Admin مدير المنتدى
عدد المساهمات : 19002 التقييم : 35506 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Dynamic Modeling, Predictive Control and Performance Monitoring الجمعة 22 نوفمبر 2024, 1:04 am | |
|
أخواني في الله أحضرت لكم كتاب Dynamic Modeling, Predictive Control and Performance Monitoring A Data-driven Subspace Approach Biao Huang, Ramesh Kadali
و المحتوى كما يلي :
Contents Notation XIX 1 Introduction 1 1.1 An Overview of This Book . 1 1.2 Main Features of This Book . 4 1.3 Organization of This Book . 4 Part I Dynamic Modeling through Subspace Identification 2 System Identification: Conventional Approach . 9 2.1 Introduction . 9 2.2 Discrete-time Systems . 9 2.2.1 Finite Difference Models 10 2.2.2 Exact Discretization for Linear Systems . 10 2.2.3 Backshift Operator and Discrete-time Transfer Functions 11 2.3 An Example of System Identification: ARX Modeling . 12 2.4 Persistent Excitation in Input Signal 13 2.5 Model Structures . 15 2.5.1 Prediction Error Model (PEM) . 15 2.5.2 AutoRegressive with Exogenous Input Model (ARX) 15 2.5.3 AutoRegressive Moving Average with Exogenous Input Model (ARMAX) . 16 2.5.4 Box-Jenkins Model (BJ) 17 2.5.5 Output Error Model (OE) . 17 2.5.6 MISO (Multi-input and Single-output) Prediction Error Model . 18 2.5.7 State Space Model 18 2.6 Prediction Error Method 19 2.6.1 Motivation 19 2.6.2 Optimal Prediction . 21 2.6.3 Prediction Error Method 24
XIV Contents 2.7 Closed-loop Identification 25 2.7.1 Identifiability without External Excitations 26 2.7.2 Direct Closed-loop Identification . 27 2.7.3 Indirect Closed-loop Identification 28 2.7.4 Joint Input-output Closed-loop Identification 29 2.8 Summary 29 3 Open-loop Subspace Identification 31 3.1 Introduction . 31 3.2 Subspace Matrices Description . 31 3.2.1 State Space Models . 31 3.2.2 Notations and Subspace Equations . 33 3.3 Open-loop Subspace Identification Methods 40 3.4 Regression Analysis Approach 40 3.5 Projection Approach and N4SID . 43 3.5.1 Projections 43 3.5.2 Non-steady-state Kalman Filters . 44 3.5.3 Projection Approach for Subspace Identification 46 3.6 QR Factorization and MOESP . 48 3.7 Statistical Approach and CVA . 49 3.7.1 CVA Approach . 49 3.7.2 Determination of System Order 51 3.8 Instrument-variable Methods and EIV Subspace Identification 51 3.9 Summary 53 4 Closed-loop Subspace Identification . 55 4.1 Introduction . 55 4.2 Review of Closed-loop Subspace Identification Methods . 57 4.2.1 N4SID Approach . 57 4.2.2 Joint Input-Output Approach 59 4.2.3 ARX Prediction Approach . 60 4.2.4 An Innovation Estimation Approach 61 4.3 An Orthogonal Projection Approach 63 4.3.1 A Solution through Orthogonal Projection . 63 4.3.2 The Problem of Biased Estimation and the Solution 67 4.3.3 Model Extraction through Kalman Filter State Sequence 69 4.3.4 Extension to Error-in-variable (EIV) Systems 71 4.3.5 Simulation . 72 4.4 Summary 78 5 Identification of Dynamic Matrix and Noise Model Using Closed-loop Data 79 5.1 Introduction . 79 5.2 Estimation of Process Dynamic Matrix and Noise Model 81 5.2.1 Estimation of Dynamic Matrix of the Process 84 5.2.2 Estimation of the Noise Model . 85
Contents XV 5.3 Some Guidelines for the Practical Implementation of the Algorithm . 86 5.4 Extension to the Case of Measured Disturbance Variables . 87 5.5 Closed-loop Simulations . 89 5.5.1 Univariate System 89 5.5.2 Multivariate System 90 5.6 Identification of the Dynamic Matrix: Pilot-scale Experimental Evaluation 94 5.7 Summary 96 Part II Predictive Control 6 Model Predictive Control: Conventional Approach 101 6.1 Introduction . 101 6.2 Understanding MPC 102 6.3 Fundamentals of MPC 103 6.3.1 Process and Disturbance Models . 103 6.3.2 Predictions 105 6.3.3 Free and Forced Response . 106 6.3.4 Objective Function . 107 6.3.5 Constraints 107 6.3.6 Control Law . 108 6.4 Dynamic Matrix Control (DMC) . 108 6.4.1 The Prediction Model . 109 6.4.2 Unconstrained DMC Design . 111 6.4.3 Penalizing the Control Action 111 6.4.4 Handling Disturbances in DMC 112 6.4.5 Multivariate Dynamic Matrix Control . 113 6.4.6 Hard Constrained DMC . 115 6.4.7 Economic Optimization . 116 6.5 Generalized Predictive Control (GPC) 117 6.6 Summary 118 7 Data-driven Subspace Approach to Predictive Control 121 7.1 Introduction . 121 7.2 Predictive Controller Design from Subspace Matrices 122 7.2.1 Inclusion of Integral Action 125 7.2.2 Inclusion of Feedforward Control . 127 7.2.3 Constraint Handling 128 7.3 Tuning the Noise Model . 130 7.4 Simulations 132 7.5 Experiment on a Pilot-scale Process 138 7.6 Summary 141
XVI Contents Part III Control Performance Monitoring 8 Control Loop Performance Assessment: Conventional Approach . 145 8.1 Introduction . 145 8.2 SISO Feedback Control Performance Assessment . 146 8.3 MIMO Feedback Control Performance Assessment 150 8.4 Summary 155 9 State-of-the-art MPC Performance Monitoring . 157 9.1 Introduction . 157 9.2 MPC Performance Monitoring: Model-based Approach 158 9.2.1 Minimum-variance Control Benchmark 158 9.2.2 LQG/MPC Benchmark . 159 9.2.3 Model-based Simulation Approach 160 9.2.4 Designed/Historical vs Achieved 161 9.2.5 Historical Covariance Benchmark . 161 9.2.6 MPC Performance Monitoring through Model Validation 162 9.3 MPC Performance Monitoring: Model-free Approach 165 9.3.1 Impulse-Response Curvature . 165 9.3.2 Prediction-error Approach . 166 9.3.3 Markov Chain Approach 166 9.4 MPC Economic Performance Assessment and Tuning . 167 9.5 Probabilistic Inference for Diagnosis of MPC Performance . 171 9.5.1 Bayesian Network for Diagnosis 171 9.5.2 Decision Making in Performance Diagnosis 173 9.6 Summary 175 10 Subspace Approach to MIMO Feedback Control Performance Assessment 177 10.1 Introduction . 177 10.2 Subspace Matrices and Their Estimation 179 10.2.1 Revisit of Important Subspace Matrices . 179 10.2.2 Estimation of Subspace Matrices from Open-loop Data 180 10.3 Estimation of MVC-benchmark from Input/Output Data 181 10.3.1 Closed-loop Subspace Expression of Process Response under Feedback Control . 181 10.3.2 Estimation of MVC-benchmark Directly from Input/Output Data . 183 10.4 Simulations and Application Example . 190 10.5 Summary 193
Contents XVII 11 Prediction Error Approach to Feedback Control Performance Assessment 195 11.1 Introduction . 195 11.2 Prediction Error Approach to Feedback Control Performance Assessment 196 11.3 Subspace Algorithm for Multi-step Optimal Prediction Errors 201 11.3.1 Preliminary 201 11.3.2 Calculation of Multi-step Optimal Prediction Errors 202 11.3.3 Case Study 206 11.4 Summary 211 12 Performance Assessment with LQG-benchmark from Closed-loop Data . 213 12.1 Introduction . 213 12.2 Obtaining LQG-benchmark from Feedback Closed-loop Data . 214 12.3 Obtaining LQG-benchmark with Measured Disturbances 217 12.4 Controller Performance Analysis 219 12.4.1 Case 1: Feedback Controller Acting on the Process with Unmeasured Disturbances 219 12.4.2 Case 2: Feedforward Plus Feedback Controller Acting on the Process . 220 12.4.3 Case 3: Feedback Controller Acting on the Process with Measured Disturbances . 221 12.5 Summary of the Subspace Approach to the Calculation of LQG-benchmark . 222 12.6 Simulations 223 12.7 Application on a Pilot-scale Process 224 12.8 Summary 227 References 229 Index . 237
Notation [A, B, C, D] Dynamic state space system matrices of the process [Acl, Bcl, Ccl, Dcl] Dynamic state space system matrices of the closed-loop system [Ac, Bc, Cc, Dc] Dynamic state space system matrices of the controller [Bm, Dm] Dynamic state space system matrices corresponding to the measured variables −1 −1 C(z−¹) D(z−¹) Polynomials in the backshift operator, z− ∆u Incremental control moves vector over the control hori- zon yˆ Predicted output trajectory vector over the prediction horizon yˆt Predicted value of system output(s) at sampling instant t r Setpoint (reference) trajectory vector over the prediction horizon y∗ Predicted free response trajectory vector over the pre- diction horizon G˜ p(z−¹) Delay-free transfer function matrix of Gp at Integrated white noise d Process time delay for the univariate process or order of the interactor matrix for multivariate process E[ ] Ef Expectation operator Future data Hankel matrix for et Ei Polynomial obtained in Diophantine expansion Ep Past data Hankel matrix for et et White noise (innovations) sequences Fi Markov parameter (or impulse response) matrix at ith sample fi Impulse response coefficient at ith sample Gm Multivariate step response coefficient matrix correspond- ing to the measured disturbance input at ith sample Gcl(z−¹) Transfer function representation of the closed-loop sys- Identity matrix Optimization o Kalman filt = K − K∗ XX Notation Gc(z−¹) Transfer function representation of the controller Gs State space representation of the controller Gi Multivariate step response coefficient matrix correspond- ing to the deterministic input at ith sample gi Univariate step response coefficient at ith sample Gl(z−¹) Transfer function representation of the stochastic part of the system or disturbance model G p(z−¹) Transfer function representation of the deterministic part of the system or process model Gs State space representation of the process h Dimension of measured disturbance(s) cl Lower triangular Toeplitz matrix of closed-loop system defined as deterministic Toeplitz matrix defined Lower triangular Toeplitz matrix corresponding to the measured disturbances defined as L er triangular stochastic Toeplitz matrix defined as ontaining parameters u Q Non-negative definite weighting matr R Non-negative definite weighting matr R₁, R₂ Non-negative definite weighting mat jective function Rf Future data Hankel matrix for setpoi Rp Past data Hankel matrix for setpoint rt System setpoint(s) at sampling insta Sf Future data Hankel matrix for st SN Dynamic matrix (with N block rows an of step-response coefficients st Output(s) measurement noise at sam U, S, V Matrices from singular value decomp U₁, U₂ Left matrices obtained in singular va Notation XXI Klqg LQG state feedback gain l Dimension of system input(s) LCL Closed-loop subspace matrix from Ef Uf L L Closed-loop subspace matrix from Rf L Uf LCL LCL Closed-loop subspace matrix from Ef → Yf LCL Closed-loop subspace matrix from Rf Yf LCL Closed-loop subspace matrix from W C l Yf Lₑ Subspace matrix containing the noise mo Markov pa- rameters; Lₑ is shorthand representation of Hi where i is typically selected as N Lm rbances Lu Subspace matrix containing the process Markov param- eters; Lu is shorthand representation of Hi where i is typically selected as N Lw Subspace matrix corresponding to past inputs and out- puts (or state) Lb Subspace matrix corresponding to the past inputs and outputs (or state) in the presence of measured distur- bances K∗ Modified Kalman filter gain matrix Notation Uf F matrix for ut defined as u2N −1 e d u2N . u2N +j−2 nkel matri U ∗ Fu ata Ha x for measured inputs, u∗ , for EIV systems; see also Uf Up P el matrix for ut defined as
da uN . uN +j−2 ankel ma U ∗ P ta H trix for measured inputs, u , for EIV systems; see also Up ut System input(s) at sampling instant t u∗ M system input(s) at sampling instant t for EIV stems V₁, V₂ ght matrices obtained in singular value decomposition Vf r v ; see also Uf Vp Past data Hankel matrix for vt; see also Up vt Input measurement noise W, W₁, W₂ N -negative definite weighting matrices Process noise c f atrix of the controller defined as xc xc 1 . xᶜ −1 c matrix of the controller defined as cxj−1
Notation XXIII Xf e matrix defined as xN . xN +j−1 ate m b Futu atrix, when the system has measured dis- t riables, defined as xb . xᵇ −1 sed-l cl Future cl oop state matrix Xp e matrix defined as x₀ . xj−₁ sta xt Syst tes(s) at sampling instant t xs Stochastic component of system states(s) at sampling instant t yc,t Forced response of the process output yf,t Free response of the process output Yf Future data Hankel matrix for yt Y Future data Hankel matrix for measured outputs, yt∗, for EIV systems; see also Uf Yp Past data Hankel matrix for yt Y ∗ Past data Hankel matrix for measured outputs, yt∗, for EIV systems; see also Up yt System output(s) at sampling instant t yt∗
Measured system output(s) at sampling instant t y Deterministic component of the system output(s) at sampling instant t yt Stochastic component of system output(s) at sampling instant t D(z) F, F Interactor matrix Polynomials obtained in Diophantine expansion (η Polynomials obtained in Diophantine expansion &fb LQG-benchmark based controller performance indices with respect to process output variance (E)fb, (E)ff &fb LQG-benchmark based controller performance indices with respect to process input variance (Iη)ᶠᵇ, (Iη )ff &fb LQG-benchmark based performance improvement in- dices with respect to process output variance (IE )fb, (IE )ff &fb LQG-benchmark based performance improvement in- dices with respect to process input variance Γ¯N ΓN with its first m rows removed ∆ Differencing operator (1 XXIV Notation b N Extended observability matrix of the expanded system with inputs and measured disturbances cl N c Extended observability matrix of the closed-loop system N Extended observability matrix of the controller ΓN E tended observability matrix of the process, defined as = CT (CA)T . (CAN−¹)T T γN Markov parameters used in noise model tuning λ Weighting on the control effort in control objective func- tions ωi, λi, γi, ψi Parameters for calculating input and output variances for LQG benchmarking Σₑ Covariance of innovation (white noise) sequence et Γ N ΓN with its last m rows removed (t + j t) j step ahead prediction from time instant t. For example, yˆ(t + 2 t) is a two-step ahead prediction from time in- stant t; for system identification, the prediction is based on past inputs and outputs, while for predictive control, the prediction is based on past outputs, past inputs, and future inputs. j step ahead prediction from time instant t−j. ple, yˆ(t | t − 2) is a two-step ahead prediction For exam- time instant t) for additional explanations A/BC Oblique ojection Subscript; the first column of subspace matrix/vector starts from time t₁ and ends by time t₂. If x is a vector, for exa le, then Index 2-norm measure of impulse response coefficients, 197 AIC criterion, 51 Algorithm for estimating minimum variance benchmark directly from input-output data, 188 ARIMAX model, 117 ARMAX mode, 16 ARX model, 15 ARX-prediction based closed-loop subspace identification, 60 Backshift operator, 11 Bayes rule, 172 Bayesian network for diagnosis, 171 Benchmark problem for closed-loop subspace identification, 72 Box-Jenkins model, 17 Block-Hankel matrices, 37 Block-Toeplitz matrices, 39 Canonical variables, 49 Closed-loop estimation of dynamic matrices, 79, 81, 84 Closed-loop estimation of noise model, 85 Closed-loop identification of EIV systems, 71 Closed-loop Markov parameter matrices, 202 Closed-loop potential, 166, 198 Closed-loop SIMPCA, CSIMPCA, 69 Closed-loop SOPIM, CSOPIM, 69 Closed-loop subspace identification algorithm, 85 Closed-loop subspace matrices in relation to open-loop subspace matrices, 182 Consistent estimation, 25 Constrained DMC, 115 Constraints, 107, 128 Control horizon, 107, 108 Control-loop performance assessment: conventional approach, 145 Controller performance index, 188 Controller subspace, 69 Conventional MIMO control performance assessment algorithm, 151 Conventional SISO feedback control performance assessment algorithm, 149 Covariance of the prediction error, 197 CVA, 48, 49 Data-driven subspace algorithms to calculate multi-step optimal prediction errors, 202 Decision making in performance diagnosis, 173 Delay-free transfer function, 146 Designed vs. achieved benchmark, 161 Determination of model order, 51 Diophantine equations, 118, 146 Direct closed-loop identification method, 27 Discrete transfer function, 12 Disturbance model, 105 DMC prediction equation, 109 Dynamic Bayesian network, 175 Dynamic matrix, 110, 115238 Index Dynamic matrix control, 108 Economic objective function, 168 Economic optimization, 116 Economic performance assessment and tuning, 167 Economic performance index, 170 EIV, 63 EIV state space model, 52 EIV subspace identification, 51 Estimation of multi-step optimal prediction errors, 202 Estimation of MVC Benchmark from Input/Output Data, 183 Estimation of subspace matrices, 180 Exact discretization, 10 Feedback control invariance property, 148, 151 Feedback control invariant, 145 Feedforward control, 127 Finite step response model, 109 Forced response, 106 Free response, 106, 118 Frobenius norm, 42 Fundamentals of MPC, 103 Generalized likelihood ratio test, 164 Generalized predictive control, GPC, 117 Generalized singular value, 50 GPC control law, 118 Graphic model, 171 Guidelines for closed-loop estimation of dynamic matrix, 86 Handling Disturbances in DMC, 112 Historical benchmark, 161 Historical covariance benchmark, 161 Impulse response curvature for performance monitoring, 165 Impulse response model, 104 Indirect closed-loop identification, 28 Innovation estimation approach, 61 Innovation form of state space model, 179 Instrument variable, 52, 67, 68 Instrument-variable methods, 51 Integral action, 125 Integrated white noise, 125 Interactor-matrix free methods for control performance assessment, 196 Joint input-output closed-loop identification, 29 Kalman filter states, 69 Least squares, 70, 181 Linear matrix inequality (LMI) for MPC economic performance analysis (LMIPA), 167 Local approach for model validation, 162 LQG benchmark, 159 LQG benchmark from closed-loop data: subspace approach, 214 LQG benchmark tradeoff curve, 217, 219 LQG benchmark variances of inputs, 216 LQG benchmark variances of outputs, 216 LQG benchmark with measured disturbances, 217 LQG benchmark: data-driven subspace approach, 213 LQG performance indices, 219, 220 LQG-benchmark based controller performance analysis, 219 Markov chain approach for performance monitoring, 166 Matrix inversion lemma, 84 Maximum likelihood, 50 Maximum likelihood ratio test, 164 Measured disturbances, 87 MIMO DMC problem formulation, 115 MIMO dynamic matrix, 115 MIMO feedback control performance assessment: conventional approach, 150 Minimum variance benchmark in subspace, 186 Minimum variance control, 145 Minimum variance control benchmark, 158 Minimum variance control law, 147 Minimum variance term, 151 MISO model for DMC, 114 MISO PEM model, 18 Model free approach for performance monitoring, 165Index 239 Model predictive control, 101 Model structure selection, 15 Model-based simulation for control performance monitoring, 160 MOESP, 46, 48 Monte-Carlo simulations, 72 MPC performance assessment: prediction error approach, 195 MPC performance monitoring, 157 MPC performance monitoring through model validation, 162 MPC performance monitoring: modelbased approach, 158 MPC relevant model validation, 165 MPC solutions, 108 MPC tradeoff curve, 159 Multi-step optimal prediction errors: subspace algorithm, 201 Multivariate dynamic matrix control, 113 Multivariate performance assessment, 146 MVC benchmark from subspace matrices, 181 N4SID, 46, 48, 63 Noise model estimation from closed-loop data, 81 Noise model tuning, 130 Normalized multivariate impulse response (NMIR) curve, 166 Normalized residual, 164 Objective function, 107 Optimal ith step prediction, 197 Optimal prediction, 21 Optimal prediction for general linear models, 23 Order of interactor matrix, 151 Orthogonal complement, 47 Orthogonal-projection based identification, 63 Out of control index (OCI), 167 Output error model, 17 Output variance under minimum variance control expressed in subspace, 183 Penalizing control action, 111 Persistent excitation, 13 Petrochemical distillation column simulation example, 206 Prediction error approach to control performance assessment, 196 Prediction error method, 24 Prediction error method: algorithm, 25 Prediction error model, 15 Prediction horizon, 103 Prediction model for DMC, 109 Prediction-error approach for performance monitoring, 166 Predictions for MIMO DMC, 115 Primary residual, 163 Probabilistic inferencing for diagnosis of MPC performance, 171 Process model subspace, 69 QR decomposition, 48, 184 QR decomposition for projections, 66 Quadratic objective function, 117, 122 Rank determination, 65 Receding horizon, 103 Recurrence relation, 10 Reference closed-loop potential, 198 Reference trajectory, 107 Relative closed-loop potential index, 198 Riccati equation, 23 SISO feedback control performance assessment: conventional approach, 146 Solution of open-loop subspace identification by projection approach, 46 State space model of closed-loop system, 182 State space models, 105 Static Bayesian network, 174 Statistical approach, 49 Step response model, 104 Subspace approach for MIMO feedback control performance assessment, 177 Subspace expression of feedback control invariance property, 186 Subspace identification method via PCA, SIMPCA, 65 Subspace orthogonal projection identification method via the state estimation for model extraction, SOPIM-S, 70240 Index Subspace orthogonal projection identification method, SOPIM, 65 Subspace predictive controller, SPC, 124 SVD, 48, 65 Theoretical economic index, 170 Time-delays, 12 Total least squares, 63 Tradeoff curve, 159 Transfer function model, 104 Transition tendency index (TTI), 167 Unconstrained DMC, 111 Unified approach to subspace algorithms, 48 Unitary interactor matrix, 151 Univariate performance assessment, 146 White noise, 32Lecture Notes in Control and Information Sciences Edited by M. Thoma, M. Morari Further volumes of this series can be found on our homepage: springer.com Vol. 374: Huang B.; Kadali R. Dynamic Modeling, Predictive Control and Performance Monitoring 240 p. 2008 [978-1-84800-232-6] Vol. 373: Wang Q.-G.; Ye Z.; Cai W.-J.; Hang C.-C. PID Control for Multivariable Processes 264 p. 2008 [978-3-540-78481-4] Vol. 372: Zhou J.; Wen C. Adaptive Backstepping Control of Uncertain Systems 241 p. 2008 [978-3-540-77806-6] Vol. 371: Blondel V.D.; Boyd S.P.; Kimura H. (Eds.) Recent Advances in Learning and Control 279 p. 2008 [978-1-84800-154-1] Vol. 370: Lee S.; Suh I.H.; Kim M.S. (Eds.) Recent Progress in Robotics: Viable Robotic Service to Human 410 p. 2008 [978-3-540-76728-2] Vol. 369: Hirsch M.J.; Pardalos P.M.; Murphey R.; Grundel D. Advances in Cooperative Control and Optimization 423 p. 2007 [978-3-540-74354-5] Vol. 368: Chee F.; Fernando T. Closed-Loop Control of Blood Glucose 157 p. 2007 [978-3-540-74030-8] Vol. 367: Turner M.C.; Bates D.G. (Eds.) Mathematical Methods for Robust and Nonlinear Control 444 p. 2007 [978-1-84800-024-7] Vol. 366: Bullo F.; Fujimoto K. (Eds.) Lagrangian and Hamiltonian Methods for Nonlinear Control 2006 398 p. 2007 [978-3-540-73889-3] Vol. 365: Bates D.; Hagström M. (Eds.) Nonlinear Analysis and Synthesis Techniques for Aircraft Control 360 p. 2007 [978-3-540-73718-6] Vol. 364: Chiuso A.; Ferrante A.; Pinzoni S. (Eds.) Modeling, Estimation and Control 356 p. 2007 [978-3-540-73569-4] Vol. 363: Besançon G. (Ed.) Nonlinear Observers and Applications 224 p. 2007 [978-3-540-73502-1] Vol. 362: Tarn T.-J.; Chen S.-B.; Zhou C. (Eds.) Robotic Welding, Intelligence and Automation 562 p. 2007 [978-3-540-73373-7] Vol. 361: Méndez-Acosta H.O.; Femat R.; González-Álvarez V. (Eds.): Selected Topics in Dynamics and Control of Chemical and Biological Processes 320 p. 2007 [978-3-540-73187-0] Vol. 360: Kozlowski K. (Ed.) Robot Motion and Control 2007 452 p. 2007 [978-1-84628-973-6] Vol. 359: Christophersen F.J. Optimal Control of Constrained Piecewise Affine Systems 190 p. 2007 [978-3-540-72700-2] Vol. 358: Findeisen R.; Allgöwer F.; Biegler L.T. (Eds.): Assessment and Future Directions of Nonlinear Model Predictive Control 642 p. 2007 [978-3-540-72698-2] Vol. 357: Queinnec I.; Tarbouriech S.; Garcia G.; Niculescu S.-I. (Eds.): Biology and Control Theory: Current Challenges 589 p. 2007 [978-3-540-71987-8] Vol. 356: Karatkevich A.: Dynamic Analysis of Petri Net-Based Discrete Systems 166 p. 2007 [978-3-540-71464-4] Vol. 355: Zhang H.; Xie L.: Control and Estimation of Systems with Input/Output Delays 213 p. 2007 [978-3-540-71118-6] Vol. 354: Witczak M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems 215 p. 2007 [978-3-540-71114-8] Vol. 353: Bonivento C.; Isidori A.; Marconi L.; Rossi C. (Eds.) Advances in Control Theory and Applications 305 p. 2007 [978-3-540-70700-4] Vol. 352: Chiasson, J.; Loiseau, J.J. (Eds.) Applications of Time Delay Systems 358 p. 2007 [978-3-540-49555-0] Vol. 351: Lin, C.; Wang, Q.-G.; Lee, T.H., He, Y. LMI Approach to Analysis and Control of Takagi-Sugeno Fuzzy Systems with Time Delay 204 p. 2007 [978-3-540-49552-9]Vol. 350: Bandyopadhyay, B.; Manjunath, T.C.; Umapathy, M. Modeling, Control and Implementation of Smart Structures 250 p. 2007 [978-3-540-48393-9] Vol. 349: Rogers, E.T.A.; Galkowski, K.; Owens, D.H. Control Systems Theory and Applications for Linear Repetitive Processes 482 p. 2007 [978-3-540-42663-9] Vol. 347: Assawinchaichote, W.; Nguang, K.S.; Shi P. Fuzzy Control and Filter Design for Uncertain Fuzzy Systems 188 p. 2006 [978-3-540-37011-6] Vol. 346: Tarbouriech, S.; Garcia, G.; Glattfelder, A.H. (Eds.) Advanced Strategies in Control Systems with Input and Output Constraints 480 p. 2006 [978-3-540-37009-3] Vol. 345: Huang, D.-S.; Li, K.; Irwin, G.W. (Eds.) Intelligent Computing in Signal Processing and Pattern Recognition 1179 p. 2006 [978-3-540-37257-8] Vol. 344: Huang, D.-S.; Li, K.; Irwin, G.W. (Eds.) Intelligent Control and Automation 1121 p. 2006 [978-3-540-37255-4] Vol. 341: Commault, C.; Marchand, N. (Eds.) Positive Systems 448 p. 2006 [978-3-540-34771-2] Vol. 340: Diehl, M.; Mombaur, K. (Eds.) Fast Motions in Biomechanics and Robotics 500 p. 2006 [978-3-540-36118-3] Vol. 339: Alamir, M. Stabilization of Nonlinear Systems Using Receding-horizon Control Schemes 325 p. 2006 [978-1-84628-470-0] Vol. 338: Tokarzewski, J. Finite Zeros in Discrete Time Control Systems 325 p. 2006 [978-3-540-33464-4] Vol. 337: Blom, H.; Lygeros, J. (Eds.) Stochastic Hybrid Systems 395 p. 2006 [978-3-540-33466-8] Vol. 336: Pettersen, K.Y.; Gravdahl, J.T.; Nijmeijer, H. (Eds.) Group Coordination and Cooperative Control 310 p. 2006 [978-3-540-33468-2] Vol. 335: Kozłowski, K. (Ed.) Robot Motion and Control 424 p. 2006 [978-1-84628-404-5] Vol. 334: Edwards, C.; Fossas Colet, E.; Fridman, L. (Eds.) Advances in Variable Structure and Sliding Mode Control 504 p. 2006 [978-3-540-32800-1] Vol. 333: Banavar, R.N.; Sankaranarayanan, V. Switched Finite Time Control of a Class of Underactuated Systems 99 p. 2006 [978-3-540-32799-8] Vol. 332: Xu, S.; Lam, J. Robust Control and Filtering of Singular Systems 234 p. 2006 [978-3-540-32797-4] Vol. 331: Antsaklis, P.J.; Tabuada, P. (Eds.) Networked Embedded Sensing and Control 367 p. 2006 [978-3-540-32794-3] Vol. 330: Koumoutsakos, P.; Mezic, I. (Eds.) Control of Fluid Flow 200 p. 2006 [978-3-540-25140-8] Vol. 329: Francis, B.A.; Smith, M.C.; Willems, J.C. (Eds.) Control of Uncertain Systems: Modelling, Approximation, and Design 429 p. 2006 [978-3-540-31754-8] Vol. 328: Loría, A.; Lamnabhi-Lagarrigue, F.; Panteley, E. (Eds.) Advanced Topics in Control Systems Theory 305 p. 2006 [978-1-84628-313-0] Vol. 327: Fournier, J.-D.; Grimm, J.; Leblond, J.; Partington, J.R. (Eds.) Harmonic Analysis and Rational Approximation 301 p. 2006 [978-3-540-30922-2] Vol. 326: Wang, H.-S.; Yung, C.-F.; Chang, F.-R. H∞ Control for Nonlinear Descriptor Systems 164 p. 2006 [978-1-84628-289-8] Vol. 325: Amato, F. Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters 180 p. 2006 [978-3-540-23950-5] Vol. 324: Christofides, P.; El-Farra, N. Control of Nonlinear and Hybrid Process Systems 446 p. 2005 [978-3-540-28456-7] Vol. 323: Bandyopadhyay, B.; Janardhanan, S. Discrete-time Sliding Mode Control 147 p. 2005 [978-3-540-28140-5] Vol. 322: Meurer, T.; Graichen, K.; Gilles, E.D. (Eds.) Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems 422 p. 2005 [978-3-540-27938-9] Vol. 321: Dayawansa, W.P.; Lindquist, A.; Zhou, Y. (Eds.) New Directions and Applications in Control Theory 400 p. 2005 [978-3-540-23953-6] Vol. 320: Steffen, T. Control Reconfiguration of Dynamical Systems 290 p. 2005 [978-3-540-25730-1]
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Dynamic Modeling, Predictive Control and Performance Monitoring رابط مباشر لتنزيل كتاب Dynamic Modeling, Predictive Control and Performance Monitoring
|
|