Admin مدير المنتدى
عدد المساهمات : 18938 التقييم : 35320 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Practical Finite Element Analysis - For Mechanical Engineers الأحد 18 أغسطس 2024, 2:03 am | |
|
أخواني في الله أحضرت لكم كتاب Practical Finite Element Analysis - For Mechanical Engineers Dominique Madier
و المحتوى كما يلي :
FEA Analyst TABLE OF CONTENTS PREFACE 1 Chapter 1 DEFINING FINITE ELEMENT ANALYSIS 5 1.1 OVERVIEW 5 1.2 METHODS FOR SOLVING AN ENGINEERING PROBLEM . 6 1.3 THE DIFFERENT NUMERICAL METHODS . 7 1.4 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS (PDEs) . 8 1.5 WHAT IS FINITE ELEMENT ANALYSIS (FEA)? 10 Chapter 2 WORKING WITH FEA 17 2.1 FROM MATHEMATICS TO COMPUTER SCIENCE 17 2.2 THE MAGIC OF DISCRETIZATION 17 2.3 PRE-PROCESSING 20 2.4 SOLVING 20 2.4.1 DIRECT SOLVER 21 2.4.2 ITERATIVE SOLVER 22 2.5 POST-PROCESSING .22 2.6 FEA PROCESS SUMMARY .23 2.7 CAPABILITIES OF FEA SOFTWARE 27 2.8 HOW ACCURATE IS FEA? .29 2.8.1 CAD SIMPLIFICATION .29 2.8.2 DISCRETIZATION 29 2.8.3 MODELING OF THE JOINTS .30 2.8.4 MATERIAL 30 2.8.5 LOADING 30 2.8.6 BOUNDARY CONDITIONS .31 2.8.7 BEHAVIORS CAPTURED BY FEA 31 2.8.8 CONCLUSION 31 2.9 WHY DO FINITE ELEMENT ANALYSIS? .32 2.10 HOW CAN FEA HELP YOU? 33 2.11 WHAT IS NEEDED TO PERFORM AN FE SIMULATION? .33 Chapter 3 BECOMING AN FEA SPECIALIST 37 3.1 OVERVIEW 37 3.2 WHAT DO YOU NEED TO LEARN IN THE FEA FIELD? .38 3.3 GUIDELINES FOR FEA LEARNING .39 3.4 WHEEL OF STRUCTURAL FEA COMPETENCIES .42 3.5 CONCLUSION 42 Chapter 4 HISTORY OF FEA 45 4.1 THE PIONEERS 45 4.2 FEA TIMELINE .46 Chapter 5 BASIS OF FINITE ELEMENT METHOD THEORY 49 5.1 OVERVIEW 49 5.2 THE EQUILIBRIUM EQUATION .50PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 5.3 DISPLACEMENT METHOD 51 5.3.1 THREE CONDITIONS .51 5.3.2 STIFFNESS MATRIX 52 5.3.3 LINEAR SPRING MODEL 53 5.3.4 APPLICATION TO THE TWO-SPRING SYSTEM 55 5.3.5 APPLICATION TO THE FOUR-SPRING SYSTEM .58 5.3.6 APPLICATION TO A PARALLEL-SPRING SYSTEM 59 5.4 PRINCIPLE OF MINIMUM POTENTIAL ENERGY 60 5.5 ELEMENT STIFFNESS MATRIX FOR VARIOUS TOPOLOGIES 62 5.5.1 OVERVIEW .62 5.5.2 DEGREES OF FREEDOM 62 5.5.3 SHAPE FUNCTIONS .64 5.5.4 1D TRUSS ELEMENT .64 5.5.5 1D BEAM ELEMENT 73 5.5.6 2D ELEMENTS .75 5.5.7 3D SOLID ELEMENT 89 5.6 HOW IS THE STIFFNESS MATRIX ASSEMBLED? 91 5.6.1 MATRIX ASSEMBLY .91 5.6.2 TAKING ADVANTAGE OF SPARSITY AND SYMMETRY .95 5.6.3 BANDED MATRIX .96 5.6.4 SKYLINE MATRIX STORAGE 97 5.7 HOW ARE FEM EQUATIONS SOLVED? .99 5.7.1 DIRECT SOLUTION .99 5.7.2 ITERATIVE SOLUTION 101 Chapter 6 DEFINING YOUR FEA STRATEGY 105 6.1 OVERVIEW . 105 6.2 TIME . 106 6.3 THE 10 STEPS TO FOLLOW 106 6.4 EXPOSE THE PROBLEM . 107 6.5 DEFINE THE GOALS . 107 6.6 ANALYZE THE HISTORY . 108 6.8 EVALUATE THE BOUNDARIES AND SURROUNDING ENVIRONMENT 108 6.9 UNDERSTAND THE LOADING AND PREDICT THE LOAD PATH .109 6.10 SELECT THE ELEMENT TYPES AND MODEL SIZE .109 6.11 PREDICT THE FINAL RESULTS 109 6.12 REVIEW THE PLAN 110 6.13 14 QUESTIONS YOU SHOULD BE ABLE TO ANSWER BEFORE YOU BEGIN MODELING 110 6.14 LARGE-SCALE MODELING TECHNIQUES .111 6.15 CONCLUSION . 112 Chapter 7 THE LIBRARY OF ELEMENTS 115 7.1 OVERVIEW . 115 7.2 ELEMENT TYPES . 116 7.2.1 OVERVIEW 116 7.2.2 1D ELEMENTS 117 7.2.3 2D ELEMENTS 122 7.2.4 3D ELEMENTS 127 7.2.5 SPECIAL ELEMENTS . 129 7.3 ELEMENT SELECTION CRITERIA .130 7.3.1 ELEMENT TYPE 130PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 7.3.2 DEGREES OF FREEDOM . 130 7.3.4 COST . 131 7.3.5 ACCURACY 131 7.4 HOW TO CHOOSE THE RIGHT ELEMENT 131 7.4.1 PREDICT YOUR STRUCTURE’S BEHAVIOR 131 7.4.2 EXPERIMENT YOUR LIBRARY OF ELEMENTS 131 7.4.3 GEOMETRY SIZE AND SHAPE .131 7.4.4 ELEMENT ORDER: LINEAR OR QUADRATIC? .132 7.4.5 INTEGRATION SCHEME 135 7.4.6 CHOOSE THE ELEMENTS IN RELATION TO THE SOLUTION .140 7.4.7 RULES FOR SELECTING THE RIGHT ELEMENTS 140 7.5 SHEAR LOCKING . 141 7.5.1 WHAT IS SHEAR LOCKING? . 141 7.5.2 HOW TO PREVENT SHEAR LOCKING .142 7.6 HOURGLASSING . 143 7.6.1 WHAT IS HOURGLASSING? . 143 7.6.2 HOW TO PREVENT HOURGLASSING .144 7.7 EXAMPLES . 144 7.7.1 QUADRILATERAL ELEMENTS VS TRIANGULAR ELEMENTS 144 7.7.2 HIGHER ORDER TETRAHEDRAL ELEMENTS VS LOWER ORDER ELEMENTS (TET10 VS TET4) .146 7.7.3 EFFECT OF THE INTEGRATION SCHEME ON SHEAR LOCKING AND HOURGLASSING 150 Chapter 8 MESHING 153 8.1 OVERVIEW . 153 8.2 UNDERSTANDING ELEMENT BEHAVIOR .155 8.3 PLANNING THE MESHING . 155 8.3.1 STUDY THE GEOMETRY IN DETAIL .156 8.3.2 CLEAN UP THE GEOMETRY . 156 8.3.3 SELECT THE ELEMENT TYPES .156 8.4 SELECTING THE ELEMENT SIZE 157 8.4.1 FACTORS THAT INFLUENCE MESH SIZE 157 8.4.2 DEFLECTION, STIFFNESS, OR STRESS? 157 8.4.3 PREDICT AND MATCH THE DEFORMED SHAPE .157 8.4.4 MESHING OF CRITICAL REGIONS .158 8.4.5 KEEP IT SIMPLE WHEN THE DESIGN IS NOT MATURE .158 8.5 HOW TO DO MESH REFINEMENT .159 8.5.1 WHY DO MESH REFINEMENT? 159 8.5.2 THE MESH REFINEMENT PROCESS 159 8.5.3 ADVANTAGES AND DISADVANTAGES OF MESH REFINEMENT 159 8.5.4 EXAMPLES OF MESH REFINEMENT TECHNIQUES 160 8.5.5 CONVERGENCE STUDY METHODOLOGY .163 8.5.6 OVER WHAT DISTANCE IS THE MESH REFINED? 164 8.5.7 CAN YOU USE AN EXISTING CONVERGENCE STUDY IN OTHER MODELS? 165 8.5.8 THE DIFFERENT MESH REFINEMENT METRICS .165 8.5.9 CONVERGENCE STUDY GUIDELINES 166 8.5.10 EXAMPLE OF A CONVERGENCE STUDY 166 8.6 WHAT IS A PHYSICAL INTERFACE? 169 8.7 WHAT ARE THE PREFERRED SHAPES FOR 2D AND 3D MODELS? .169 8.8 HOW TO DO A MESH TRANSITION 170 8.8.1 MESH TRANSITION USING VARIOUS ELEMENT TYPES .170 8.8.2 MESH TRANSITION USING HIGHER ORDER ELEMENTS .171PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 8.8.3 MESH TRANSITION BETWEEN DISSIMILAR ELEMENT TYPES .171 8.9 1D MESHING RULES . 174 8.10 2D MESHING RULES . 174 8.10.1 WHY MESH IN 2D INSTEAD OF 3D? .174 8.10.2 THE MID-PLANE CONCEPT 175 8.10.3 THE TWO RULES OF MID-PLANE CREATION .176 8.10.4 VARIABLE THICKNESS . 176 8.10.5 COMPARISON BETWEEN LINEAR AND QUADRATIC ELEMENTS 177 8.10.6 RULES FOR MODELING HOLES AND FILLETS 179 8.10.7 HOW TO CHECK A 2D MESH 180 8.10.8 THE FOUR MOST COMMON 2D MESHING ERRORS 182 8.10.9 HOW TO IMPROVE YOUR 2D MESH QUALITY .183 8.10.10 OTHER RECOMMENDATIONS FOR 2D MESHING 183 8.11 3D MESHING RULES . 184 8.11.1 TETRAHEDRAL MESHING TECHNIQUES .184 8.11.2 RECOMMENDATIONS FOR TETRAHEDRAL MESHING .188 8.11.3 LINEAR VS QUADRATIC TETRAHEDRAL ELEMENTS 189 8.11.4 HOW TO CHECK A TETRAHEDRAL MESHING .189 8.11.5 HEXAHEDRAL MESHING TECHNIQUES .190 8.11.6 HOW TO CHECK HEXAHEDRAL MESHING .191 8.11.7 ARE YOU ACTUALLY FACED WITH A 3D PROBLEM? .192 Chapter 9 SETTING YOUR UNITS 195 9.1 CONSISTENT SYSTEMS OF UNITS 195 9.2 THE MASS PROBLEM . 196 9.3 WEIGHT AND MASS DENSITY OF COMMON MATERIALS 198 9.4 ENGINEERING UNITS FOR COMMON VARIABLES 199 Chapter 10 MATERIAL MODELING 201 10.1 OVERVIEW . 201 10.2 ISOTROPIC MATERIAL 201 10.2.1 DEFINING AN ISOTROPIC MATERIAL .201 10.2.2 STRESS AND STRAIN 202 10.2.3 STRESS-STRAIN CURVE . 202 10.2.4 PLASTIC AND ELASTIC STRAIN .203 10.2.5 STRAIN HARDENING . 204 10.2.6 STRESS-STRAIN CURVE USING THE RAMBERG-OSGOOD MODEL 206 10.2.7 STRESS-STRAIN CURVE USING THE HOLLOMON MODEL 207 10.2.8 TRUE STRESS AND STRAIN 208 10.2.9 SUMMARY OF THE TYPICAL BEHAVIORS OF METALLIC MATERIALS 209 10.3 TWO-DIMENSIONAL ORTHOTROPIC MATERIAL .210 10.4 TWO-DIMENSIONAL ANISOTROPIC MATERIAL .210 10.5 THREE-DIMENSIONAL ANISOTROPIC MATERIAL 211 10.6 THREE-DIMENSIONAL ORTHOTROPIC MATERIAL 211 Chapter 11 DEFINING LOADS AND BOUNDARY CONDITIONS 215 11.1 OVERVIEW . 215 11.2 WHAT IS A BOUNDARY CONDITION? .215 11.3 WHY DO WE NEED BOUNDARY CONDITIONS? .215 11.4 WHAT ROLE DO BOUNDARY CONDITIONS PLAY? 216 11.5 THE DIFFERENT TYPES OF BOUNDARY CONDITIONS .216PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 11.6 USING BOUNDARY CONDITIONS TO CONSTRAIN A MODEL .217 11.6.1 WHAT IS RIGID BODY MODE? 217 11.6.2 WHAT IS A MECHANISM? 218 11.6.3 HOW TO DETECT MECHANISMS IN AN FEA .219 11.6.4 CONSTRAINT TYPES . 219 11.6.5 WHAT ARE SINGLE-POINT CONSTRAINTS? .219 11.6.6 EXAMPLES OF CONSTRAINTS FOR 2D AND 3D PROBLEMS 221 11.6.7 COMPATIBILITY OF BOUNDARY CONDITIONS WITH ELEMENTS .222 11.6.8 CONSTRAINTS AND ENFORCED DISPLACEMENT 225 11.6.9 HOW TO USE BOUNDARY CONDITIONS TO MODEL SYMMETRY AND ANTI-SYMMETRY .225 11.7 INFLUENCE OF BOUNDARY CONDITIONS ON A SIMPLE PLATE MODEL 226 11.8 USING BOUNDARY CONDITIONS TO SIMPLIFY A PROBLEM 227 11.9 STRATEGY FOR PROPERLY DEFINING BOUNDARY CONDITIONS 229 11.9.1 BOUNDARY CONDITIONS ARE NEVER PERFECT 229 11.9.2 THE SEVEN QUESTIONS YOU SHOULD ANSWER TO SUCCESSFULLY DEFINE BOUNDARY CONDITIONS 229 11.9.3 STRATEGY 229 11.10 HOW TO CREATE ISOSTATIC RESTRAINTS .231 11.11 THE OVER-STIFFENING AND UNDER-STIFFENING PROBLEM 232 11.11.1 OVER-STIFFENING 232 11.11.2 UNDER-STIFFENING 235 11.12 HOW TO AVOID SINGULARITIES 237 11.12.1 WHAT IS A SINGULARITY? 237 11.12.2 RULES FOR AVOIDING SINGULARITIES .237 11.13 ABOUT SUPPORT STIFFNESS . 238 11.14 HOW TO LOAD A MODEL 238 11.14.1 LOADING TYPES 238 Chapter 12 RIGID BODY ELEMENTS AND MULTI-POINT CONSTRAINTS 241 12.1 OVERVIEW . 241 12.2 TERMINOLOGY 242 12.3 R-TYPE ELEMENTS . 243 12.3.1 INTRODUCTION TO R-TYPE ELEMENTS 243 12.3.2 SMALL DISPLACEMENT THEORY .244 12.3.3 TWO-NODE RIGID ELEMENT 244 12.3.4 N-NODE RIGID ELEMENT 248 12.3.5 INTERPOLATION ELEMENT 249 12.3.6 R-TYPE ELEMENT SUMMARY .264 12.4 MULTI-POINT CONSTRAINTS . 265 12.4.1 DEFINITION 265 12.4.2 SET UP AN MPC 265 12.4.3 EXAMPLE 1: CREATE A DISPLACEMENT EQUALITY RELATIONSHIP ON A PER DEGREE OF FREEDOM LEVEL .266 12.4.4 EXAMPLE 2: COMPUTE RELATIVE DISPLACEMENT 266 12.4.5 EXAMPLE 3: ENFORCE A SEPARATION BETWEEN NODES .267 12.4.6 EXAMPLE 4: AVERAGE MOTION .269 12.4.7 EXAMPLE 5: CREATE A LINEAR CONTACT BETWEEN NODES 269 12.4.8 EXAMPLE 6: CREATE A PRELOAD IN A 3D BOLT 269 12.4.9 KEY POINTS OF THE MPC 270 Chapter 13 MODELING BOLTED JOINTS 273 13.1 OVERVIEW . 273 13.2 DO YOU REALLY NEED TO MODEL THE BOLTS? 274PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 13.3 THE VARIOUS FINITE ELEMENT MODELING APPROACHES FOR BOLTED JOINTS .275 13.3.1 FASTENERS MODELED WITH RIGID ELEMENTS .275 13.3.2 FASTENERS MODELED WITH DISCRETE SPRING ELEMENTS .276 13.3.3 FASTENERS MODELED WITH BEAM ELEMENTS 277 13.3.4 FASTENERS MODELED WITH CONNECTORS .277 13.3.5 FASTENERS MODELED WITH THE RUTMAN METHOD 278 13.4 HOW TO CALCULATE THE SPRING FASTENER STIFFNESS 285 13.4.1 WHY CALCULATE THE FASTENER STIFFNESS? 285 13.4.2 AXIAL STIFFNESS . 286 13.4.3 SHEAR STIFFNESS . 286 13.4.4 BENDING STIFFNESS . 288 13.4.5 TORSIONAL STIFFNESS . 288 13.5 HOW TO CONNECT THE FASTENER ELEMENTS TO THE SURROUNDING MESH .289 13.5.1 CONNECT THE FASTENER WHEN THE HOLE IS MODELED 289 13.5.2 CONNECT THE FASTENER WHEN THE HOLE IS NOT MODELED 291 13.6 HOW TO CAPTURE THE PRYING EFFECT IN A BOLTED JOINT MODELED WITH A 1D SPRING .293 13.7 PIN JOINT MODELING APPROACH .299 13.8 BOLT PRELOAD 301 13.8.1 PRELOAD IN A 1D BOLT 301 13.8.2 PRELOAD IN A 3D BOLT 302 13.9 DISCUSSION 305 Chapter 14 MODELING CONTACT 307 14.1 OVERVIEW . 307 14.2 WHAT IS A CONTACT? . 308 14.2.1 INTRODUCTION 308 14.2.2 DEFINITIONS 309 14.2.3 CONTACT STRATEGY 309 14.2.4 CONTACT FORCE . 310 14.2.5 FRICTION FORCE . 311 14.2.6 LINEAR OR NONLINEAR? . 312 14.3 CONTACT TYPES . 312 14.3.1 POINT-TO-POINT LINEAR CONTACT .312 14.3.2 POINT-TO-POINT NONLINEAR CONTACT .313 14.3.3 GENERAL CONTACT . 314 14.4 CONTACT ANALYSIS PROCEDURE .315 14.4.1 THE TWO TYPES OF CONTACT INTERACTION 315 14.4.2 THE TWO TYPES OF CONTACT BODY 316 14.4.3 THE MASTER-SLAVE CONCEPT 316 14.4.4 CONTACT DETECTION . 317 14.4.5 CONTACT TOLERANCE AND DETECTION ALGORITHMS .319 14.4.7 SPECIFY THE CONTACT BETWEEN BODIES 322 14.4.6 INFLUENCE OF THE LOAD INCREMENT ON CONTACT DETECTION 322 14.5 GUIDELINES FOR DEFINING CONTACT .323 14.5.1 KEEP IT SIMPLE IN THE BEGINNING 323 14.5.2 DO NOT VARY THE MESH DENSITY VERY MUCH 323 14.5.3 PAY ATTENTION TO THE RIGID-DEFORMABLE CONTACT .324 14.5.4 MESH REQUIREMENTS 324 14.5.5 PENALTY-BASED CONTACT METHOD 325 14.5.6 PREVENTING RIGID BODY MOTION IN CONTACT SIMULATIONS 325 14.5.7 ISOLATE THE PROBLEMS . 326PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 14.5.8 INITIAL CONTACT . 326 14.5.9 AVOID CRACKS IN THE CONTACT SURFACES 329 14.5.10 CONTACT AT CORNERS . 329 14.5.11 MPCS INVOLVED IN CONTACT SURFACES 330 14.5.12 SELF-CONTACT 330 14.6 DO YOU REALLY NEED TO REPRESENT CONTACT IN YOUR SIMULATION? .330 14.6.1 ARE THERE BODIES IN CONTACT IN YOUR MODEL? 331 14.6.2 CAN A BODY TOUCH A RIGID SUPPORT IN THE MODEL? 331 14.6.3 IS THERE AN INITIAL CONTACT? .331 14.6.4 CAN YOU PREDICT WHERE THE CONTACT WILL BE? 332 14.7 EXAMPLES . 334 14.7.1 POINT-TO-POINT LINEAR CONTACT BETWEEN TWO NODES .334 14.7.2 POINT-TO-POINT LINEAR CONTACT ON A GROUNDED SURFACE .337 14.7.3 POINT-TO-POINT NONLINEAR CONTACT .339 14.7.4 GLUED CONTACT 341 14.7.5 TOUCHING CONTACT 342 14.7.6 CONTACT BETWEEN DEFORMABLE BODIES .344 14.7.7 DEFORMABLE-RIGID CONTACT 346 Chapter 15 SUBMODELING 349 15.1 WHAT IS SUBMODELING? . 349 15.2 WHY DO SUBMODELING? 350 15.3 HOW TO DO SUBMODELING 350 15.3.1 SUBMODEL A GLOBAL FEM 350 15.3.2 EXTRACT A PART OF THE GLOBAL FEM 350 15.4 TIPS AND HINTS FOR SUBMODELING 350 15.5 DISPLACEMENT-BASED SUBMODELING VS FORCE-BASED SUBMODELING .351 15.6 STATIC CONDENSATION . 353 15.6.1 FROM FEM TO MATRIX 353 15.6.2 TERMINOLOGY AND STATIC CONDENSATION CONCEPT .354 15.6.3 THE STATIC CONDENSATION PROCESS .355 15.6.4 STATIC CONDENSATION VALIDATION 358 15.6.5 LIMITATIONS OF THE STATIC CONDENSATION PROCESS 359 15.7 EXAMPLES OF SUBMODELING .360 15.7.1 SUBMODELING A GLOBAL FEM 360 15.7.2 SUBMODELING BY EXTRACTING A COMPONENT FROM THE GLOBAL FEM 364 15.7.3 SUBMODELING BY STATIC CONDENSATION .365 Chapter 16 VALIDATING AND CORRELATING YOUR FEA 373 16.1 OVERVIEW . 373 16.2 ACCURACY CHECKS 374 16.3 MATHEMATICAL VALIDITY CHECKS 376 16.3.1 BASIC CONCEPTS FOR UNDERSTANDING MATHEMATICAL CHECKS 377 16.3.2 MATHEMATICAL VALIDITY CHECK 1: FREE-FREE MODAL CHECK 381 16.3.3 MATHEMATICAL VALIDITY CHECK 2: UNIT GRAVITY CHECK .382 16.3.4 MATHEMATICAL VALIDITY CHECK 3: UNIT ENFORCED DISPLACEMENT CHECK 383 16.3.5 MATHEMATICAL VALIDITY CHECK 4: THERMAL EQUILIBRIUM CHECK .384 16.4 DEFORMATION CHECK . 385 16.5 HOW ACCURATE ARE THE HOT SPOTS? 385 16.6 CORRELATION 386 16.6.1 OBJECTIVE 386PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 16.6.2 STRAIN GAUGE MEASUREMENTS 386 16.6.3 TAP TESTING 388 16.6.4 VALIDATION FACTORS AND CORRELATION PLOT 388 16.7 MODEL CHECKOUT DOCUMENTATION .390 16.8 MATHEMATICAL VALIDITY CHECK EXAMPLE 395 16.8.1 EXAMPLE INTRODUCTION 395 16.8.2 FREE-FREE MODAL CHECK 397 16.8.3 UNIT GRAVITY CHECK . 402 16.8.4 UNIT ENFORCED DISPLACEMENT CHECK 404 Chapter 17 UNDERSTANDING FEA OUTPUTS 409 17.1 OVERVIEW . 409 17.2 STANDARD OUTPUTS 409 17.2.1 DEFORMED SHAPES 409 17.2.2 ELEMENT FORCE 410 17.2.3 STRESSES IN ELEMENTS . 422 17.2.4 PRINCIPAL STRESS OR VON MISES STRESS? .429 17.2.5 FORCES AT BOUNDARY CONDITIONS .430 17.2.6 FREE BODY DIAGRAM 431 17.3 THE BASIC RULES OF POST-PROCESSING .436 17.3.1 ANIMATE THE DISPLACEMENT FIRST 436 17.3.2 CONTOUR PLOTS 437 17.3.3 SELECT THE APPROPRIATE STRESS PLOT .437 17.3.4 EXTRAPOLATION 438 17.3.5 SELECT THE APPROPRIATE TYPE OF STRESS .441 17.3.6 DO NOT NEGLECT THE CONVERGENCE TEST .441 17.3.7 VALIDATE THE LINEAR ASSUMPTION 441 17.3.8 DO NOT CONFUSE FORCES AND FLOWS FOR 2D SHELL ELEMENTS 442 17.3.9 PAY ATTENTION TO COORDINATE SYSTEMS .442 17.3.10 ADJUSTING THE SCALE OF THE COLOR BAR .442 17.3.11 REPORT THE MAXIMUM STRESS LOCATION 443 17.3.12 TOP AND BOTTOM STRESSES FOR 2D SHELL ELEMENTS .443 17.3.13 GRAPH THE RESULTS . 444 17.3.14 INTERPRETATION OF RESULTS AND DESIGN MODIFICATIONS 445 17.3.15 EXPORT THE RESULTS IN REPORTS 445 17.3.16 USE THE READING ELEMENTS .445 17.3.17 VECTOR PLOT . 446 17.4 HOW TO DEAL WITH SINGULARITIES 447 17.4.1 ARE YOU INTERESTED IN RESULTS AROUND A SINGULARITY? 447 17.4.2 IMPACT OF A SINGULARITY 447 17.4.3 CAN I IGNORE SINGULARITIES? 447 17.4.4 HOW DO I AVOID A SINGULARITY DUE TO A POINT LOADING? .448 Chapter 18 IMPROVING YOUR PERFORMANCE COMPUTING 451 18.1 OVERVIEW . 451 18.2 CPU POWER AND CLOCK SPEED .452 18.3 MEMORY SIZE . 453 18.4 CACHE SIZE 453 18.5 HARD DRIVE SPEED 454 18.6 PARALLEL COMPUTING 454 18.6.1 OVERVIEW 454PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 18.6.2 PARALLEL COMPUTER ARCHITECTURES: SMP VS DMP 455 18.6.3 THE BASICS OF HIGH-PERFORMANCE COMPUTING (HPC) .456 18.7 WAYS TO SPEED UP YOUR SIMULATIONS .457 18.7.1 SYSTEM OPTIMIZATION . 457 18.7.2 MANAGE MEMORY . 458 18.7.3 OPTIMIZE THE OUTPUT REQUESTS .459 18.7.4 MAKE USE OF MULTIPLE CORES (SMP) 459 18.7.5 ABOUT HYPER-THREADING 459 Chapter 19 DOCUMENTING YOUR FEA 461 19.1 OVERVIEW . 461 19.2 MODEL DESCRIPTION . 462 19.3 GEOMETRY SOURCE 462 19.4 MODEL ASSUMPTIONS 463 19.5 SIMULATION PARAMETERS 464 19.6 VERIFICATION AND VALIDATION .464 Chapter 20 LINEAR STATIC ANALYSIS 467 20.1 OVERVIEW . 467 20.2 WHAT IS LINEAR STATIC ANALYSIS? 467 20.3 HOW TO SOLVE A LINEAR STATIC PROBLEM .468 20.4 CHARACTERISTICS OF A LINEAR ANALYSIS 469 20.4.1 LOAD-DISPLACEMENT RELATION .469 20.4.2 STRESS-STRAIN RELATION . 469 20.4.3 SCALABILITY . 469 20.4.4 SUPERPOSITION . 470 20.4.5 REVERSIBILITY AND LOAD HISTORY .470 20.4.6 SOLUTION SETTINGS . 470 20.5 EXAMPLES OF LINEAR STATIC ANALYSIS .470 20.5.1 CHARACTERISTICS OF A LINEAR STATIC ANALYSIS .470 20.5.2 HOW DOES MATERIAL AFFECT STRESS IN A LINEAR STATIC SOLUTION? .474 Chapter 21 NONLINEAR STATIC ANALYSIS 477 21.1 OVERVIEW . 477 21.2 WHAT IS A NONLINEAR SYSTEM? .478 21.3 CHARACTERISTICS OF A NONLINEAR ANALYSIS .479 21.3.1 LOAD-DISPLACEMENT RELATION .479 21.3.2 STRESS-STRAIN RELATION . 479 21.3.3 SCALABILITY . 479 21.3.4 SUPERPOSITION . 479 21.3.5 INITIAL STATE OF STRESS . 479 21.3.6 LOAD HISTORY . 479 21.3.7 REVERSIBILITY . 480 21.3.8 SOLUTION SETTINGS . 480 21.4 GEOMETRIC NONLINEARITY 480 21.4.1 SOURCES OF GEOMETRICAL NONLINEARITY .480 21.4.2 HOW DOES NONLINEAR GEOMETRY WORK? 481 21.4.3 DO YOU REALLY NEED A NONLINEAR GEOMETRIC ANALYSIS? .483 21.4.4 THE FOLLOWER LOAD CONCEPT 484 21.4.5 SMALL OR LARGE STRAIN? . 485 21.4.6 EXAMPLE OF GEOMETRIC NONLINEARITY .485PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 21.5 MATERIAL NONLINEARITY 487 21.5.1 YIELD CRITERIA . 487 21.5.2 HARDENING RULES . 488 21.5.3 MATERIAL MODELS . 489 21.5.4 ENGINEERING STRESS-STRAIN OR TRUE STRESS-STRAIN? .492 21.5.5 HOW DOES NONLINEAR MATERIAL WORK? 493 21.5.6 DO YOU REALLY NEED A NONLINEAR MATERIAL ANALYSIS? .495 21.6 BOUNDARY NONLINEARITY . 496 21.6.1 LOAD VARIATION 496 21.6.2 CONSTRAINT VARIATION . 496 21.6.3 CONTACTS . 497 21.7 CHOOSING THE RIGHT ELEMENTS FOR A NONLINEAR ANALYSIS 497 21.8 HOW DO FEA SOFTWARE COMPUTE NONLINEAR PROBLEMS? 498 21.8.1 CHARACTERIZATION AND FORMULATION OF A NONLINEAR PROBLEM .498 21.8.2 NEWTON-RAPHSON METHOD 498 21.8.3 MODIFIED NEWTON-RAPHSON METHOD 501 21.8.4 NEWTON-RAPHSON METHOD EXAMPLES 502 21.8.5 COMPUTATIONAL METHODS IN NONLINEAR ANALYSIS 506 21.8.6 EQUILIBRIUM PATH AND CRITICAL POINTS 511 21.8.7 ADAPTIVE SOLUTION STRATEGIES .511 21.8.8 STIFFNESS MATRIX UPDATE STRATEGIES .512 21.8.9 CHOOSING THE INCREMENTAL LOAD STEP 514 21.8.10 ARC-LENGTH METHODS 515 21.8.11 LINE SEARCH PROCEDURES 518 21.8.12 CONVERGENCE CRITERIA 519 21.8.13 HOW TO DEAL WITH CONVERGENCE ISSUES .519 21.8.14 SUMMARY OF ITERATIVE SOLUTION SCHEMES 520 21.8.15 HOW TO SELECT THE RIGHT ITERATIVE SOLUTION SCHEME .521 21.8.16 SUMMARY OF THE NONLINEAR SOLUTION STRATEGY 522 21.9 GENERAL RECOMMENDATIONS FOR NONLINEAR ANALYSIS 523 21.9.1 UNDERSTAND THE NONLINEAR FEATURES .523 21.9.2 UNDERSTAND YOUR PROBLEM AND STRUCTURAL BEHAVIOR .523 21.9.3 UNDERSTAND THE DIFFERENCE BETWEEN A LINEAR SUBCASE AND A NONLINEAR SUBCASE 524 21.9.4 SIMPLIFY YOUR MODEL . 524 21.9.5 USE AN ADEQUATE MESH AND ELEMENT TYPES .524 21.9.6 APPLY LOADING GRADUALLY .525 21.9.7 READ THE OUTPUT 525 21.9.8 NUMBER OF INCREMENTS . 525 21.9.9 CONVERGENCE PROBLEMS 525 21.9.10 KEEP AN EYE ON YOUR MATERIAL DEFINITION 526 21.10 COMMON MISTAKES IN NONLINEAR ANALYSIS .526 21.11 EXAMPLES OF NONLINEAR STATIC ANALYSIS .528 21.11.1 GEOMETRIC NONLINEARITY AND HISTORY PATH 528 21.11.2 CUMULATIVE EFFECT OF A NONLINEAR ANALYSIS 531 21.11.3 INFLUENCE OF THE INCREMENTAL LOAD STEP ON RESULTS .536 21.11.4 MATERIAL NONLINEARITY: ELASTOPLASTIC PLATE 540 21.11.5 HIGHLY NONLINEAR PROBLEM .546 Chapter 22 LINEAR BUCKLING ANALYSIS 553 22.1 WHAT IS LINEAR BUCKLING ANALYSIS? .553 22.2 ASSUMPTIONS AND LIMITATIONS OF LINEAR BUCKLING ANALYSIS .554PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 22.3 LINEAR BUCKLING ANALYSIS OUTCOMES 555 22.4 HOW DO SOLVERS COMPUTE LINEAR BUCKLING PROBLEMS? 556 22.4.1 THE EQUATION OF MOTION WITH DIFFERENTIAL STIFFNESS MATRIX 556 22.4.2 HOW TO COMPUTE THE EIGEN EQUATION .557 22.4.3 SOLUTION OF THE BUCKLING PROBLEM 557 22.5 THE LINEAR BUCKLING STRATEGY 558 22.5.1 EVERYTHING STARTS WITH A LINEAR STATIC ANALYSIS .558 22.5.2 SELECT YOUR BUCKLING CASES 558 22.5.3 MESHING HINTS . 558 22.6 EXAMPLES OF LINEAR BUCKLING ANALYSIS .558 22.6.1 EULER BEAM BUCKLING 558 22.6.2 PANEL BUCKLING . 560 22.6.3 STIFFENED PANEL BUCKLING .564 22.6.4 INFLUENCE OF MESHING DENSITY ON BUCKLING PREDICTIONS 565 Chapter 23 NONLINEAR BUCKLING ANALYSIS 569 23.1 OVERVIEW . 569 23.2 WHY PERFORM A NONLINEAR BUCKLING ANALYSIS? 569 23.3 THE STABILITY PATH AND THE CONVERGED SOLUTION .571 23.4 NONLINEAR BUCKLING PROCEDURE 571 23.5 POST-BUCKLING . 571 23.6 ESSENTIAL STEPS IN NONLINEAR BUCKLING ANALYSIS .573 23.7 EXAMPLES OF NONLINEAR BUCKLING ANALYSIS 573 23.7.1 NONLINEAR BUCKLING OF A CURVED PANEL 573 23.7.2 SNAP-THROUGH: NEWTON-RAPHSON VS ARC-LENGTH .576 Chapter 24 NORMAL MODE ANALYSIS 583 24.1 OVERVIEW . 583 24.2 HOW TO SOLVE THE REAL EIGENVALUE PROBLEM 584 24.2.1 THE EQUATION OF MOTION 584 24.2.2 HOW TO COMPUTE THE EIGEN EQUATION .584 24.2.3 SOLUTION OF THE EIGEN EQUATION .587 24.2.4 EIGENVALUE EXTRACTION METHOD .587 24.3 WHAT A MODE IS AND WHAT IT IS NOT 588 24.3.1 NATURAL FREQUENCIES 588 24.3.2 WHAT A MODE IS . 588 24.3.3 WHAT A MODE IS NOT . 589 24.4 HOW ARE NATURAL FREQUENCIES AND MODE SHAPES INFLUENCED? .589 24.5 WHY COMPUTE A MODAL ANALYSIS? .592 24.5.1 FINDING WEAKNESSES IN A MODEL .592 24.5.2 AVOID RESONANCE . 593 24.6 EXAMPLES OF MODAL ANALYSIS 594 24.6.1 MODEL CHECKS 594 24.6.2 FIND THE NATURAL FREQUENCIES TO AVOID RESONANCE .594 24.6.3 EVALUATE THE MODAL EFFECTIVE MASS .596 24.6.4 INFLUENCE OF THE PRE-STIFFNESS ON THE NATURAL FREQUENCIES .598 Chapter 25 GOOD MODELING PRACTICES 603 25.1 OVERVIEW . 603 25.2 GOOD MODELING PRACTICES APPROACH 604 25.3 IT ALL STARTS WITH A GOOD PLAN .605PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS TABLE OF CONTENTS 25.4 UNDERSTAND THE PROBLEM TO ANALYZE IN DETAIL .605 25.5 DEFINE YOUR DESIGN OBJECTIVE 605 25.6 BE SURE OF THE INPUTS AND REQUIREMENTS .606 25.7 SELECT THE RIGHT TYPE OF ANALYSIS .606 25.8 CLEAN UP THE GEOMETRY . 607 25.9 CHECK THE GEOMETRY 607 25.10 SELECT THE PROPER ELEMENTS .607 25.11 CREATE AN INTELLIGIBLE MESH 608 25.12 DEFINE THE RIGHT BOUNDARY CONDITIONS .609 25.13 VALIDATE THE INPUT DATA 610 25.14 DEFINE CONTACT PROPERLY . 610 25.15 MODEL THE RIGHT MATERIAL BEHAVIOR .610 25.16 MANAGE THE UNITS 611 25.17 SHOULD YOU MODEL THE ENTIRE STRUCTURE? .611 25.18 MANAGE THE SINGULARITIES 611 25.19 SHOULD YOU MODEL THE BOLTS? 611 25.20 MANAGE INCOMPATIBLE DEGREES OF FREEDOM 612 25.21 KEEP AN EYE ON THE SOLUTION’S PARAMETERS 612 25.22 VERIFY AND VALIDATE YOUR MODEL .612 25.23 READ THE SOLVER’S MESSAGES 613 25.24 KEEP A CRITICAL EYE ON THE RESULTS .613 25.25 DOCUMENT EVERYTHING 614 25.26 ASK FOR HELP 614 25.27 THE MOST COMMON MISTAKES IN FEA .615 25.28 THE 10 COMMANDMENTS OF THE FEA ANALYST .617 GLOSSARY AND ABBREVIATIONS 619 REFERENCES 629 IMAGE CREDITS 633 INDEX 635 PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS INDEX A Accuracy 29 Accuracy Checks 374 Adaptive Solution Strategies .511 Anisotropic Material 210 Anti-Symmetry 225 Arc-Length .515 Assembly Phase .358 B Banded Matrix .96 Beam Element .118 Bolted Joints 273 Axial Stiffness 286 Beam .277 Bending Stiffness 288 Bolt Preload 301 Connectors 277 Pin Joint 299 Prying Effect 293 Rigid Elements 275 Rutman Method .278 Shear Stiffness 286 Spring 276 Stiffness Calculation 285 Bolt Preload .301 Boundary Conditions .215 Anti-Symmetry 225 Isostatic Restraints 231 Loads 238 Mechanism .218 Over-Stiffening 232 Rigid Body Mode 217 Role .216 Single-Point Constraints 219 Singularity .237 Strategy .229 Symmetry .225 Type 216 Under-Stiffening .232 Boundary Element Method .7 Boundary Nonlinearity 496 Boundary Simmetry .225 BRICK Element .128 C Checkout 373 Accuracy Checks .374 Applied Loads .379 Correlation 386 Correlation Plot 388 Documentation .390 Free-Free Modal Check .381 Gauges Measurement 386 Load Path 381 Mathematical Checks .376 Mechanism .377 Post-Processor Checks 380 Reacted Loads .380 Singularity .377 Thermal Equilibrium Check .384 Unit Enforced Displacement Check . 383 Unit Gravity Check 382 Validation Factor .388 Weight 379 Compatibility of deformation 52 Contact . 307, 497 Analysis Procedure .315 Definition 309 Deformable Bodies .309 Deformable-Rigid Contact 344 Detection 317 Force .310 Friction 311 General Contact 314 Glued Contact 315, 341 Guidelines .323 Master 316 Master-Slave Concept .316 Node-to-Segment .317 Point-to-Point Linear Contact 312, 334, 337 Point-to-Point Nonlinear Contact 313, 339 Segment-to-Segment 318 Slave .316 Strategy .309 Tolerance 319 Touching Contact . 315, 342 Types of Contact .312 Convergence 163 Convergence Criteria .519 Correlation 373, 386 Critical Points .511 D Deformable Bodies 344 Deformable Contact Body .316 Degrees of Freedom . 62, 130 Direct Solver 21 Discretization .17 Displacement Method 51, 64 Documentation 461 E Elastic Strain 203 Element Types .116 Engineering Stress-Strain .492 Equilibrium Conditions 51 Equilibrium Equation .50 Equilibrium Path 511 F FEA Capabilities .27 FEA Concept 23 FEA History 45 FEA Process .23 FEA Strategy 17 FEA Timeline 46 Finite Difference Method 7 Finite Element Method 7 Finite Volume Method .7 Follower Load 484 Free-Free Modal Check .381 G Gauss Integration 136 Geometric Nonlinearity .480 Glued Contact 341 Good Modeling Practices 603 Guyan Reduction .353636 PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS INDEX H Hardening Rules 488 HEX Element 128 Hollomon Model .207 Hourglassing 143 Huth .287 I Incremental Load Step .514 Integration Scheme .135 Gauss Integration 136 Interpolation Element .241 Isostatic Restraints .231 Isotropic Material 201 Iterative Schemes 520 Iterative Solver 22 L Learning FEA 37 Library of Elements 115 1D Elements 117 2D Elements 122 3D Elements 127 Beam Element 118 BRICK Element 127 Element Order 132 Element Selection .130 Element Type 116 HEX Element .127 Integration Scheme 135 Membrane 124 PENTA Element .127 Plane Strain .123 Plane Stress 123 Plate 124 Shell 125 Special Elements .129 Spring Element .122 TET Element 127 Truss Element .117 Linear Buckling Analysis 553 Assumptions .554 Definition 553 Differential Stiffness .556 Eigen Equation 557 Limitations 554 Outcomes .555 Solving 556 Strategy .558 Linear Element 132 Linear Static Analysis .467 Characteristics 469 Definition 467 Solving 468 Line Search 518 Loads .238 M Material .201 Anisotropic .210 Elastic Strain .203 Hollomon 207 Isotropic 201 Orthotropic 210, 211 Plastic Strain .203 Ramberg-Osgood 206 Strain Hardening .204 Stress-Strain Curve .202 Stress Strain Relationship .202 True Strain 208 True Stress 208 Material Models 489 Material Nonlinearity 487 Mathematical Checks 376 Matrix Assembly 91 Matrix Sparsity 95 Mechanism . 218, 377 Membrane .124 Membrane CST 76 Membrane LST 81 Meshing .153 1D Meshing Rules .174 2D Meshing Rules .174 3D Meshing Rules .184 BRICK Element 190 Check 3D Hexa 191 Check 3D Tetra 189 Ckeck 2D Mesh .180 Convergence .163 Element Selection .156 Element Size .157 HEX Element .190 Interface .169 Mid-Plane .175 Plan .155 Refinement .159 TET Element 184 Transition 170 Meshing Rules 174, 184 Meshing Size 157 Mesh Refinement 159 Methods 6 Mid-Plane 175 Modal Analysis See Normal Mode Analysis Modeling Process 23 Mode Shape 589 MPC 241, 265 Multi-Point Constraints 241, 265 N Natural Frequency .588 Nonlinear Buckling Analysis 569 Post-Buckling 571 Stability Path .571 Steps .573 Nonlinear Static Analysis .477 Adaptive Solution Strategies .511 Arc-Length 515 Boundary 496 Characteristics 479 Common Mistakes 526 Computational Methods .506 Convergence Criteria 519 Convergence Issues 519 Critical Points 511 Definition 478 Elements .497 Equilibrium Path .511 Follower Load .484 Geometric .480 Incremental Load Step 514 Iterative Schemes .520 Line Search .518 Material 487 Modified Newton-Raphson 501 Newton-Raphson 498 Recommendations 523 Solving 498 Stiffness Matrix Update Strategy512 Normal Mode Analysis 583 Application 592 Eigen Equation 584 Mode 588 Mode Shape .589 Natural Frequency . 588, 589 Solving 584 Numerical Methods .7INDEX 637 PRACTICAL FINITE ELEMENT ANALYSIS FOR MECHANICAL ENGINEERS O Orthotropic Material 210, 211 Outputs .409 Basic Rules 436 Force .410 Freebody Diagram 431 Singularity .447 Stress 422 Over-Stiffening .232 P Partial Differential Equations .8 Performance Computing .451 Cache 453 Clock Speed 452 CPU Power 452 DMP 455 Hard Drive .454 HPC .456 Memory 453 Parallel Computing .454 Recommendations 457 SMP .455 Pin Joint .299 Pioneers .45 Plane Strain .123 Plane Stress .123 Plastic Strain 203 Plate 124 Post-Buckling .571 Post-Processing 22 Pre-Processing .20 Principle of Minimum Potential Energy 60 Prying Effect .293 Q Quadratic Elements 129, 132, 177, 189 R Ramberg-Osgood Model .206 Reduction Phase 357 Rigid Body Elements 241 Rigid Elements .241 R-Type Elements . 241, 243 Interpolation Element .249 N-Node Rigid Element 248 Small Displacement Theory 244 Summary 264 Two-Node Rigid Element 244 Typical Elements .242 Rutman Fastener .278 Behavior 279 Compatibility of Displacement .282 Example 283 Modeling 280 Stiffness 279 S Saint-Venant's Principle .349 Shape Functions 64 Truss Element 65, 67 Shear Locking 141 Shell 86, 125 Single-Point Constraints 219 Singularity . 237, 377 Skyline Matrix Storage .97 Solid Element .89 Solving .20 Solving the FEM Equations 99 Direct Solution 99 Iterative Solution 101 Sparsity 95 Spring Element 122 Static Condensation .353 Assembly Phase 358 Concept 354 Guyan Reduction 353 Limitations 359 Process 355 Reduction Phase .357 Validation 358 Stiffness Matrix . 52, 62 2D Element .75 Membrane CST .76 Membrane LST . 76, 81 Plate 83 Shell 86 Solid Element 89 Truss Element .64 Stiffness Matrix Update Strategy .512 Strain Hardening 204 Stress-Strain Curve 202 Stress-Strain Relationship 202 Submodeling .349 Swift .287 Symmetry 225 T Tate & Rosenfeld 287 TET Element .128 Theory .49 Thermal Equilibrium Check .384 Touching Contact .342 True Strain .208 True Stress .208 True Stress-Strain 492 Truss Element 117 U Under-Stiffening 232 Unit Enforced Displacement Check 383 Unit Gravity Check .382 Units 195 V Validation 373 Y Yield Criteria 487
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Practical Finite Element Analysis - For Mechanical Engineers رابط مباشر لتنزيل كتاب Practical Finite Element Analysis - For Mechanical Engineers
|
|