Admin مدير المنتدى
عدد المساهمات : 18938 التقييم : 35320 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Finite Element Analysis - Method, Verification and Validation الإثنين 26 أغسطس 2024, 11:25 am | |
|
أخواني في الله أحضرت لكم كتاب Finite Element Analysis - Method, Verification and Validation Second Edition Barna Szabó Washington University in St. Louis Ivo Babuška The University of Texas at Austin
و المحتوى كما يلي :
Contents Preface to the second edition xi Preface to the first edition xiii Preface xv About the companion website xvii 1 Introduction to the finite element method 1 1.1 An introductory problem 3 1.2 Generalized formulation 6 1.2.1 The exact solution 6 1.2.2 The principle of minimum potential energy 11 1.3 Approximate solutions 12 1.3.1 The standard polynomial space 13 1.3.2 Finite element spaces in one dimension 16 1.3.3 Computation of the coefficient matrices 17 1.3.4 Computation of the right hand side vector 20 1.3.5 Assembly 21 1.3.6 Condensation 24 1.3.7 Enforcement of Dirichlet boundary conditions 24 1.4 Post-solution operations 26 1.4.1 Computation of the quantities of interest 26 1.5 Estimation of error in energy norm 30 1.5.1 Regularity 30 1.5.2 A priori estimation of the rate of convergence 31 1.5.3 A posteriori estimation of error 32 1.5.4 Error in the extracted QoI 36 1.6 The choice of discretization in 1D 38 1.6.1 The exact solution lies in Hk(I), k − 1 > p 38 1.6.2 The exact solution lies in Hk(I), k − 1 ≤ p 39 1.7 Eigenvalue problems 42 1.8 Other finite element methods 46 1.8.1 The mixed method 47 1.8.2 Nitsche’s method 48 2 Boundary value problems 51 2.1 Notation 51 2.2 The scalar elliptic boundary value problem 53vi Contents 2.2.1 Generalized formulation 53 2.2.2 Continuity 55 2.3 Heat conduction 55 2.3.1 The differential equation 57 2.3.2 Boundary and initial conditions 58 2.3.3 Boundary conditions of convenience 59 2.3.4 Dimensional reduction 61 2.4 Equations of linear elasticity – strong form 67 2.4.1 The Navier equations 70 2.4.2 Boundary and initial conditions 71 2.4.3 Symmetry, antisymmetry and periodicity 72 2.4.4 Dimensional reduction in linear elasticity 73 2.4.5 Incompressible elastic materials 76 2.5 Stokes flow 78 2.6 Generalized formulation of problems of linear elasticity 78 2.6.1 The principle of minimum potential energy 80 2.6.2 The RMS measure of stress 82 2.6.3 The principle of virtual work 83 2.6.4 Uniqueness 84 2.7 Residual stresses 87 2.8 Chapter summary 89 3 Implementation 91 3.1 Standard elements in two dimensions 91 3.2 Standard polynomial spaces 91 3.2.1 Trunk spaces 91 3.2.2 Product spaces 92 3.3 Shape functions 93 3.3.1 Lagrange shape functions 93 3.3.2 Hierarchic shape functions 95 3.4 Mapping functions in two dimensions 97 3.4.1 Isoparametric mapping 97 3.4.2 Mapping by the blending function method 99 3.4.3 Mapping algorithms for high order elements 101 3.5 Finite element spaces in two dimensions 102 3.6 Essential boundary conditions 103 3.7 Elements in three dimensions 103 3.7.1 Mapping functions in three dimensions 105 3.8 Integration and differentiation 106 3.8.1 Volume and area integrals 106 3.8.2 Surface and contour integrals 107 3.8.3 Differentiation 108 3.9 Stiffness matrices and load vectors 109 3.9.1 Stiffness matrices 109 3.9.2 Load vectors 110 3.10 Post-solution operations 111Contents vii 3.11 Computation of the solution and its first derivatives 111 3.12 Nodal forces 113 3.12.1 Nodal forces in the h-version 113 3.12.2 Nodal forces in the p-version 115 3.12.3 Nodal forces and stress resultants 117 3.13 Chapter summary 117 4 Pre- and postprocessing procedures and verification 119 4.1 Regularity in two and three dimensions 119 4.2 The Laplace equation in two dimensions 120 4.2.1 2D model problem, uEX ∈ Hk(Ω), k − 1 > p 121 4.2.2 2D model problem, uEX ∈ Hk(Ω), k − 1 ≤ p 123 4.2.3 Computation of the flux vector in a given point 126 4.2.4 Computation of the flux intensity factors 128 4.2.5 Material interfaces 131 4.3 The Laplace equation in three dimensions 133 4.4 Planar elasticity 137 4.4.1 Problems of elasticity on an L-shaped domain 137 4.4.2 Crack tip singularities in 2D 139 4.4.3 Forcing functions acting on boundaries 142 4.5 Robustness 143 4.6 Solution verification 148 5 Simulation 155 5.1 Development of a very useful mathematical model 156 5.1.1 The Bernoulli-Euler beam model 156 5.1.2 Historical notes on the Bernoulli-Euler beam model 158 5.2 Finite element modeling and numerical simulation 159 5.2.1 Numerical simulation 159 5.2.2 Finite element modeling 160 5.2.3 Calibration versus tuning 163 5.2.4 Simulation governance 164 5.2.5 Milestones in numerical simulation 165 5.2.6 Example: The Girkmann problem 167 5.2.7 Example: Fastened structural connection 170 5.2.8 Finite element model 176 5.2.9 Example: Coil spring with displacement boundary conditions 180 5.2.10 Example: Coil spring segment 184 6 Calibration, validation and ranking 187 6.1 Fatigue data 187 6.1.1 Equivalent stress 188 6.1.2 Statistical models 189 6.1.3 The effect of notches 190 6.1.4 Formulation of predictors of fatigue life 190 6.2 The predictors of Peterson and Neuber 191viii Contents 6.2.1 The effect of notches – calibration 193 6.2.2 The effect of notches – validation 195 6.2.3 Updated calibration 197 6.2.4 The fatigue limit 199 6.2.5 Discussion 201 6.3 The predictor Gα 202 6.3.1 Calibration of ????(V, ????) 203 6.3.2 Ranking 204 6.3.3 Comparison of Gα with Peterson′s revised predictor 205 6.4 Biaxial test data 205 6.4.1 Axial, torsional and combined in-phase loading 206 6.4.2 The domain of calibration 208 6.4.3 Out-of-phase biaxial loading 210 6.5 Management of model development 218 6.5.1 Obstacles to progress 220 7 Beams, plates and shells 223 7.1 Beams 223 7.1.1 The Timoshenko beam 225 7.1.2 The Bernoulli-Euler beam 229 7.2 Plates 234 7.2.1 The Reissner-Mindlin plate 236 7.2.2 The Kirchhoff plate 240 7.2.3 The transverse variation of displacements 243 7.3 Shells 247 7.3.1 Hierarchic thin solid models 249 7.4 Chapter summary 254 8 Aspects of multiscale models 255 8.1 Unidirectional fiber-reinforced laminae 255 8.1.1 Determination of material constants 257 8.1.2 The coefficients of thermal expansion 258 8.1.3 Examples 258 8.1.4 Localization 261 8.1.5 Prediction of failure in composite materials 262 8.1.6 Uncertainties 263 8.2 Discussion 264 9 Non-linear models 265 9.1 Heat conduction 265 9.1.1 Radiation 265 9.1.2 Nonlinear material properties 266 9.2 Solid mechanics 266 9.2.1 Large strain and rotation 266 9.2.2 Structural stability and stress stiffening 270Contents ix 9.2.3 Plasticity 275 9.2.4 Mechanical contact 281 9.3 Chapter summary 287 Appendix A Definitions 289 A.1 Normed linear spaces, linear functionals and bilinear forms 289 A.1.1 Normed linear spaces 290 A.1.2 Linear forms 290 A.1.3 Bilinear forms 290 A.2 Convergence in the space X 291 A.2.1 The space of continuous functions 291 A.2.2 The space Lp(Ω) 291 A.2.3 Sobolev space of order 1 291 A.2.4 Sobolev spaces of fractional index 292 A.3 The Schwarz inequality for integrals 293 Appendix B Proof of h-convergence 295 Appendix C Convergence in 3D: Empirical results 297 Appendix D Legendre polynomials 301 D.1 Shape functions based on Legendre polynomials 302 Appendix E Numerical quadrature 303 E.1 Gaussian quadrature 303 E.2 Gauss-Lobatto quadrature 304 Appendix F Polynomial mapping functions 307 F.1 Interpolation on surfaces 308 F.1.1 Interpolation on the standard quadrilateral element 309 F.1.2 Interpolation on the standard triangle 309 Appendix G Corner singularities in two-dimensional elasticity 311 G.1 The Airy stress function 311 G.2 Stress-free edges 312 G.2.1 Symmetric eigenfunctions 313 G.2.2 Antisymmetric eigenfunctions 315 G.2.3 The L-shaped domain 315 G.2.4 Corner points 317 Appendix H Computation of stress intensity factors 319 H.1 Singularities at crack tips 319 H.2 The contour integral method 320 H.3 The energy release rate 321 H.3.1 Symmetric (Mode I) loading 322x Contents H.3.2 Antisymmetric (Mode II) loading. 323 H.3.3 Combined (Mode I and Mode II) loading. 323 H.3.4 Computation by the stiffness derivative method. 323 Appendix I Fundamentals of data analysis 325 I.1 Statistical foundations 325 I.2 Test data 326 I.3 Statistical models 328 I.4 Ranking 335 I.5 Confidence intervals 335 Appendix J Estimation of fastener forces in structural connections 337 Appendix K Useful algorithms in solid mechanics 341 K.1 The traction vector 341 K.2 Transformation of vectors 342 K.3 Transformation of stresses 343 K.4 Principal stresses 344 K.5 The von Mises stress 344 K.6 Statically equivalent forces and moments 345 K.6.1 Technical formulas for stress 348 Bibliography 351 Index 357xi Index a adaptive methods 38 ADINA 252 admissible functions 80, 84 Airy stress function 311 Almansi strain 181 analytic function 31, 289 angular velocity 43 antisymmetry 121 assembly 21 asymptotic consistency 237, 250 b Babuska-Brezzi condition 47 ̆ basis function 3 basis vectors curvilinear 247 Bayes factor 190, 335 Bayes’ theorem 325, 326 beam models 223 Bernoulli-Euler beam 229 Timoshenko beam 226 bending moment 235 Bernoulli-Euler beam model 156, 268 biharmonic equation 241, 311 bilinear form 7, 290 binormal 347 boundary condition 58 antisymmetric 9 antisymmetry 59, 72 convection 58 Dirichlet 8, 53, 54 displacement 71 essential 8, 53, 103 flux 58 homogeneous 53 kinematic 71 natural 9, 10, 53 Neumann 8, 53, 54 of convenience 53 periodic 9, 60, 72 radiation 265 Robin 9, 53, 54 symmetric 9 symmetry 59, 72 temperature 58 traction 71 Winkler spring 71 boundary layer 253 buckling load factor 273 c calculus of variations 12 calibration 160, 187, 330 calibration set 193 Cauchy stress 181 censored data 328 coefficient of convective heat transfer 58 of dynamic viscosity 78 of thermal conduction 57, 61, 64 of thermal conductivity 112 of thermal expansion 68 spring 71 coefficient of determination 194 coefficient of variation 194 coil spring 346 complex potentials 311 Finite Element Analysis: Method, Verification and Validation, Second Edition. Barna Szabó and Ivo Babuška. 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc. Companion Website: www.wiley.com/go/szabo/finite_element_analysis358 Index compliance matrix elastic-plastic 279 condensation 24 condition number 13, 41 confidence interval 335 conservation law 56 consistency 160 consistency condition 277 constant Stefan-Boltzmann 265 constraint rigid body 84 contact 281 contact zone 281 continuity 45, 55 C1 243 contour integral 108 contour integral method 130 contour plot 112 convergence 291 monotonic 81 radius of 121 coordinate space 289 coordinates Eulerian 266 Lagrangian 266 triangular 94 cross product 347 cumulative distribution function 329 marginal 207 cycle ratio 188 d d’Alembert’s principle 70 data analysis parametric 187, 325 degrees of freedom 17, 25 derivative fractional 30 design rules 2 diameter of an element 16 differential volume 106 differentiation 108 dimension 51 dimensional reduction 61 dipole problem 172 director functions 223, 247 Dirichlet, see boundary condition 53 discretization 2, 39 display grid 112 divergence theorem 52, 54, 79 domain of calibration 194 e effectivity index 125 eigenfunction Mode I, 313 Mode II, 313 eigenpair 43 eigenvalue 313 element eight-node quadrilateral 94 four-node quadrilateral 93 nine-node quadrilateral 94 six-node triangle 95 three-node triangle 95 element stiffness matrix 161 emissivity 265 endurance limit 189, 331 energy norm 7, 54, 292 energy release rate 140, 321 energy space 7 equations of motion 70 equations of static equilibrium 70 equilibrium dynamic 69 equivalence of norms 292 equivalent stress 188, 276 error a priori estimate 296 model form 3 numerical 2 of approximation 3 pollution 151 error estimation 33 asymptotic 31 essential infimum 289 essential supremum 289 Euler-Lagrange equation 12 evidence 326 extension p-version 151, 174Index 359 extraction 2 extraction function 27, 29, 117, 129, 179 f fastener 337 fatigue limit 189, 191, 199, 330, 331 fatigue strength 200, 331 field functions 223 finite element 16 hexahedral 104 pentahedral 104 standard quadrilateral 91 standard triangular 91 tetrahedral 104 finite element mesh 16 finite element method 3 h-version 166 p-version 166 finite element model 2 finite element space anisotropic 252 hierarchic 33 flank angle 192 flux heat 56, 59 vector 53 flux intensity factor 128 forcing function 3, 142 Fourier’s law 56 free body 179 frequency 43 function even 60 odd 60 functional quadratic 11 g Galerkin orthogonality 13 gap elements 283 generalized form 1 generalized solution 10, 55 uniqueness of 84 Girkmann problem 167 global number 23 grading factor 16 h h-extension 17 h-version 17 hierarchic spaces 150 highly stressed volume 203 Hilbert space 292 Hooke’s law 69, 158 generalized 69 hourglassing 162 hp-extension 17 hp-version 17 i incompressibility condition of 77 index notation 51 infimum 289 initial condition 58, 72 integration 106 interpolation 307 isoparametric mapping, see mapping 97 j Jacobian determinant 106 matrix 106, 112 inverse of 108 k Kronecker delta 51 l L-shaped domain 315 Lagrange polynomial 13 Lamé constants 69 Laplace equation 120 law of parsimony 175 Lebesque constant 105, 307 legacy codes 168 Legendre polynomial 13, 97, 301, 303 likelihood function 190, 330 likelihood ratio 198 linear form 7, 290 linear independence 5 linear space 290 Lobatto point 20360 Index locking 143, 253 shear 229 log likelihood 330 m mapping by blending functions 99, 307 high order elements 101 improper 107 inverse 100, 112 isoparametric 97, 101 linear isoparametric 97 proper 106 quadratic isoparametric 97 subparametric 97 superparametric 97 mapping function 17 marginal likelihood 326 marginalization 326, 332 material stiffness matrix 81 mathematical model 2, 155 hierarchic models 223 range of validity 159 Matlab 330 matrix Gram 19 mass 19 stiffness 18 maximum likelihood 189 maximum norm 307 mean optimal set 252, 308 median 196 membrane analogy 1 membrane force 234 mesh geometric 16 quasiuniform 16, 280 radical 16 uniform 16 Mode I eigenfunctions 313 model form error 171 model hierarchy 265 modulus of elasticity 68, 157 modulus of rigidity, see shear modulus 69 Mohr circle 236 moment of inertia 349 n NASTRAN 165 Navier equations 70 Neumann, see boundary condition 53 neutral axis 157 neutral plane 157 Newton-Raphson method 100, 112 Nitsche’s method 48 nodal displacement 161 nodal force 29, 113, 161 nodal set 307 node point 16 norm 290 L 2 166 energy 166 notch sensitivity 192, 194 notch sensitivity factor 202 nuisance parameter 326 numerical error 2 numerical simulation 2 p p-convergence 31 p-extension 17 p-version 17 path-independent integral 129 permutation symbol 52 physical reality 155 physics-based model 156 piecewise polynomials 243 plane strain 74 plane stress 237 plasticity 275 plates Kirchhoff plate 240 Reissner-Mindlin plate 236 Poisson’s equation 349 Poisson’s ratio 68 polar moment of inertia 350 pollution error, see error 151 posterior probability 326 potential energy 55, 80 sign of 12 potential flow 55 predicted median 333 predictor of fatigue life 187 pressure 78Index 361 principal direction 59 principal moments 236 principal stress 344 principal structural element 164 principle of minimum potential energy application to beams 224 application to plates 238 principle of virtual work 83 prior probability 326 probability Bayesian 325 frequentist 325 product rule 325, 332 product space 92, 95 anisotropic 250 profile likelihood 335 propping effect 172 pull-back polynomials 98 q QoI, see quantity of interest 2 quadrature 107, 303 Gauss-Lobatto 303, 304 Gaussian 303 qualified test record 193 quantile 333 quantity of interest 2, 26, 155, 170, 171, 187, 265 quarter point element 99 quasiuniform, see mesh 16 r radiation 58 random fatigue limit 189, 330 ranking 187 rate of convergence 148 algebraic 31 exponential 32 Rayleigh quotient 44 reduced integration 162 reduction factor 274 region of primary interest 150, 239 region of secondary interest 150 regularity 16, 30 representative volume element 191, 255 residual stress 87 resolvent set 271 Reynolds number 78 rigid body displacement 84 rotation 84, 102, 269 Robin, see boundary condition 53 robustness 143 rod 348 runout 188, 328, 330 s S-N curve 189, 330 S-N data 189, 328 Saint-Venants’s principle 185 scalar product 52 Schwarz inequality 37, 293 scope of calibration 202 of validation 205 secant modulus 278 seminorm 290 separation of variables 42 shadow function 137, 141 shape function 13, 161 hierarchic 15 shape function vector 109 shape functions 3-dimensional 104 Lagrange 93 shear correction factor 226, 227, 237, 238 shear force 234 shear modulus 69 shearing tractions 349 shell hierarchic models 247 hyperboloidal 252 structural 247 shell model Naghdi 248 Novozhilov-Koiter 249 shift theorem 32 simulation 1, 155 simulation governance 164, 167, 193, 205, 219 smart application 186 Sobolev space 291 solution verification 168362 Index solver direct 26 iterative 26 space energy 79 Euclidean 51 finite element 17, 102 infinite-dimensional 7 span 5, 12 spectrum 43, 271 continuous 271 point 271 spring rate 177 square integrable function 291 stability 47, 160 stability parameter 49 standard element 103 statical equivalence 345 stationary problems 57 statistical inference 325 steady state problems 57 Steklov method 133 stiffness matrix 18 elastic-plastic 279 Stokes equations 78 strain 157 Almansi 267 enginering shear 68 equivalent elastic 276 equivalent plastic 276 Green 268 infinitesimal 67 mechanical 69 normal 67 shear 67 thermal 69 total 69 volumetric 76 stress transformation of 344 resultant 226 stress concentration factor 190 fatigue 191 stress deviator tensor 344 stress intensity factor 139, 321 generalized 153 stress invariant 202 stress stiffening 181, 271 stress vector 341 StressCheck 51, 280 superconvergence 130, 182 supremum 289 surface finish 326 surface integral 108 survival function 207 symmetry 121 axial 65 t T-stress 139, 319 Taylor series 35 technical formulas 185 temperature absolute 58, 265 test function 80, 290 test section 188 test space 8, 9, 290 test stress 188 thin solid model 249, 268, 273 traction 71 traction vector 341 trial function 290 trial space 7, 9, 290 trunk space 91, 95 anisotropic 249 truss 160 tuning 164 twisting moment 235 u uncertainty 78 aleatory 163 uniqueness 9 v validation 166, 187, 195 validation metric 205 validation scenario 196Index 363 validation set 193, 196 variational crime 162 vector transformation of 342 verification 148, 166 data 119 solution 152 virtual displacement 83 virtual experimentation 265 virtual work 83 viscosity 78 von Mises stress 184, 189, 202, 276 von Mises yield criterion 345 w Winkler spring, see boundary condition 71
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Finite Element Analysis - Method, Verification and Validation رابط مباشر لتنزيل كتاب Finite Element Analysis - Method, Verification and Validation
|
|