Admin مدير المنتدى
عدد المساهمات : 18938 التقييم : 35320 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Fundamentals of Finite Element Analysis - Linear Finite Element Analysis الجمعة 06 سبتمبر 2024, 2:21 am | |
|
أخواني في الله أحضرت لكم كتاب Fundamentals of Finite Element Analysis - Linear Finite Element Analysis Ioannis Koutromanos Department of Civil and Environmental Engineering Virginia Polytechnic Intitute and State University Blacksburg, VA, United States With single-chapter contributions from: James McClure Advanced Research Computing Virginia Polytechnic Institute and State University Blacksburg, VA, United States Christopher Roy Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University Blacksburg, VA, United States
و المحتوى كما يلي :
Contents Preface xiv About the Companion Website xviii 1 Introduction 1 1.1 Physical Processes and Mathematical Models 1 1.2 Approximation, Error, and Convergence 3 1.3 Approximate Solution of Differential Equations and the Finite Element Method 5 1.4 Brief History of the Finite Element Method 6 1.5 Finite Element Software 8 1.6 Significance of Finite Element Analysis for Engineering 8 1.7 Typical Process for Obtaining a Finite Element Solution for a Physical Problem 12 1.8 A Note on Linearity and the Principle of Superposition 14 References 16 2 Strong and Weak Form for One-Dimensional Problems 17 2.1 Strong Form for One-Dimensional Elasticity Problems 17 2.2 General Expressions for Essential and Natural B.C. in One-Dimensional Elasticity Problems 23 2.3 Weak Form for One-Dimensional Elasticity Problems 24 2.4 Equivalence of Weak Form and Strong Form 28 2.5 Strong Form for One-Dimensional Heat Conduction 32 2.6 Weak Form for One-Dimensional Heat Conduction 37 Problems 44 References 46 3 Finite Element Formulation for One-Dimensional Problems 47 3.1 Introduction—Piecewise Approximation 47 3.2 Shape (Interpolation) Functions and Finite Elements 51 3.3 Discrete Equations for Piecewise Finite Element Approximation 59 3.4 Finite Element Equations for Heat Conduction 66 3.5 Accounting for Nodes with Prescribed Solution Value (“Fixed” Nodes) 67 3.6 Examples on One-Dimensional Finite Element Analysis 68 3.7 Numerical Integration—Gauss Quadrature 91 3.8 Convergence of One-Dimensional Finite Element Method 100 vii3.9 Effect of Concentrated Forces in One-Dimensional Finite Element Analysis 106 Problems 108 References 111 4 Multidimensional Problems: Mathematical Preliminaries 112 4.1 Introduction 112 4.2 Basic Definitions 113 4.3 Green’s Theorem—Divergence Theorem and Green’s Formula 118 4.4 Procedure for Multidimensional Problems 121 Problems 122 References 122 5 Two-Dimensional Heat Conduction and Other Scalar Field Problems 123 5.1 Strong Form for Two-Dimensional Heat Conduction 123 5.2 Weak Form for Two-Dimensional Heat Conduction 129 5.3 Equivalence of Strong Form and Weak Form 131 5.4 Other Scalar Field Problems 133 5.4.1 Two-Dimensional Potential Fluid Flow 133 5.4.2 Fluid Flow in Porous Media 137 5.4.3 Chemical (Molecular) Diffusion-Reaction 138 Problems 139 6 Finite Element Formulation for Two-Dimensional Scalar Field Problems 141 6.1 Finite Element Discretization and Piecewise Approximation 141 6.2 Three-Node Triangular Finite Element 148 6.3 Four-Node Rectangular Element 153 6.4 Isoparametric Finite Elements and the Four-Node Quadrilateral (4Q) Element 158 6.5 Numerical Integration for Isoparametric Quadrilateral Elements 165 6.6 Higher-Order Isoparametric Quadrilateral Elements 176 6.7 Isoparametric Triangular Elements 178 6.8 Continuity and Completeness of Isoparametric Elements 181 6.9 Concluding Remarks: Finite Element Analysis for Other Scalar Field Problems 183 Problems 184 References 188 7 Multidimensional Elasticity 189 7.1 Introduction 189 7.2 Definition of Strain Tensor 189 7.3 Definition of Stress Tensor 191 7.4 Representing Stress and Strain as Column Vectors—The Voigt Notation 193 7.5 Constitutive Law (Stress-Strain Relation) for Multidimensional Linear Elasticity 194 7.6 Coordinate Transformation Rules for Stress, Strain, and Material Stiffness Matrix 199 viii Contents7.7 Stress, Strain, and Constitutive Models for Two-Dimensional (Planar) Elasticity 202 7.8 Strong Form for Two-Dimensional Elasticity 208 7.9 Weak Form for Two-Dimensional Elasticity 212 7.10 Equivalence between the Strong Form and the Weak Form 215 7.11 Strong Form for Three-Dimensional Elasticity 218 7.12 Using Polar (Cylindrical) Coordinates 220 References 225 8 Finite Element Formulation for Two-Dimensional Elasticity 226 8.1 Piecewise Finite Element Approximation—Assembly Equations 226 8.2 Accounting for Restrained (Fixed) Displacements 231 8.3 Postprocessing 232 8.4 Continuity—Completeness Requirements 232 8.5 Finite Elements for Two-Dimensional Elasticity 232 8.5.1 Three-Node Triangular Element (Constant Strain Triangle) 233 8.5.2 Quadrilateral Isoparametric Element 237 8.5.3 Example: Calculation of Stiffness Matrix and Equivalent Nodal Forces for Four-Node Quadrilateral Isoparametric Element 245 Problems 251 9 Finite Element Formulation for Three-Dimensional Elasticity 257 9.1 Weak Form for Three-Dimensional Elasticity 257 9.2 Piecewise Finite Element Approximation—Assembly Equations 258 9.3 Isoparametric Finite Elements for Three-Dimensional Elasticity 264 9.3.1 Eight-Node Hexahedral Element 264 9.3.2 Numerical (Gaussian) Quadrature for Hexahedral Isoparametric Elements 272 9.3.3 Calculation of Boundary Integral Contributions to Nodal Forces 276 9.3.4 Higher-Order Hexahedral Isoparametric Elements 277 9.3.5 Tetrahedral Isoparametric Elements 277 9.3.6 Three-Dimensional Elements from Collapsed (Degenerated) Hexahedral Elements 280 9.3.7 Concluding Remark: Continuity and Completeness Ensured by ThreeDimensional Isoparametric Elements and Use for Other Problems 281 Problems 287 Reference 288 10 Topics in Applied Finite Element Analysis 289 10.1 Concentrated Loads in Multidimensional Analysis 289 10.2 Effect of Autogenous (Self-Induced) Strains—The Special Case of Thermal Strains 291 10.3 The Patch Test for Verification of Finite Element Analysis Software 294 10.4 Subparametric and Superparametric Elements 295 10.5 Field-Dependent Natural Boundary Conditions: Emission Conditions and Compliant Supports 296 10.6 Treatment of Nodal Constraints 302 Contents ix10.7 Treatment of Compliant (Spring) Connections Between Nodal Points 309 10.8 Symmetry in Analysis 311 10.9 Axisymmetric Problems and Finite Element Analysis 316 10.10 A Brief Discussion on Efficient Mesh Refinement 319 Problems 321 References 323 11 Convergence of Multidimensional Finite Element Analysis, Locking Phenomena in Multidimensional Solids and Reduced Integration 324 11.1 Convergence of Multidimensional Finite Elements 324 11.2 Effect of Element Shape in Multidimensional Analysis 327 11.3 Incompatible Modes for Quadrilateral Finite Elements 328 11.4 Volumetric Locking in Continuum Elements 332 11.5 Uniform Reduced Integration and Spurious Zero-Energy (Hourglass) Modes 337 11.6 Resolving the Problem of Hourglass Modes: Hourglass Stiffness 339 11.7 Selective-Reduced Integration 346 11.8 The B-bar Method for Resolving Locking 348 Problems 351 References 352 12 Multifield (Mixed) Finite Elements 353 12.1 Multifield Weak Forms for Elasticity 354 12.2 Mixed (Multifield) Finite Element Formulations 359 12.3 Two-Field (Stress-Displacement) Formulations and the Pian-Sumihara Quadrilateral Element 367 12.4 Displacement-Pressure (u-p) Formulations and Finite Element Approximations 370 12.5 Stability of Mixed u-p Formulations—the inf-sup Condition 374 12.6 Assumed (Enhanced)-Strain Methods and the B-bar Method as a Special Case 377 12.7 A Concluding Remark for Multifield Elements 381 References 382 13 Finite Element Analysis of Beams 383 13.1 Basic Definitions for Beams 383 13.2 Differential Equations and Boundary Conditions for 2D Beams 385 13.3 Euler-Bernoulli Beam Theory 388 13.4 Strong Form for Two-Dimensional Euler-Bernoulli Beams 392 13.5 Weak Form for Two-Dimensional Euler-Bernoulli Beams 394 13.6 Finite Element Formulation: Two-Node Euler-Bernoulli Beam Element 397 13.7 Coordinate Transformation Rules for Two-Dimensional Beam Elements 404 13.8 Timoshenko Beam Theory 408 13.9 Strong Form for Two-Dimensional Timoshenko Beam Theory 411 13.10 Weak Form for Two-Dimensional Timoshenko Beam Theory 411 13.11 Two-Node Timoshenko Beam Finite Element 415 13.12 Continuum-Based Beam Elements 417 13.13 Extension of Continuum-Based Beam Elements to General Curved Beams 424 x Contents13.14 Shear Locking and Selective-Reduced Integration for Thin Timoshenko Beam Elements 440 Problems 443 References 446 14 Finite Element Analysis of Shells 447 14.1 Introduction 447 14.2 Stress Resultants for Shells 451 14.3 Differential Equations of Equilibrium and Boundary Conditions for Flat Shells 452 14.4 Constitutive Law for Linear Elasticity in Terms of Stress Resultants and Generalized Strains 456 14.5 Weak Form of Shell Equations 464 14.6 Finite Element Formulation for Shell Structures 472 14.7 Four-Node Planar (Flat) Shell Finite Element 480 14.8 Coordinate Transformations for Shell Elements 485 14.9 A “Clever” Way to Approximately Satisfy C1 Continuity Requirements for Thin Shells—The Discrete Kirchhoff Formulation 500 14.10 Continuum-Based Formulation for Nonplanar (Curved) Shells 510 Problems 521 References 522 15 Finite Elements for Elastodynamics, Structural Dynamics, and Time-Dependent Scalar Field Problems 523 15.1 Introduction 523 15.2 Strong Form for One-Dimensional Elastodynamics 525 15.3 Strong Form in the Presence of Material Damping 527 15.4 Weak Form for One-Dimensional Elastodynamics 529 15.5 Finite Element Approximation and Semi-Discrete Equations of Motion 530 15.6 Three-Dimensional Elastodynamics 536 15.7 Semi-Discrete Equations of Motion for Three-Dimensional Elastodynamics 539 15.8 Structural Dynamics Problems 539 15.8.1 Dynamic Beam Problems 540 15.8.2 Dynamic Shell Problems 543 15.9 Diagonal (Lumped) Mass Matrices and Mass Lumping Techniques 546 15.9.1 Mass Lumping for Continuum (Solid) Elements 546 15.9.2 Mass Lumping for Structural Elements (Beams and Shells) 548 15.10 Strong and Weak Form for Time-Dependent Scalar Field (Parabolic) Problems 549 15.10.1 Time-Dependent Heat Conduction 549 15.10.2 Time-Dependent Fluid Flow in Porous Media 552 15.10.3 Time-Dependent Chemical Diffusion 554 15.11 Semi-Discrete Finite Element Equations for Scalar Field (Parabolic) Problems 555 15.12 Solid and Structural Dynamics as a “Parabolic” Problem: The State-Space Formulation 557 Problems 558 References 559 Contents xi16 Analysis of Time-Dependent Scalar Field (Parabolic) Problems 560 16.1 Introduction 560 16.2 Single-Step Algorithms 562 16.3 Linear Multistep Algorithms 568 16.3.1 Adams-Bashforth (AB) Methods 569 16.3.2 Adams-Moulton (AM) Methods 569 16.4 Predictor-Corrector Algorithms—Runge-Kutta (RK) Methods 569 16.5 Convergence of a Time-Stepping Algorithm 572 16.5.1 Stability of Time-Stepping Algorithms 572 16.5.2 Error, Order of Accuracy, Consistency, and Convergence 574 16.6 Modal Analysis and Its Use for Determining the Stability for Systems with Many Degrees of Freedom 583 Problems 587 References 587 17 Solution Procedures for Elastodynamics and Structural Dynamics 588 17.1 Introduction 588 17.2 Modal Analysis: What Will NOT Be Presented in Detail 589 17.2.1 Proportional Damping Matrices—Rayleigh Damping Matrix 592 17.3 Step-by-Step Algorithms for Direct Integration of Equations of Motion 594 17.3.1 Explicit Central Difference Method 595 17.3.2 Newmark Method 597 17.3.3 Hilber-Hughes Taylor (HHT or Alpha) Method 599 17.3.4 Stability and Accuracy of Transient Solution Algorithms 601 17.4 Application of Step-by-Step Algorithms for Discrete Systems with More than One Degrees of Freedom 608 Problems 613 References 613 18 Verification and Validation for the Finite Element Method 615 18.1 Introduction 615 18.2 Code Verification 615 18.2.1 Order of Accuracy Testing 616 18.2.2 Systematic Mesh Refinement 617 18.2.3 Exact Solutions 618 18.3 Solution Verification 622 18.3.1 Iterative Error 623 18.3.2 Discretization Error 624 18.4 Numerical Uncertainty 627 18.5 Sources and Types of Uncertainty 629 18.6 Validation Experiments 630 18.7 Validation Metrics 631 18.8 Extrapolation of Model Prediction Uncertainty 633 18.9 Predictive Capability 634 References 634 xii Contents19 Numerical Solution of Linear Systems of Equations 637 19.1 Introduction 637 19.2 Direct Methods 638 19.2.1 Gaussian Elimination 638 19.2.2 The LU Decomposition 639 19.3 Iterative Methods 640 19.3.1 The Jacobi Method 642 19.3.2 The Conjugate Gradient Method 642 19.4 Parallel Computing and the Finite Element Method 644 19.4.1 Efficiency of Parallel Algorithms 645 19.4.2 Parallel Architectures 647 19.5 Parallel Conjugate Gradient Method 649 References 653 Appendix A: Concise Review of Vector and Matrix Algebra 654 A.1 Preliminary Definitions 654 A.1.1 Matrix Example 655 A.1.2 Vector Equality 655 A.2 Matrix Mathematical Operations 656 A.2.1 Exterior Product 657 A.2.2 Product of Two Matrices 657 A.2.3 Inverse of a Square Matrix 660 A.2.4 Orthogonal Matrix 660 A.3 Eigenvalues and Eigenvectors of a Matrix 660 A.4 Rank of a Matrix 662 Appendix B: Review of Matrix Analysis for Discrete Systems 664 B.1 Truss Elements 664 B.2 One-Dimensional Truss Analysis 666 B.3 Solving the Global Stiffness Equations of a Discrete System and Postprocessing 671 B.4 The ID Array Concept (for Equation Assembly) 673 B.5 Fully Automated Assembly: The Connectivity (LM) Array Concept 680 B.6 Advanced Interlude—Programming of Assembly When the Restrained Degrees of Freedom Have Nonzero Values 682 B.7 Advanced Interlude 2: Algorithms for Postprocessing 683 B.8 Two-Dimensional Truss Analysis—Coordinate Transformation Equations 684 B.9 Extension to Three-Dimensional Truss Analysis 693 Problems 694 Appendix C: Minimum Potential Energy for Elasticity—Variational Principles 695 Appendix D: Calculation of Displacement and Force Transformations for Rigid-Body Connections 700 Index 706 Contents xiii Index a Adams-Bashforth (AB) methods 569, 578, 582 Adams-Moulton (AM) methods 569, 582 anisotropic material 194, 348 approximation finite difference 5, 13 (piecewise) finite element 13, 26, 47, 51, 54, 59, 104, 121, 130, 141, 212, 226, 232, 258, 264, 289, 295, 317, 319, 326, 353, 359, 367, 377 qualitative definition of 3, 574, 629 of weak form 28, 39 Argyris, J. 6, 153 assembly 64, 146, 226, 258, 305, 373, 381, 397, 417, 485, 532, 555, 588, 611, 670, 673, 680, 682, 689 autogenous strains 291, 294, 444 axisymmetry 220, 316 b B-bar method 348, 377 Belytschko, T. 92, 100, 104, 106, 155, 294, 339, 344, 603 bending 324, 328, 339, 343, 383, 391, 410, 441, 451, 454, 458, 460, 463, 467, 475, 501, 508 boundary conditions essential 21, 23, 26, 34, 38, 60, 67, 89, 105, 126, 136, 138, 208, 211, 220, 231, 257, 263, 306, 354, 359, 387, 393, 411, 414, 453, 471, 523, 526, 527, 529, 536, 538, 540, 543, 551, 552, 554, 555, 619, 621, 696, 697, 699 generalized (field-dependent) natural 296, 298 natural 21, 23, 24, 29, 32, 34, 42, 63, 66, 85, 114, 126, 133, 136, 138, 139, 143, 151, 157, 170, 176, 208, 210, 218, 220, 236, 242, 245, 276, 285, 301, 311, 315, 387, 393, 401, 408, 411, 453, 456, 469, 479, 484, 526, 529, 551, 554, 619 bulk modulus 334, 347 c calculus of variations 698 central difference method 595, 599, 605, 610 Chopra, A. 588, 589 Clough, R. 6, 7 coefficient matrix 25, 27, 40, 62, 64, 75, 91, 97, 130, 144, 162, 169, 178, 212, 230, 301, 363, 368, 374, 377, 379, 487, 555, 565, 585, 595 compatibility conditions 18, 191, 332 completeness 50, 91, 104, 147, 181, 232, 264, 281, 296, 325, 377, 396, 414, 622 compliant supports 296, 322 concentrated forces 106, 289 conductivity 34, 67, 127, 154, 164 conjugate gradient method 642, 649 connectivity array 673, 680 conservation laws 2, 33, 113, 124, 133, 137, 524, 549, 552, 624 consistency 474, 572, 574, 602 constraints 302, 311, 336, 464, 514, 704 continuity 6, 24, 26, 48, 91, 147, 159, 181, 189, 232, 264, 281, 325, 332, 365, 394, 399, 414, 448, 500 continuum-based structural elements beams 417, 424 shells 510 convergence conceptual definition of 3, 49, 91, 299 of mixed elements 374, 381 multi-dimensional analysis 147, 183, 277, 296, 324 one-dimensional analysis 100, 104 of time-stepping algorithms 572, 574, 577 coordinate transformation 199, 404, 485, 684, 693 curvature 390, 409, 451, 500 curved structural elements beams 424 shells 510 cylindrical coordinates 220 see also polar coordinates d damping (viscous) 524, 527, 537 damping matrix 534, 542, 588, 592 Darcy’s law 137, 552 density (mass) 133, 525, 536, 546 deviatoric stress/strain 332, 347, 371, 381 differential equations 1, 5, 12, 18, 22, 32, 34, 121, 125, 133, 136, 209, 218, 224, 336, 354, 371, 385, 411, 452, 523, 527, 536, 551, 557, 572, 618 diffusion 138, 554 Dirac delta 107, 289 direct methods (for systems of equations) 638 Discrete Kirchhoff theory (DKT) 500 distributed memory 647 e eigenvalue 200, 337, 579, 584, 586, 590, 603, 623, 660 elasticity 17, 189, 226, 257, 354, 456 embedded element constraints 306 emission boundary condition 296 equivalent right-hand-side vector 63, 145, 164, 178, 364, 561 error conceptual definition of 3, 50, 100, 133, 216, 306, 621, 629 iterative 623 norm 100, 104, 325, 616 in transient integration 572, 574, 604 Euler-Bernoulli beam theory 388 explicit methods 339, 561, 568, 595, 599 f fiber vector 417, 425, 511 Fick’s law 139 Fish, J. 92, 100, 104, 106, 155, 294 flow in porous media 137, 183, 552 Fourier’s law 34, 127, 550 functional 105, 356, 625, 696 g Galerkin, B. 32, 45 gather-scatter array 60, 143, 171, 228, 244, 300, 408, 531, 668, 669, 674 Gauss elimination 41, 638 Gaussian quadrature one-dimensional 91 two-dimensional 165 three-dimensional 272 generalized midpoint rule 562 generalized strains 392, 398, 410, 450, 456, 500 generalized stresses 392, 410, 460, 544 generalized trapezoidal rule 562, 573 gradient 116 Green’s formula 118 Green’s theorem 118 h heat conduction 32, 37, 66, 123, 141, 159, 181, 291, 296, 301, 314, 319, 549, 556, 566 Hellinger-Reissner principle 353, 358, 699 hexahedral element 264, 339 hourglass modes 337, 339 hourglass stiffness 339 Index 707Hughes, T. 177, 325, 336, 348, 381, 389, 426, 484, 510, 563, 575, 595, 599, 625 hybrid elements 508 i ID array 673, 680 implicit methods 561, 568, 569, 582, 595, 599, 625 incompatible modes 328, 332, 353 inf-sup condition 374 initial conditions 526, 535, 551, 558, 561, 565, 597, 610 integration by parts 25, 37, 112, 118, 120, 129, 394, 412 isoparametric element hexahedral 264, 280 quadrilateral 158, 237 tetrahedral 277 triangle 178, 235 isotropic material 127, 194, 198, 204, 212, 315, 321, 334, 342, 346, 348, 371, 381, 422, 458, 510, 544 iterative methods (for systems of equations) 640 j Jacobian determinant 165, 169, 180, 243, 275, 327, 483 Jacobian matrix (or Jacobian array) 161, 165, 169, 221, 235, 236, 240, 243, 269, 275, 368, 429, 482 Jacobi method 642 k Kirchhoff-Love theory 448, 500 Kronecker delta 52, 59, 148, 157, 161, 279, 291, 333 l Lagrange polynomials 56 Lamé’s constants 198, 334, 347 lamina 424, 430, 510, 513 LEFM, 328 linear elasticity 19, 189, 194, 231, 257, 297, 321, 456, 528, 698 linearization 14, 298 linearly elastic fracture mechanics see LEFM linear multistep methods (LMS) 568 link see rigid link LM array see connectivity array LU decomposition 639 m mapping 94, 151, 159, 179, 221, 235, 264, 279, 290, 295, 327, 368, 424, 481, 502, 511 mass matrix 532, 542, 546, 588 master node 302, 700 material stiffness matrix 194, 199, 236, 271, 316, 346, 358, 423, 456, 517 matrix algebra 654 membrane 187, 203, 447, 462, 467, 474, 501, 508 method of manufactured solutions (MMS) 618 mixed elements 353, 508 modulus of elasticity 206, 321, 334, 342, 392, 410, 458, 665, 693 monoclinic material 195 multidimensional problems 12, 141, 189, 226, 257, 289, 324, 536 multifield weak form 354, 699 n Newmark method 597, 604, 609 nullspace of matrix 663 numerical integration see Gaussian quadrature numerical stability 374, 572, 583, 601 numerical uncertainty 627 o order of accuracy 574, 604, 607, 616 orthogonality of modal vectors 585, 591, 661 orthogonal matrix 200, 660 orthotropic material 195, 204 p parallel computing efficiency of 645 architecture 647 parasitic shear stiffness 329, 353, 441 partition of unity property 53, 59, 148, 157, 160, 279 Pian-Sumihara element 367 708 Indexplane strain 203, 209, 291 plane stress 203, 209, 291, 320, 332, 417, 456, 516 Poisson’s ratio 196, 198 polar coordinates 220, 316 potential energy for elasticity 356, 695 pressure modes 376 principal stresses/strains in three dimensions 201 in two dimensions 205 proportional damping matrix 592 pseudo-code 681 q quadrature Gaussian see Gauss quadrature on tetrahedral 280 on triangles 180 quadrilateral element 158, 165, 176, 181, 237, 245, 296, 326, 328, 337, 348, 367 r rank (of a matrix) 642, 662 rank-deficiency 337, 348, 662 Rayleigh damping matrix 592 reduced integration uniform 337 selective 346, 381, 440, 521 refinement 47, 86, 103, 319, 327, 617, 625 Reissner-Mindlin shell theory 447, 460, 543 restraints 67, 314 Richardson extrapolation 626 rigid bar 304, 420, 514, 700 rigid link 302 Runge-Kutta (RK) methods 569 s Saint Venant’s principle 321 scatter array see gather-scatter array self-induced strains see autogenous strains serendipity element 176, 277, 326, 337, 348, 503, 547 shear modulus 196, 198, 389, 410 slave node 302, 700 shape functions 52, 95, 106, 130, 141, 150, 155, 160, 176, 181, 233, 237, 259, 265, 279, 290, 295, 307, 319, 325, 329, 359, 399, 415, 424, 472, 482, 503, 507, 530, 539, 625 shear locking 329, 440, 521 shells 337, 447 singularity 67, 328, 666 spurious zero-energy modes 337, 376 stability see numerical stability state-space formulation 557 static condensation 331, 591 stationary value of functional 698 stiffness matrix (for finite element analysis) 62, 66, 98, 230, 242, 262, 271, 293, 298, 304, 318, 330, 337, 342, 347, 366, 397, 404, 418, 422, 431, 441, 478, 485, 510, 519, 534, 592, 594, 611, 666, 670 strain 19, 27, 34, 50, 61, 103, 189, 194, 199, 224, 234, 257, 291, 313, 316, 319, 325, 332, 338, 346, 353, 359, 372, 377, 389, 396, 409, 422, 428, 440, 449, 456, 463, 474, 500, 516, 524, 665 strain energy 194, 338, 356, 695 stress 17, 27, 100, 191, 196, 200, 203, 212, 219, 233, 257, 291, 313, 316, 319, 325, 331, 348, 353, 358, 366, 371, 376, 381, 388, 396, 409, 417, 427, 447, 451, 456, 510, 516, 524, 528, 537, 625, 664, 695 stress resultants see generalized stresses strong form 17, 28, 32, 123, 131, 208, 215, 218, 392, 411, 452, 525, 527 superconvergent patch recovery (SPR) 626 symmetry in analysis 311 systematic mesh refinement 617 system response quantity (SRQ) 616 t temperature 1, 32, 36, 47, 66, 100, 123, 138, 141, 181, 291, 353, 523, 549, 555, 618 temperature-induced strains 291, 444 tensor 189, 191, 198, 205, 224, 332, 354, 368, 450, 537 thermal strains see temperature-induced strains tie constraints 307 time-dependent 523, 560, 588 time-stepping algorithm (step-by-step algorithm) 560, 566, 573, 583, 589, 594, 602, 608 Index 709Timoshenko beam theory 408, 411, 415, 440, 447 traction 20, 27, 208, 218, 233, 244, 270, 294, 298, 313, 318, 330, 354, 387, 396, 414, 456, 469, 520, 525, 619 transversely isotropic material 197 Turner, J. 6 u uncertainty 627, 629 uniform reduced integration see reduced integration v validation 295, 615, 630, 631 validation hierarchy 630 variational principles 28, 353, 358, 695 verification 294, 615, 622 virtual work 27, 214, 317, 356, 361, 372, 396, 412, 465, 471, 478, 502, 544 volumetric locking 332, 336, 346, 348, 351, 370, 442 volumetric strain 324, 332, 335, 346, 350, 371, 381 w weak form 24, 28, 37, 129, 212, 215, 257, 354, 394, 411, 464, 529, 549, 695 weighted residuals 32 y Young’s modulus 18, 34, 97, 194, 198, 402, 525, 664, 683 see also modulus of elasticity z Zero-energy modes
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Finite Element Analysis - Linear Finite Element Analysis رابط مباشر لتنزيل كتاب Fundamentals of Finite Element Analysis - Linear Finite Element Analysis
|
|