كتاب A Journey from Robot to Digital Human
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب A Journey from Robot to Digital Human

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18938
التقييم : 35320
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب A Journey from Robot to Digital Human Empty
مُساهمةموضوع: كتاب A Journey from Robot to Digital Human   كتاب A Journey from Robot to Digital Human Emptyالجمعة 06 سبتمبر 2024, 2:27 am

أخواني في الله
أحضرت لكم كتاب
A Journey from Robot to Digital Human
Modeling and Optimization in Science and Technologies
Mathematical Principles and Applications with MATLAB Programming
Edward Y.L. Gu

كتاب A Journey from Robot to Digital Human M_a_j_11
و المحتوى كما يلي :


Contents
List of Figures XIII
1 Introduction to Robotics and Digital Human
Modeling . 1
1.1 Robotics Evolution: The Past, Today and Tomorrow 1
1.2 Digital Human Modeling: History, Achievements and New
Challenges . 7
1.3 A Journey from Robot Analysis to Digital Human
Modeling 10
References . 12
2 Mathematical Preliminaries 15
2.1 Vectors, Transformations and Spaces 15
2.2 Lie Group and Lie Algebra 20
2.3 The Exponential Mapping and k–φ Procedure 23
2.4 The Dual Number, Dual Vector and Their Algebras . 29
2.4.1 Calculus of the Dual Ring . 32
2.4.2 Dual Vector and Dual Matrix 35
2.4.3 Unit Screw and Special Orthogonal Dual Matrix . 38
2.5 Introduction to Exterior Algebra . 40
2.6 Exercises of the Chapter 44
References . 47
3 Representations of Rigid Motion . 49
3.1 Translation and Rotation 49
3.2 Linear Velocity versus Angular Velocity . 58
3.3 Unified Representations between Position
and Orientation 63
3.4 Tangent Space and Jacobian Transformations 72
3.5 Exercises of the Chapter 77
References . 80
4 Robotic Kinematics and Statics 83
4.1 The Denavit-Hartenberg (D-H) Convention 83
4.2 Homogeneous Transformations for Rigid Motion 87X Contents
4.3 Solutions of Inverse Kinematics 93
4.4 Jacobian Matrix and Differential Motion 102
4.5 Dual-Number Transformations . 109
4.6 Robotic Statics . 115
4.7 Computer Projects and Exercises of the Chapter . 125
4.7.1 Stanford Robot Motions . 125
4.7.2 The Industrial Robot Model and Its Motions 128
4.7.3 Exercise Problems 129
References . 134
5 Redundant Robots and Hybrid-Chain Robotic
Systems 135
5.1 The Generalized Inverse of a Matrix 135
5.2 Redundant Robotic Manipulators . 137
5.3 Hybrid-Chain Robotic Systems . 156
5.4 Kinematic Modeling for Parallel-Chain Mechanisms . 165
5.4.1 Stewart Platform . 165
5.4.2 Jacobian Equation and the Principle of Duality 175
5.4.3 Modeling and Analysis of 3+3 Hybrid Robot
Arms . 184
5.5 Computer Projects and Exercises of the Chapter . 196
5.5.1 Two Computer Simulation Projects . 196
5.5.2 Exercise Problems 198
References . 202
6 Digital Mock-Up and 3D Animation for Robot Arms . 205
6.1 Basic Surface Drawing and Data Structure
in MATLABT M 205
6.2 Digital Modeling and Assembling for Robot Arms 215
6.3 Motion Planning and 3D Animation 220
6.4 Exercises of the Chapter 228
References . 229
7 Robotic Dynamics: Modeling and Formulations 231
7.1 Geometrical Interpretation of Robotic Dynamics . 231
7.2 The Newton-Euler Algorithm 236
7.3 The Lagrangian Formulation . 243
7.4 Determination of Inertial Matrix . 246
7.5 Configuration Manifolds and Isometric Embeddings . 257
7.5.1 Metric Factorization and Manifold Embedding . 257
7.5.2 Isometric Embedding of C-Manifolds 266
7.5.3 Combined Isometric Embedding and Structure
Matrix 270
7.5.4 The Minimum Isometric Embedding and
Isometrization . 272Contents XI
7.6 A Compact Dynamic Equation . 285
7.7 Exercises of the Chapter 288
References . 289
8 Control of Robotic Systems 293
8.1 Path Planning and Trajectory Tracking . 293
8.2 Independent Joint-Servo Control . 297
8.3 Input-Output Mapping and Systems Invertibility . 303
8.3.1 The Concepts of Input-Output Mapping and
Relative Degree 303
8.3.2 Systems Invertibility and Applications 309
8.4 The Theory of Exact Linearization and Linearizability 311
8.4.1 Involutivity and Complete Integrability . 311
8.4.2 The Input-State Linearization Procedure 313
8.4.3 The Input-Output Linearization Procedure 318
8.4.4 Dynamic Extension for I/O Channels . 324
8.4.5 Linearizable Subsystems and Internal Dynamics 327
8.4.6 Zero Dynamics and Minimum-Phase Systems 331
8.5 Dynamic Control of Robotic Systems . 345
8.5.1 The Theory of Stability in the Lyapunov Sense . 346
8.5.2 Set-Point Stability and Trajectory-Tracking
Control Strategy . 352
8.6 Backstepping Control Design for Multi-Cascaded
Systems . 355
8.6.1 Control Design with the Lyapunov Direct
Method . 355
8.6.2 Backstepping Recursions in Control Design 360
8.7 Adaptive Control of Robotic Systems . 369
8.8 Computer Projects and Exercises of the Chapter . 386
8.8.1 Dynamic Modeling and Control of a 3-Joint
Stanford-Like Robot Arm . 386
8.8.2 Modeling and Control of an Under-Actuated
Robotic System 388
8.8.3 Dynamic Modeling and Control of a Parallel-Chain
Planar Robot 389
8.8.4 Exercise Problems 390
References . 395
9 Digital Human Modeling: Kinematics and Statics 397
9.1 Local versus Global Kinematic Models and Motion
Categorization . 397
9.2 Local and Global Jacobian Matrices in a Five-Point
Model . 416
9.3 The Range of Motion (ROM) and the Range of Strength
(ROS) 422XII Contents
9.3.1 Basic Concepts of the Human Structural System . 422
9.3.2 An Overview of the Human Movement System . 423
9.3.3 The Range of Motion (ROM) and Joint Comfort
Zones . 426
9.3.4 The Joint Range of Strength (ROS) 429
9.4 Digital Human Statics 435
9.4.1 Joint Torque Distribution and the Law
of Balance . 435
9.4.2 Joint Torque Distribution due to Gravity 445
9.5 Posture Optimization Criteria 452
9.5.1 The Joint Comfort Criterion . 452
9.5.2 The Criterion of Even Joint Torque Distribution . 453
9.5.3 On the Minimum Effort Objective 463
9.6 Exercises of the Chapter 464
References . 465
10 Digital Human Modeling: 3D Mock-Up and Motion
Generation . 467
10.1 Create a Mannequin in MATLABT M . 467
10.2 Hand Models and Digital Sensing . 482
10.3 Motion Planning and Formatting . 496
10.4 Analysis of Basic Human Motions: Walking, Running and
Jumping 508
10.5 Generation of Digital Human Realistic Motions 512
10.6 Exercises of the Chapter 531
References . 532
11 Digital Human Modeling: Dynamics and Interactive
Control . 533
11.1 Dynamic Models, Algorithms and Implementation 533
11.2 δ-Force Excitation and Gait Dynamics 540
11.3 Digital Human Dynamic Motion in Car Crash
Simulations 543
11.4 Modeling and Analysis of Mannequin Dynamics in
Response to an IED Explosion . 554
11.5 Dynamic Interactive Control of Vehicle Active Systems 562
11.5.1 Modeling and Control of Active Vehicle Restraint
Systems . 562
11.5.2 An Active Suspension Model and Human-Machine
Interactive Control . 572
11.6 Future Perspectives of Digital Human Modeling 574
11.7 Exercises of the Chapter 576
References . 577
Index 579List of Figures
1.1 Married with a child 2
1.2 A Fanuc M-900iB/700 industrial robot in drilling
operation. Photo courtesy of Fanuc Robotics, Inc . 4
1.3 Robotics research and evolutions . 5
1.4 Important definitions in robotics . 8
2.1 Two parallel vectors have a common length 16
2.2 Problem 2 . 44
3.1 The webcam position and orientation . 52
3.2 Problem 1 . 77
3.3 Problem 3 . 78
4.1 Definition of the Denavit-Hartenberg (D-H) Convention . 84
4.2 A 6-joint Stanford-type robot arm 85
4.3 A curved path before and after the spline and pchip
interpolations 89
4.4 Example of the position and orientation path planning 90
4.5 Multi-configuration for a two-link arm 94
4.6 Two robot arms with their z-axes 96
4.7 The first and second I-K solutions for the Stanford arm . 99
4.8 The third and fourth I-K solutions for the Stanford arm . 99
4.9 The motion of link n superimposed by the motion
of link i . 103
4.10 An industrial robot model with coordinate frames
assignment 113
4.11 The Stanford-type robot is driving a screw into
a workpiece 116
4.12 A 3-joint RRR robot hanging a simple pendulum . 117
4.13 A robot arm is exerted by a force f and a moment m at
point C on the body 121XIV List of Figures
4.14 A block diagram of robotic hybrid position/force
control 125
4.15 A Stanford robot is sitting at the Home position and
ready to move and draw on a board . 126
4.16 The Stanford robot is drawing a sine wave on the board . 127
4.17 The industrial robot model at the Starting and Ending
positions 128
4.18 Robot 1 . 129
4.19 Robot 2 . 130
4.20 Robot 3 . 130
4.21 A 2-joint prismatic-revolute planar arm . 132
4.22 A 3-joint RPR robot arm 133
4.23 A beam-sliding 3-joint robot . 134
5.1 Geometrical decomposition of the general solution 138
5.2 A 7-joint redundant robot arm . 143
5.3 A 7-joint redundant robot arm . 144
5.4 A 7-joint redundant robot arm . 144
5.5 A 7-joint redundant robot arm . 145
5.6 A three-joint RRR planar redundant robot arm 146
5.7 Simulation results - only the rank (minimum-Norm)
solution . 147
5.8 Simulation results - both the rank and null solutions 148
5.9 The 7-joint robot arm is hitting a post when drawing
a circle 149
5.10 The 7-joint robot is avoiding a collision by
a potential function optimization . 149
5.11 A top view of the 7-joint redundant robot with a post and
a virtual point . 151
5.12 The Stanford-type robot arm is sitting on a wheel mobile
cart . 155
5.13 A hybrid-chain planar robot . 157
5.14 Stewart platform - a typical 6-axis parallel-chain system . 157
5.15 A 7-axis dexterous manipulator RRC K-1207 and a
dual-arm 17-axis dexterous manipulator RRC K-2017.
Photo courtesy of Robotics Research Corporation,
Cincinnati, OH . 158
5.16 Kinematic model of the two-arm 17-joint hybrid-chain
robot . 159
5.17 A two-robot coordinated system 163
5.18 A Nao-H25 humanoid robotic system. Photo courtesy of
Aldebaran Robotics, Paris, France 164
5.19 A 6-axis 6-6 parallel-chain hexapod system 165
5.20 Kinematic model of a 3-3 Stewart platform 167List of Figures XV
5.21 Solution to the forward kinematics of the Stewart
platform 169
5.22 The definitions of pi 6’s on the top mobile disc. They are
also applicable to pi 0’s on the base disc of the 6-6 Stewart
platform . 178
5.23 Two types of the 3-parallel mechanism 184
5.24 Kinematic analysis of a 3-leg UPS platform 186
5.25 Top revolute-joint configurations . 187
5.26 Solve the I-K problem for a 3+3 hybrid robot 191
5.27 Delta URR vs. UPR 3-leg parallel system 194
5.28 A three-joint RPR planar robot arm 197
5.29 A 3+3 hybrid robot in rectangle configuration . 198
5.30 A 4-joint beam-hanging PRRP robot . 199
5.31 An RRP 3-joint planar robot to touch a bowl 199
5.32 An RPR 3-joint planar robot 200
5.33 A planar mechanism 200
5.34 Three parallel-chain systems . 201
6.1 Data structure of a cylinder drawing in MATLABT M . 206
6.2 Data structure of a sphere drawing in MATLABT M . 208
6.3 A diamond and an ellipsoid drawing in MATLABT M . 209
6.4 Create a rectangular surface in MATLABT M 210
6.5 Create a full torus surface in MATLABT M 211
6.6 Create a half torus surface in MATLABT M 212
6.7 Making a local deformation for a cylindrical surface in
MATLABT M 213
6.8 Sending an object from the base to a desired
destination 214
6.9 D-H modeling of the 7-joint redundant robot . 215
6.10 A Stewart platform and coordinate frames assignment 218
6.11 The Stewart platform in motion 222
6.12 A two-arm robot at its Home position . 223
6.13 A two-arm robot is picking up a disc from the floor . 223
6.14 A two-arm robot is hanging the disc on the wall 224
6.15 A 3+3 hybrid robot with equilateral triangle configuration
at its Home position 225
6.16 The 3+3 hybrid robot with equilateral triangle
configuration starts drawing a sine wave . 226
6.17 The 3+3 hybrid robot with equilateral triangle
configuration ends the drawing . 227
6.18 A 3+3 hybrid robot with rectangle configuration at its
Home position . 227
6.19 The 3+3 hybrid robot in rectangle configuration is
reaching a wall . 228XVI List of Figures
7.1 Two 6-revolute-joint industrial robots: Fanuc R-2000iB
(left) and Fanuc M-900iA (right). Photo courtesy of Fanuc
Robotics, Inc . 234
7.2 RR-type and RP-type 2-link robots . 234
7.3 C-manifolds for RR-type and RP-type 2-link robots . 235
7.4 A rigid body and its reference frame changes . 239
7.5 Getting-busier directions for kinematics and dynamics 240
7.6 Force/torque analysis of link i 241
7.7 Velocity analysis of a three-joint planar robot arm 247
7.8 An inertial matrix W is formed by stacking every Wj
together . 251
7.9 Axes assignment of the three-joint planar robot 251
7.10 The cylindrical and spherical local coordinate systems . 259
7.11 Different mapping cases from S1 to Euclidean spaces 263
7.12 A 2D torus T 2 situated in Euclidean spaces R3 and R2 263
7.13 A planar RR-type arm and its C-manifold as a flatted
torus 264
7.14 The first and second of four I-K solutions for a Stanford
arm . 274
7.15 The third and forth of four I-K solutions for a Stanford
arm . 274
7.16 An inverted pendulum system 278
7.17 The minimum embeddable C-manifold of the inverted
pendulum system . 278
7.18 An RRR-type planar robot and its multi-configuration 280
8.1 A joint path example without and with cubic spline
function . 295
8.2 Joint position and velocity profiles for the second spline
function . 296
8.3 A DC-motor electrical and mechanical model 298
8.4 A block diagram of the DC-motor model 300
8.5 A block diagram of DC-motor position-feedback control . 301
8.6 A block diagram for an input-state linearized system 316
8.7 A block diagram for an input-output linearized
trajectory-tracking system . 323
8.8 A block diagram for a partially input-output linearized
system 329
8.9 The block diagram of a single feedback loop . 333
8.10 Model a ball-board control system using the robotic D-H
convention . 334
8.11 The ball is at an initial position to start tracking a sine
wave on the board 341
8.12 The ball is catching up the track at early time . 341List of Figures XVII
8.13 The ball is now on the track by controlling the board
orientation 341
8.14 The ball is well controlled to continue tracking the sine
wave on the board 342
8.15 The ball is successfully reaching the end of the sine wave
on the board . 342
8.16 An energy-like function V (x) and a V -lifted trajectory 348
8.17 A flowchart of the backstepping control design approach . 365
8.18 A flowchart of backstepping control design for a k-cascaded
dynamic system 369
8.19 A block diagram of adaptive control design 372
8.20 An RRP type three-joint robot arm . 378
8.21 The simulation results with M3 as the minimum
embeddable C-manifold . 385
8.22 A 3-joint Stanford-like robot arm . 386
8.23 A 2-joint robot arm sitting on a rolling log 388
8.24 A 3-piston parallel-chain planar robot . 389
8.25 A block diagram of the DC-motor in driving a robotic
link . 391
9.1 Major joints and types over an entire human body 398
9.2 The real human vertebral column and its modeling . 399
9.3 A block diagram of digital human joint distribution . 400
9.4 Coordinate frame assignment on a digital mannequin . 402
9.5 The left arm of a digital mannequin is manually
maneuvered by a local I-K algorithm with at least two
distinct configurations 412
9.6 A block diagram of the five-point model . 421
9.7 Shoulder abduction and its clavicle joint combination
effect . 424
9.8 Hip flexion and abduction with joint combination effects
to the trunk flexion and lateral flexion 425
9.9 Two-joint muscles on the arm and leg . 425
9.10 The angles of human posture in sagittal plane
for a joint strength prediction 433
9.11 A closed boundary for the shoulder ROM and ROS in a
chart of joint torque vs. joint angle . 435
9.12 Analysis of mannequin force balance in standing
posture . 437
9.13 Two arms and torso joint torque distribution in standing
posture . 438
9.14 A complete joint torque distribution in standing posture . 440
9.15 Analysis of mannequin force balance in sitting posture 441
9.16 Analysis of mannequin force balance in kneeling posture . 441XVIII List of Figures
9.17 The joint torque distribution over two arms and torso in
sitting posture . 442
9.18 A complete joint torque distribution in sitting posture 443
9.19 The joint torque distribution over two arms and torso in
kneeling posture 444
9.20 A complete joint torque distribution in kneeling posture . 445
9.21 A digital human skeleton model with segment
numbering . 447
9.22 A mannequin is in neutral standing posture and ready to
pick an object 450
9.23 A 47-joint torque distribution due to gravity in neutral
standing posture . 450
9.24 A 47-joint torque distribution due to gravity in standing
posture before the balance . 451
9.25 A 47-joint torque distribution due to gravity after
balancing the reaction forces . 451
9.26 Mannequin postures in picking up a load without and
with optimization 459
9.27 A joint torque distribution due to weight-lift without and
with optimization 460
9.28 A complete joint torque distribution with and without
optimization . 460
9.29 The mannequin postures in placing a load on the overhead
shelf without and with optimization 461
9.30 A joint torque distribution in
placing a load with and without
optimization . 461
9.31 A complete joint torque distribution with and without
optimization . 462
10.1 A digital human head model . 468
10.2 A face picture for texture-mapping onto the surface of a
digital human head model . 469
10.3 A digital human abdomen/hip model . 475
10.4 A digital human torso model . 476
10.5 A digital human upper arm/forearm model 476
10.6 A digital human thigh/leg model . 477
10.7 Three different views of the finally assembled digital
human model 480
10.8 A skeletal digital mannequin in dancing . 483
10.9 A block diagram for the right hand modeling and reversing
the order for the left hand . 483
10.10 The joint/link coordinate frame assignment for hand
modeling based on the D-H convention 484List of Figures XIX
10.11 The right hand digital model with a ball-grasping
gesture 488
10.12 The left hand digital model with a ball-grasping gesture . 488
10.13 A digital hand model consists of various drawing
components 490
10.14 The right hand is going to grasp a big ball . 493
10.15 A walking z-coordinates profile for the hands and feet
from a motion capture 498
10.16 A walking x-coordinates profile for the feet from a motion
capture . 499
10.17 A walking x-coordinates profile for the hands from a
motion capture . 499
10.18 A walking x-coordinates profile for the feet created by a
numerical algorithm 501
10.19 A walking x-coordinates profile for the hands created by a
numerical algorithm 502
10.20 A walking z-coordinates profile for both the feet and
hands created by a numerical algorithm . 502
10.21 z-trajectories in a running case for the feet and hands
created by a numerical model 503
10.22 A digital human in walking 504
10.23 A digital human in running 504
10.24 z-trajectories in a jumping case for the feet and hands by
a motion capture . 505
10.25 x-trajectories in a jumping case for the two feet by a
motion capture . 505
10.26 x-trajectories in a jumping case for the two hands by a
motion capture . 506
10.27 x and z-trajectories in a jumping case for the H-triangle
by a motion capture 506
10.28 A digital human in jumping . 507
10.29 A relation diagram between the human centered frame
and the world base . 511
10.30 A digital human in running and ball-throwing 513
10.31 A digital human in ball-throwing . 513
10.32 A digital human in ball-throwing . 514
10.33 A digital human is climbing up a stair 514
10.34 A digital human is climbing up a stair and then jumping
down . 515
10.35 A digital human is jumping down from the stair 515
10.36 A digital human in springboard diving 516
10.37 A digital human in springboard diving 516
10.38 A digital human in springboard diving 517
10.39 A digital human in springboard diving 517
10.40 A digital human is walking and getting into a car . 518XX List of Figures
10.41 A digital human is getting into the car 518
10.42 A digital human is getting and seating into the car . 518
10.43 z-trajectories in the ball-throwing case for the feet and
hands by the motion capture . 519
10.44 x-trajectories in the ball-throwing case for the two feet by
the motion capture . 519
10.45 x-trajectories in the ball-throwing case for the two hands
by the motion capture 520
10.46 x and z-trajectories in the ball-throwing case for the
H-triangle by the motion capture . 520
10.47 z-trajectories in the stair-climbing/jumping case for the
feet and hands by the motion capture . 521
10.48 x-trajectories in the stair-climbing/jumping case for the
two feet by the motion capture . 522
10.49 x-trajectories in the stair-climbing/jumping case for the
two hands by the motion capture . 523
10.50 x and z-trajectories in the stair-climbing/jumping case for
the H-triangle by the motion capture . 523
10.51 x-trajectories in the springboard diving case for the two
feet by a math model . 524
10.52 x-trajectories in the springboard diving case for the two
hands by a math model . 525
10.53 z-trajectories in the springboard diving case for the two
feet and two hands by a math model 525
10.54 x-trajectories in the ingress case for the two feet by a
math model . 527
10.55 x-trajectories in the ingress case for the two hands by a
math model . 528
10.56 y-trajectories in the ingress case for the two feet by a
math model . 528
10.57 y-trajectories in the ingress case for the two hands by a
math model . 529
10.58 z-trajectories in the ingress case for the two feet and two
hands by a math model . 529
11.1 A structure of digital human dynamic model and motion
drive 535
11.2 Dynamic balance in standing case and δ-force excitation
in a walking case . 541
11.3 Dynamic balance and δ-force excitation in
a running case . 542
11.4 A frontal collision acceleration profile as a vehicle speed at
45 mph . 544
11.5 The mannequin forgets wearing an upper seat belt before
the vehicle crashes at 45 mph 546List of Figures XXI
11.6 At the moment of collision, the mannequin’s chest Hits
the steering wheel 547
11.7 After the chest impact, the head immediately follows to
hit the steering wheel . 547
11.8 The mannequin’s head is bouncing back after hitting the
steering wheel 548
11.9 With the momentum of bouncing back, the mannequin’s
head and back hit the car seat back . 548
11.10 The mannequin now wears both upper and lower seat
belts and drives the car at 45 mph 549
11.11 After a frontal impact occurs, the mannequin’s chest hits
the activated frontal airbag 549
11.12 With the airbag, the mannequin’s chest and head are
protected from the deadly hit 550
11.13 Under an active restraint control, the mannequin is much
safer in a crash accident . 550
11.14 With the active restraint control, severe bouncing back to
hit the car seat back is also avoided . 551
11.15 The lumbar, thorax and head accelerations in Case 1 . 552
11.16 The lumbar, thorax and head accelerations in Case 2 . 552
11.17 The lumbar, thorax and head accelerations in the case
with active restraint control . 553
11.18 The control inputs in the case with an active restraint
system 553
11.19 The acceleration profile of an IED explosion underneath
the vehicle seat . 554
11.20 A digital warfighter is sitting in a military vehicle with a
normal posture . 556
11.21 An IED explosion blasts the vehicle and bounces up the
mannequin 557
11.22 The explosion makes the mannequin further jump up . 557
11.23 The head would severely hit the steering wheel without
any protection in response to the IED explosion 558
11.24 The digital warfighter is sitting with a 200 turning angle
before an IED explodes . 558
11.25 The digital warfighter body is not only bouncing up, but
also starting leaning off . 559
11.26 The digital warfighter is further leaning away 559
11.27 The digital warfighter is struggling and finally falling
down from the seat . 560
11.28 Three joint accelerations of the neck vs. time under an
initial normal posture . 561XXII List of Figures
11.29 Three joint accelerations of the neck vs. time under an
initial posture with a 200 turning angle 561
11.30 A typical seat-belt restraint system . 563
11.31 A complete block diagram for the active restraint control
system 568
11.32 A digital human drives a car with an active suspension
system 572
11.33 A future integration in research and development of digital
human modeling . 574


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب A Journey from Robot to Digital Human
رابط مباشر لتنزيل كتاب A Journey from Robot to Digital Human
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب A Journey from Robot to Digital Human
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management Human Body, Motion and Behavior
» كتاب Making Your CAM Journey Easier with Fusion 360
» كتاب Making Your CAM Journey Easier with Fusion 360
» كتاب Getting Started with 3D Carving - Five Step-by-Step Projects to Launch You on Your Maker Journey
» كتاب Human Response to Vibration

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: