LOLIMOT local linear model tree LPVM linear parameter variable model LQR linear quadratic regulator LRGF locally recurrent global feedforward net LS least squares M model MA moving average MIMO multiple input, ML maximum likelihood MLP multi layer perceptron MOESP Multi-variable Output Error State sPace N4SID Numerical algorithms for Subspace State Space IDentification NARX non-linear ARX model NDE non-linear difference equation NFIR non-linear FIR model multiple outputList of Symbols XXV NN neural net NOE non-linear OE model ODE ordinary differential equation OE output error P process PCA principal component analysis PDE partial differential equation PDF probability density function p.x/ PE prediction error PEM prediction error method PRBS pseudo-random binary signal RBF radial basis function RCOR-LS recursive correlation analysis and method of least squares RGLS recursive generalized least squares RIV recursive instrumental variables RLS recursive least squares RLS-IF recursive least squares with improved feedback RML recursive maximum likelihood SISO single input, single output SNR signal to noise ratio SSS strict sense stationary STA stochastic approximation STFT short time Fourier transform STLS structured total least squares SUB subspace SUMT sequential unconstrained minimization technique SVD singular value decomposition TLS total least squares WLS weighted least squares WSS wide sense stationary ZOH zero order hold Index A-optimal, 566 ACF, see auto-correlation function (ACF) activation, 503 actuators, 605 adaptive control, 353, 356 air conditioning, 644–645 aliasing, 42, 80 amplitude-modulated generalized random binary signal (AGRBS), 174 amplitude-modulated pseudo-random binary signal (APRBS), 174 analog-digital converter (ADC), 39 ANN, see network, artificial neural network (ANN) AR, see model, auto-regressive (AR) ARMA, see model, auto-regressive moving-average (ARMA) ARMAX, see model, auto-regressive moving-average with exogenous input (ARMAX) artificial neural networks, see network, artificial neural network (ANN) ARX, see model, auto-regressive with exogenous input (ARX) auto-correlation function (ACF), 48, 55, 153–154, 179–181, 184–189, 264 auto-covariance function, 50, 55 auto-regressive (AR), see model, autoregressive (AR) auto-regressive moving-average (ARMA), see model, auto-regressive movingaverage (ARMA) auto-regressive moving-average with exogenous input (ARMAX), see model, auto-regressive moving-average with exogenous input (ARMAX) auto-regressive with exogenous input (ARX), see model, auto-regressive with exogenous input (ARX) automotive applications, see tire pressure electric throttle, see DC motor engine, see engine, internal combustion engine engine teststand, see engine teststand one-track model, see one-track model automotive braking system, 655–663 hydraulic subsystem, 655–658 pneumatic subsystem, 658–663 automotive suspension, 663–665 automotive vehicle, 651–679 averaging, 256, 278 a priori assumptions, 18, 423, 449, 570, 579, 595 a priori knowledge, 10, 18, 404 bandpass, 20 Bayes rule, 322 estimator, 331 method, 319–323 rule, 320 Bayesian information criterion (BIC), 574 best linear unbiased estimator (BLUE), 217 bias, 687 bias correction, see least squares, bias correction (CLS) R. Isermann, M. Münchhof, Identification of Dynamic Systems, DOI 10.1007/978-3-540-78879-9, Springer-Verlag Berlin Heidelberg 2011698 Index bias-variance dilemma, 502 bilinear transform, 389 binary signal, 127 discrete random, see discrete random binary signal (DRBS) generalized random, see generalized random binary signal (GRBS) pseudo-random, see pseudo-random binary signal (PRBS) random, see random binary signal (RBS) bisection algorithm, 476 Box Jenkins (BJ), see model, Box Jenkins (BJ) Brushless DC motor (BLDC), see DC motor Butterworth filter, 385 canonical form block diagonal form, 438 controllable canonical form, 386, 436, 438 Jordan canonical form, 438 observable canonical form, 436, 438, 522 simplified P-canonical form, 439 CCF, see cross-correlation function (CCF) centrifugal pumps, 636–638 characteristic values, 16, 58–71, 585 2-distribution, 237 chirp, see sweep sine closed-loop identification, 19, 23, 175–176, 353–365 direct identification, 359–361, 364–365 indirect identification, 355–359, 363–364 closed-loop process, see process, closed-loop CLS, see least squares, bias correction (CLS) comparison of methods, 15, 581 condition of a matrix, 555–556 constraint, 218, 283–284, 472, 484–486 controllability matrix, 44, 410, 435, 436, 440 convergence, 246, 382, 685–686 non-recursive least squares (LS), 229–235 recursive least squares (RLS), 343–349 convolution, 34, 42, 54, 454 COOK’s D, 594 COR-LS, see least squares, correlation and least squares (COR-LS) correlation analysis, 16, 20, 154–161, 190 correlation function fast calculation, 184–189 recursive calculation, 189 correlogram, see auto-correlation function (ACF) cost function, 204, 470, 572 covariance function, 50 covariance matrix, 303, 343 blow-up, 340 manipulation, 341–343 Cramér-Rao bound, 217, 330–331 cross-correlation function (CCF), 48, 55, 150–153, 181–189, 264 cross-covariance function, 50, 55 data matrix, 211 data vector, 225 DC motor brushless DC motor (BLDC), 606–612 classical DC motor, 612–617 feed drive, see machining center de-convolution, 154–161, 175–176, 190–197, 585 for MIMO systems, 441–442 dead time, 42, 570–572 dead zone, 464 decomposition singular value decomposition (SVD), see singular value decomposition (SVD) derivatives, 383–393, 494–495 design variables, 472 DFBETAS, 594 dfference equation, 43 DFFITS, 594 DFT, see discrete Fourier transform (DFT) difference equation, 57, 225 stochastic, 276 differencing, 255, 278 differential equation ordinary differential equation (ODE), see ordinary differential equation (ODE) partial differential equation (PDE), see partial differential equation (PDE) digital computer, 598 discrete Fourier transform (DFT), 80, 86 discrete random binary signal (DRBS), 163–164 discrete square root filtering in covariance form (DSFC), 557–558 discrete square root filtering in information form (DSFI), 558–561 discrete time Fourier transform (DTFT), 79Index 699 discretization, 387–391 distribution 2-distribution, see 2-distribution Gaussian, see normal distribution normal, see normal distribution disturbance, 8 downhill simplex algorithm, 477 drift elimination, 590 DSFC, see discrete square root filtering in covariance form (DSFC) DSFI, see discrete square root filtering in information form (DSFI) DTFT, see discrete time Fourier transform (DTFT) efficiency, 216, 217, 688 EKF, see extended Kalman filter (EKF) ELS, see least squares, extended least squares (ELS) engine engine teststand, 648–651 internal combustion engine, 512, 533, 674–679 ergodic process, 47 error equation error, 13, 225, 380 input error, 13 metrics, 204, 226, 470, 578 output error, 13, 58 sum of squared errors, 204 error back-propagation, 507 errors in variables (EIV), 300, 589 estimation consistent, 233 efficient, see efficiency explicit, 256, 279 implicit, 256, 279 sufficient, 688 estimator consistent, 687 consistent in the mean square, 687 unbiased, 687 Euclidian distance, 212, 503, 507 excitation persistent, see persistent excitation exponential forgetting, 281–284, 335 constant forgetting factor, 335–340 variable forgetting factor, 340–341 extended Kalman filter (EKF), 17, 395, 547–549, 584 extended least squares (ELS), see least squares, extended least squares (ELS) fast Fourier transform (FFT), 82–88 FFT, see fast Fourier transform filter Butterworth, see Butterworth filter FIR, 391 finite differencing, 384 finite impulse response (FIR), see model, finite impulse response (FIR), 391 Fisher information matrix, 218, 336 Fletcher-Reeves algorithm, 479 forgetting factor, 336, 339 Fourier analysis, 16, 20, 99 series, 77–78 transform, 35, 78–82, 99–108 FR-LS, see least squares, frequency response approximation (FR-LS) frequency response, 35, 37 frequency response approximation (FR-LS), see least squares, frequency response approximation (FR-LS) frequency response function, 99, 108–117, 134, 369, 585 frequency response measurement, 16 friction, 460–464, 488 Gauss-Newton algorithm, 483 Gaussian distribution, see normal distribution generalization, 501 generalized least squares (GLS), see least squares, generalized least squares (GLS) generalized random binary signal (GRBS), 172–174 generalized total least squares (GTLS), see least squares, generalized total least squares (GTLS) generalized transfer function matrix, 430 Gibbs phenomenon, 78 Givens rotation, 560 GLS, see least squares, generalized least squares (GLS) golden section search, 475700 Index gradient, 472 gradient descent algorithm, see steepest descent algorithm gradient search, see steepest descent algorithm GTLS, see least squares, generalized total least squares (GTLS) Hammerstein model, 455–458 Hankel matrix, 411, 418, 440 heat exchangers, 639–642 Heaviside function, 34 Hessian matrix, 473 Hilbert transform, 370 hinging hyperplane tree (HHT), see network, hinging hyperplane tree (HHT) Householder transform, 560 hydraulic actuator, 617–628 identifiability, 246–255, 363, 403, 459 closed-loop, 355–357, 360 structral, 250 identification definition of, 2, 8 implicit function theorem, 402 impulse response, 34, 40, 58, 66 MIMO system, 439–440 industrial robot, 633–636 information criterion Akaike, see Akaike information criterion (AIC) Bayesian, see Bayesian information criterion (BIC) information matrix, 575–576 innovation, 542 input persistently exciting, 251 instrumental variables recursive (RIV), see least squares, recursive instrumental variables (RIV) instrumental variables (IV), 393 non-recursive, see least squares, nonrecursive instrumental variables (IV) internal combustion engine, see engine, internal combustion engine intrinsically linear, 215 IV, see least squares, non-recursive instrumental variables (IV) Kalman filter, 540–547 extended, see extended Kalman filter (EKF) Kalman-Bucy filter, 549 Kalman-Schmidt-Filter, 547 steady-state Kalman filter, 545–546 Kiefer-Wolfowitz algorithm, see least squares, Kiefer-Wolfowitz algorithm (KW) Kronecker delta, 56 Kurtosis, 596 KW, see least squares, Kiefer-Wolfowitz algorithm (KW) L-optimal, 566 Laplace transform, 36, 99 layer, 504 least mean squares (LMS), see least squares, least mean squares (LMS) least squares, 331 bias, 235 bias correction (CLS), 296–297, 582 continuous-time, 379–383, 582 correlation and least squares (COR-LS), 264–267, 395, 446–447, 583 covariance, 236–238 direct solution, 229 eigenvalues, 346–347 equality constraint, 218 exponential forgetting, see exponential forgetting extended least squares (ELS), 295–296, 582 frequency response approximation (FR-LS), 370–374, 583 generalized least squares (GLS), 291–294, 582 generalized total least squares (GTLS), 300 geometrical interpretation, 212–214 instrumental variables (IV), 393 Kiefer-Wolfowitz algorithm (KW), 307–310 least mean squares (LMS), 310–315 MIMO system, 446 non-linear static process, 210–212, 216 non-parametric intermediate model, 262–269 non-recursive (LS), 223–245, 581Index 701 non-recursive instrumental variables (IV), 302–304, 582 non-recursive least squares (LS), 558–560 normalized least mean squares (NLMS), 310–315, 584 recursive (RLS), 269–278, 345–349 recursive correlation and least squares (RCOR-LS), 267 recursive extended least squares (RELS), 584 recursive generalized least squares (RGLS), 294 recursive instrumental variables (RIV), 305, 584 recursive least squares (RLS), 557, 560–561, 584 recursive weighted least squares (RWLS), 280–281 start-up of recursive method, 272–274, 340 stochastic approximation (STA), 306–315, 584 structured total least squares (STLS), 301 Tikhonov regularization, see Tikhonov regularization total least squares (TLS), 297–301, 582 weighted least squares (WLS), 279–280, 373 Levenberg-Marquart algorithm, 484 leverage, 593 likelihood function, 215, 320, 324 linear in parameters, 214 LMS, see least squares, least mean squares (LMS) locally recurrent and globally feedworward networks (LRGF), see network, locally recurrent and globally feedforward networks (LRGF) log-likelihood function, 325 LOLIMOT seenetwork, local linear model tree (LOLIMOT), 508 look-up tables, 530 LRGF, see network, locally recurrent and globally feedforward networks (LRGF) LS, see least squares, non-recursive (LS) MA, see model, moving-average (MA) machining center, 628–630 Markov estimator, 279–280, 331 Markov parameters, 410, 437, 439–440 matrix calculus, 688 matrix inversion lemma, 689 matrix polynomial model, 431 maximum likelihood, 215–216, 321 non-linear static process, 216 non-recursive (ML), 323–327, 583 recursive (RML), 328–329, 584 maximum likelihood (ML), 395 maximum likelihood estimator, 331 ML, see maximum likelihood, non-recursive (ML) MLP, see network, multi layer perceptron (MLP) model auto-regressive (AR), 57 auto-regressive moving-average (ARMA), 58 auto-regressive moving-average with exogenous input (ARMAX), 58 auto-regressive with exogenous input (ARX), 58 black-box, 5, 34 Box Jenkins (BJ), 58 canonical state space model, 447 dead time, see dead time finite impulse response (FIR), 58 fuzzy, 509 gray-box, 5 Hammerstein, see Hammerstein model Hankel model, 440 input/output model, 438–439 Lachmann, 458 local polynomial model (LPM), 524 matrix polynomial, see matrix polynomial model moving-average (MA), 57 non-linear, 454–458 non-linear ARX (NARX), 523 non-linear finite impulse response (NFIR), 455 non-linear OE (NOE), 523 non-parametric, 13, 15, 34 order, 572–577 P-canonical, 430 parallel, 469 parametric, 13, 18, 37, 39702 Index projection-pursuit, 457 semi-physical model, 514 series model, 470 series-parallel model, 470 simplified P-canonical, 431 state space, 432–439, 447 state space model, 409 structure parameters, 569–577 Uryson, 457 white-box, 5 Wiener, see Wiener model model adjustment, 16 model uncertainty, 236–238, 495–496 modeling experimental, 3, 7 theoretical, 3, 7 moving-average (MA), see model, moving-average (MA) multi layer perceptron (MLP), see network, multi layer perceptron (MLP) multifrequency signal, 127, 567 Nelder-Mead algorithm, see downhill simplex algorithm network artificial neural network (ANN), 17, 501, 586 hinging hyperplane tree (HHT), 510 local linear model tree (LOLIMOT), 508 locally recurrent and globally feedforward networks (LRGF), 512 multi layer perceptron (MLP), 504 radial basis function network (RBF), 507, 508 structure, 504 neuron, 503 Newton algorithm, 481 Newton-Raphson algorithm, 476 NFIR, see model, non-linear finite impulse response (NFIR) NLMS, see least squares, normalized least mean squares (NLMS) non-linear ARX model (NARX), see model, non-linear ARX (NARX) non-linear finite impulse response (NFIR), see model, non-linear finite impulse response (NFIR) non-linear OE model (NOE), see model, non-linear OE (NOE) norm Frobenius norm, 298 normal distribution, 216 normalized least mean squares (NLMS), see least squares, normalized least mean squares (NLMS) objective function, 472 observability matrix, 45, 410, 440 one-track model, 651–654 optimization bisection algorithm, 476 constraints, 484–486 downhill simplex algorithm, 477 first order methods, 476, 478 Gauss-Newton algorithm, 483 golden section search, 475 gradient, 494–495 gradient descent algorithm, 478 iterative, 585 Levenberg-Marquart algorithm, 484 multi-dimensional, 476–484 Newton algorithm, 481 Newton-Raphson algorithm, 476 non-linear, 471 one-dimensional, 473–476 point estimation, 474 quasi-Newton algorithms, 482 region elimination algorithm, 474 second order methods, 476, 480 trust region method, 484 zeroth order methods, 474, 477 order test, see model, order ordinary differential equation (ODE), 3, 37, 380 orthogonal correlation, 134–143, 585 orthogonality relation, 213 oscillation, 214 outlier detection and removal, 592–594 output vector, 211 P-canonical structure, 430, 431 parameter covariance, 303 parameter estimation, 16 extended Kalman filter (EKF), 548–549 iterative optimization, see optimization method of least squares, see least squares parameter vector, 211, 225 parameter-state observer, 346Index 703 partial differential equation (PDE), 3, 37 PCA, see principal component analysis (PCA) PDE, see partial differential equation (PDE) penalty function, 484 perceptron, 504 Periodogram, 93–95 persistent excitation, 250 point estimation algorithm, 474 Polak-Ribiere algorithm, 480 pole-zero test, 576 polynomial approximation, 215, 387 power spectral density, 50, 56 prediction error method (PEM), 491–494 prediction, one step prediction, 225 predictor-corrector setting, 541 principal component analysis (PCA), 301 probability density function (PDF), 46 process closed-loop, 588 continuous-time, 379–383, 420, 454, 460–464, 549 definition of, 1 integral, 586–588 integrating, 69 non-linear, 454–458 process analysis, 1 time-varying, 335–349 process coefficients, 37, 399 processes statistically indepdendent, 51 projection oblique, 413 orthogonal, 413 prototype function, 91 pseudo-random binary signal (PRBS), 164–172, 196, 198, 442, 443, 567, 588 pulse double, 104 rectangular, 102 simple, 100 trapezoidal, 101 triangular, 102 QR factorization, 559 quantization, 39 quasi-Newton algorithms, see optimization, quasi-Newton algorithms radial basis function network (RBF), see network, radial basis function network (RBF) ramp function, 106 random binary signal (RBS), 161–162 RBF, see network, radial basis function network (RBF) realization, 44 minimal, 45 rectangular wave, 124 recursive generalized least squares (RGLS), see least squares, recursive generalized least squares (RGLS) recursive least squares, see least squares, recursive (RLS) recursive parameter estimation convergence, 343–349 region elimination algorithm, 474 regression, 205 orthonormal, 300 residual test, 576 resonant frequency, 62 RGLS, see least squares, recursive generalized least squares (RGLS) Ricatti equation, 545 ridge regression, see Tikhonov regularization RIV, see least squares, recursive instrumental variables (RIV) RLS, see least squares, recursive (RLS) RML, see maximum likelihood, recursive (RML) Robbins-Monro algorithm, 306–307 rotary dryer, 645 sample rate, 567–569 sample-and-hold element, 42 sampling, 39, 42, 79, 381, 567–569 Schroeder multisine, 128 sequential unconstrained minimization technique (SUMT), 484 Shannon’s theorem, 42, 79 short time Fourier transform (STFT), 20, 89–90 signal amplitude-modulated generalized random binary, see amplitude-modulated generalized random binary signal (AGRBS)704 Index amplitude-modulated pseudo-random binary, see amplitude-modulated pseudo-random binary signal (APRBS) discrete random binary, see discrete random binary signal (DRBS) genralized random binary, see generalized random binary signal (GRBS) pseudo-random binary, see pseudorandom binary signal (PRBS) random binary, see random binary signal (RBS) simplex algorithm, see downhill simplex algorithm singular value decomposition (SVD), 299, 420 spectral analysis, 93, 257–261 spectral estimation parametric, 20 spectrogram, 90 spectrum analysis, 20 STA, see least squares, stochastic approximation (STA) state space, 38, 43, 409, 432–439 state variable filter, 384 stationary strict sense stationary, 46 wide sense stationary, 47 steepest descent algorithm, 478 step function, 34, 106 step response, 34, 58, 59, 61, 65 STFT, see short time Fourier transform (STFT) STLS, see least squares, structured total least squares (STLS) stochastic approximation (STA), see least squares, stochastic approximation (STA) stochastic signal, 45, 54 structured total least squares (STLS), see least squares, structured total least squares (STLS) subspace of a matrix, 413 subspace identification, 414–418 subspace methods, 17, 409–423, 586 SUMT, see sequential unconstrained minimization technique (SUMT) SVD, see singular value decomposition sweep sine, 128–129 system affine, 33 biproper, 224 definition of, 1 dynamic, 512 first order system, 59 linear, 33 second order system, 60 system analysis, 1 Takagi-Sugeno fuzzy model, 509 Taylor series expansion, 388 test signal, 21, 565–567 A-optimal, 566 D-optimal, 566 L-optimal, 566 MIMO, 442–443 Tikhonov regularization, 284 time constant, 59 tire pressure, 667–674 TLS, see least squares, total least squares (TLS) total least squares (TLS), see least squares, total least squares (TLS) training, 501 transfer function, 36, 37, 39, 42, 44 transition matrix, 38 trust region method, see Levenberg-Marquart algorithm UD factorization, 557 validation, 12, 595–597 Volterra model, 458 series, 454–455 wavelet transform, 20, 91–93 weighted least squares (WLS), see least squares, weighted least squares (WLS) white noise, 52, 56 Wiener model, 457–458 window Bartlett window, 89, 90 Blackmann window, 89, 91 Hamming window, 89, 90 Hann window, 89, 91 windowing, 88–89Index 705 WLS, see least squares, weighted least squares (WLS) Yule-Walker equation, 232, 234 ´-transform, 40 zero padding, 88
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Identification of Dynamic Systems - An Introduction with Applications رابط مباشر لتنزيل كتاب Identification of Dynamic Systems - An Introduction with Applications
|
|