كتاب Material Modeling in Finite Element Analysis
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Material Modeling in Finite Element Analysis

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18938
التقييم : 35320
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Material Modeling in Finite Element Analysis  Empty
مُساهمةموضوع: كتاب Material Modeling in Finite Element Analysis    كتاب Material Modeling in Finite Element Analysis  Emptyالأحد 18 أغسطس 2024, 1:47 am

أخواني في الله
أحضرت لكم كتاب
Material Modeling in Finite Element Analysis
Second Edition
Zhaochun Yang

كتاب Material Modeling in Finite Element Analysis  M_m_i_12
و المحتوى كما يلي :


Contents
Preface .xi
Chapter 1 Introduction 1
PART I Metal
Chapter 2 Structure and Material Properties of Metal .5
2.1 Structure of Metal 5
2.2 Elasticity and Plasticity of Metal .6
Reference 8
Chapter 3 Some Plastic Material Models of Metals .9
3.1 Introduction of Plasticity .9
3.2 Nonlinear Kinematic Hardening . 12
References 20
Chapter 4 Material Properties as Function of Time . 21
4.1 Viscoplasticity . 21
4.2 Creep .27
4.3 Discussion of Viscoplasticity and Creep . 33
References 33
Chapter 5 Influence of Temperature on Material Properties 35
5.1 Temperature Dependency of Material Properties 35
5.2 Simulation of Combustion Chamber under Different
Temperatures . 35
References 42
Chapter 6 Subroutine UserMat 43
6.1 UserMat Development . 43
6.2 UserMat of Strain-Hardening Material Model 43
References 46vi Contents
PART II Polymers
Chapter 7 Structure and Features of Polymer . 51
7.1 Structure of Polymer . 51
7.2 Features of Polymer . 51
References 52
Chapter 8 Hyperelasticity 53
8.1 Some Widely Used Hyperelastic Models 53
8.2 Stability Discussion . 55
8.3 Curve-Fitting of Material Parameters
from Experimental Data 56
References 58
Chapter 9 Viscoelasticity of Polymers 59
9.1 Viscoelasticity of Polymers . 59
9.2 Shift Functions 65
References 71
Chapter 10 Eight-Chain-Based Viscoplasticity Models .73
10.1 Bergstrom-Boyce Model .73
10.2 Simulation of Small Punch Test 75
References 78
Chapter 11 Mullins Effect .79
11.1 Introduction of Mullins Effect .79
11.2 Ogden-Roxburgh Mullins Effect Model 80
11.3 Simulation of a Rubber Tire with the
Mullins Effect 80
References 86
Chapter 12 UserHyper for Modeling Hyperelastic Materials .89
12.1 Introduction of Subroutine UserHyper 89
12.2 Simulation of Veronda-Westman Model .89
References 94Contents vii
PART III Soil
Chapter 13 Soil Introduction .97
13.1 Soil Structure .97
13.2 Soil Parameters 98
References 98
Chapter 14 Cam Clay Model 99
14.1 Introduction of Modified Cam Clay Model .99
14.2 Modified Cam Clay Model in ANSYS 101
14.3 Simulation of Soil Excavation . 103
14.4 Simulation of a Tower on the Ground by Modified Cam
Clay Model 104
References 109
Chapter 15 Drucker-Prager Model 111
15.1 Introduction of Drucker-Prager Model 111
15.2 Simulation of Concrete Slump Test . 112
15.3 Study of a Soil-Arch Interaction . 112
References 117
Chapter 16 Mohr-Coulomb Model 119
16.1 Introduction of Mohr-Coulomb Model . 119
16.2 Mohr-Coulomb Model in ANSYS 121
16.3 Concrete Slump Test 122
16.4 Study of Slope Stability . 123
References 127
Chapter 17 Jointed Rock Model 129
17.1 Jointed Rock Model 129
17.2 Definition of the Jointed Rock Model in ANSYS . 130
17.3 Simulation of Tunnel Excavation 131
References 135
Chapter 18 Consolidation of Soils 137
18.1 Consolidation of Soils . 137
18.2 Modeling Porous Media in ANSYS 137viii Contents
18.3 Simulation of Terzaghi’s Problem . 138
18.4 Simulation of Consolidation of Three-Well Zone . 138
References 145
PART IV Modern Materials
Chapter 19 Composite Materials 149
19.1 Introduction of Composite Materials 149
19.2 Modeling Composite in ANSYS . 151
19.3 Simulation of Composite Structure in Failure Test . 152
19.4 Simulation of Crack Growth in Single Leg Bending
Problem 158
References 161
Chapter 20 Functionally Graded Material 163
20.1 Introduction of Functionally Graded Material 163
20.2 Material Model of Functionally Graded Material . 163
20.3 Simulation of a Spur Gear with Functionally Graded
Materials 164
References 167
Chapter 21 Shape Memory Alloys 169
21.1 Structure of SMA and Various Material Models . 169
21.2 Simulation of Orthodontic Wire 177
21.3 Simulation of a Vacuum-Tight Shape Memory Flange . 182
References 189
Chapter 22 Simulation of Piezoelectricity 191
22.1 Introduction to Piezoelectricity . 191
22.2 Structures and Mechanical Behaviors of Piezoelectric
Materials 191
22.3 Constitutive Equation of Piezoelectricity 193
22.4 Simulation of Piezoelectric Accelerometer . 194
References 201
Chapter 23 Nano Materials .203
23.1 Introduction of Nano .203
23.2 Determination of Young’s Modulus of Fe Particles 203
References 207Contents ix
PART V Retrospective
Chapter 24 Retrospective 211
24.1 Close Association of Material Properties
with the Structure 211
24.2 Significant Influences of Temperature and Time on Material
Properties 211
24.3 Various Materials with Different Solution Controls 212
24.4 Various Fields with Different Units . 212
24.5 Anisotropic Material with Symmetrical Conditions 212
24.6 Application of Four Soil Models . 212
24.7 Definition of Material Parameters . 213
24.8 User Subroutine . 213
Appendix 1 Input File of Curve-Fitting of the Chaboche Model
in Section 3.2 . 215
Appendix 2 Input File of the Ratcheting Model in Section 3.2 217
Appendix 3 Input File of the Forming Process Model in Section 4.1 219
Appendix 4 Input File of the Bolt Model under Pretension
in Section 4.2 .223
Appendix 5 Input File of the Combustion Chamber Model
in Section 5.2 .225
Appendix 6 UserMat of Strain-Hardening Model in Section 6.2 .229
Appendix 7 Input File of the Uniaxial Test with Strain-Hardening
Model in Section 6.2 . 235
Appendix 8 Input File of Curve-Fitting of the Ogden Model
in Section 8.3 . 237
Appendix 9 Input File of the Liver Soft Tissue Model
in Section 9.1 . 239
Appendix 10 Input File of the Stress Evolution of Glass
Tube in Section 9.2 . 243
Appendix 11 Input File of the Small Punch Test in Section 10.2 247
Appendix 12 Input File of the Rubber Tire Damage
Model in Section 11.3 251
Appendix 13 Input File of the Breast Tumor Model in Section 12.2 . 255
Appendix 14 Input File of the Soil Excavation in Section 14.3 . 257x Contents
Appendix 15 Input File of the Tower Subsidence Model
in Section 14.4 .259
Appendix 16 Input File of the Concrete Slump Test in Section 15.2 . 261
Appendix 17 Input File of the Soil-Arch Interaction Model
in Section 15.3 263
Appendix 18 Input File of the Concrete Slump Test
in Section 16.3 .267
Appendix 19 Input File of the Slope Stability Model
in Section 16.4 269
Appendix 20 Input File of the Tunnel Excavation Model
in Section 17.3 .271
Appendix 21 Input File of One-Dimensional Terzaghi’s Problem
in Section 18.3 .273
Appendix 22 Input File of the Settlement Model in Section 18.4 275
Appendix 23 Input File of the Composite Damage Model in
Section 19.3 .279
Appendix 24 Input File of the SLB Model in Section 19.4 .283
Appendix 25 Input File of the Spur Gear Model with
FGM in Section 20.3 287
Appendix 26 Input File of the Orthodontic Wire Model
in Section 21.2 289
Appendix 27 Input File of the Vacuum Tight Shape Memory
Flange Model in Section 21.3 291
Appendix 28 Input File of the Piezoelectric Microaccelerometer
Model in Section 22.4 .295
Appendix 29 Input File of the Contact Model in Section 23.2 303
Index 305xi
Index
ABAQUS 1, 109, 112, 117, 127
acceleration 197, 200–201
ACEL 105, 124
aggregate materials 122, 129
anharmonicity 6
anisotropic 2, 129, 152, 159, 193, 195, 197, 201,
211–212
ANSYS 1–3, 10–11, 14, 21–23, 25, 29–30, 35–36,
43, 46, 49, 62, 66, 74, 79–80, 89, 92,
99, 101–103, 111, 119, 121–122, 126–
127, 129–130, 135, 137–138, 144, 147,
149, 151–152, 154–155, 157–158, 161,
163, 166, 172–174, 177, 191, 193–194,
196, 203–204, 206–207, 213
APDL 30, 45, 62, 80, 105
Apipose 92
atoms 5–7, 51, 203, 211
axial strain 17, 19
axial stress 17, 19
axisymmetrical 15–17, 23, 26, 67–68, 75, 77, 92,
105, 108, 112
back stress 11, 59
biaxial 53, 55–58
bilinear isotropic hardening 10
bilinear kinematic hardening 17–19
biocompatibility 177, 189
biomechanical engineering 72, 89
bolt 21, 30–31, 33
bond energy 5–6
boundary conditions 1, 17, 24–25, 28, 31, 37,
63–64, 68–69, 76, 81, 92–93, 105–106,
114–115, 124–125, 132, 140–141,
155–156, 160, 165–166, 177–178, 184,
197, 205
branched macromolecule 51
breast cancer 91
bulk modulus 51, 53, 101
Cam Clay model 2, 95, 99–105, 107, 109, 111, 212
Extended Cam Clay model 102
Modified Cam Clay model 99–105
Cauchy stress 55, 62
cell traction force 207
ceramics 7
Chaboche model 1, 12–16, 18–19, 23, 25, 35–37,
56, 213
civil engineering 33, 98, 103
clay 2, 95, 97, 99–105, 107–109, 111, 212
clockwise 129–130
coefficient of friction 114
cohesion 98, 111, 120, 122, 129
combustion chamber 1, 35–42
compaction 97–98
composite materials 149–153, 155, 157–159, 161, 163
composites 1–2, 72, 147, 150–152, 157–158, 211
compression 17, 62, 64, 70, 72, 81–82, 95, 101,
119, 121, 137, 155, 172–173, 175, 191,
203–204
conical prism 121
consistency 74, 98, 112
consolidation 2, 95, 137–141, 143–145, 211
contact 24, 63, 76, 105–107, 112, 114, 135, 182,
184–185, 187–189, 203–204, 206–207
convergence pattern 112, 115, 117, 126–127
counterclockwise 129–130
covalent bonds 51
CPT212, 67, 138
crack growth 2, 147, 152, 158–161
creep 1, 3, 21, 27–33, 49, 59–60, 213
creep strain 32–33
crosslinked macromolecule 51
CT scan 64
curve-fitting 2, 14–16, 49, 53, 56–57, 213
cutting-plane algorithm 126–127, 212
cyclic loading 11, 13, 78–79
CZM 159, 161
damage 2, 7, 49, 79–85, 147, 150–152, 155–158,
161, 177
damage accumulation 2, 79
damage evolution 79–80, 147, 152, 155, 161
damage-initiation criteria 151
Darcy’s Law 137
dashpots 59
deformation 7, 11–13, 21, 23, 25–26, 46, 49, 52–53,
55, 60, 76, 81, 86, 98–99, 102, 104,
106–107, 115, 122, 124, 126, 132–133,
141–142, 155–157, 160, 166–167,
169–170, 178–179, 181, 184–185, 192,
203–204, 211
degrees of freedom 24, 76, 114, 155, 160, 178,
184, 197, 205
delamination 150, 158, 161
density 53–55, 80, 89, 93, 98, 105, 193
dies 23–24
dilatancy angle 122
dipole moment 192
Drucker’s stability 55–56
Drucker-Prager model 2, 95, 111–113, 115, 117,
172, 212
ductility 51, 211306 Index
effective stress 22, 100, 102, 137
eight-chain model 55, 73–74
Arruda-Boyce model 55, 57–58, 73
Bergstrom-Boyce model 2, 73–76
three-network model 73–74
EKILL 103, 132, 135
elastic strain 9, 14, 172, 193
elastography 91–92, 94
elastomers 2, 52–53, 55, 78–79
element birth and death 135, 189
element coordinate system 154, 157
excavation 2, 95, 99, 103–104, 131–135, 189, 212
exponential form 89, 91
Exponential Visco-Hardening 21, 23
Extended Drucker-Prager 111–112, 114–115
failure 12, 28, 100, 119–120, 131, 135–136,
151–153, 155, 157, 161, 163, 213
fatigue 14, 149–150
ferroelectric material 191–192, 211
ferroelectricity 191
fibroglandular 92–93
fibrous composite materials 149, 151
finite element analysis 1–2, 6, 8, 10, 12, 14, 16,
18, 20, 22, 24, 26, 28, 30, 32, 36, 38,
40, 42, 44, 46, 52, 54, 56, 58, 60, 62,
64, 66, 68, 70, 72, 74, 76, 78, 80, 82,
84, 86, 90, 92, 94–95, 98, 100, 102,
104, 106, 108, 112, 114, 116, 120, 122,
124, 126, 128, 130, 132, 134, 136, 138,
140, 142, 144, 147, 150, 152, 154, 156,
158, 160, 164, 166, 170, 172, 174, 176,
178, 180, 182, 184, 186, 188, 192, 194,
196, 198, 200, 202–204, 206, 212
finite element method 123, 131, 147, 194,
204, 207
flange 2, 135, 147, 169, 182–184, 188–189
flow chart 205–206
flow potential 111, 122, 129
forming process 25
fracture 7, 159–161, 163, 201
Frederick-Armstrong formulas 14
frictional angle 111, 129
functionally graded material 163, 165, 167
geotechnical engineering 99–100
glass transition temperature 52, 67
glass tube 59, 67–68, 70
hardening 1, 3, 9–14, 16–23, 29–30, 43–46, 100,
121, 174
Helmholtz free energy density 80
homogeneous 149
hoop stresses 70–71
hyperelasticity 53, 55–57
Gent 54–56
Mooney-Rivlin model 53–55, 57–58, 62–64
Neo-Hookean model 53–55
Ogden model 54–58
polynomial model 54
Yeoh model 53–55
hysteresis loop 12, 18
identity tensor 62, 101, 137
inhomogeneous 129
initial stress 101, 132, 135, 175
interpolation algorithm 163–164, 166–167
invariant 102
inverse Langevin function 74
isotropic hardening 1, 3, 9–11, 14, 16
Jacobian 43
J-integral 160
joint(s) 28, 129–131, 136
Jointed Rock material model 131, 134–135
Jointed Rock model 2, 95, 129–131, 133, 135, 212
kinematic hardening 1, 3, 9, 11–13, 17–20, 30
laminated composite materials 149
large deformation 25, 49, 76, 170
layer thickness 151, 200–201
left Cauchy-Green tensor 74
limit equilibrium analysis 123
linear macromolecule 51
local coordinate system 154, 157, 197
macromolecule 51
material parameters 2, 14, 16–17, 20, 24, 37,
49, 53–54, 56–57, 62–63, 74–75,
89, 92–93, 101, 103, 105, 112, 122,
124–125, 164, 173–175, 177–178,
183–184, 213
material properties 1–3, 5, 7, 16, 21, 23, 25, 27,
29–31, 33, 35–37, 39–42, 51, 62, 68,
72, 75, 78–81, 92, 105, 114, 124, 131,
138, 151–154, 159, 163–165, 177, 183,
193, 195, 201, 204, 209, 211–212
matrix 9, 43, 101, 149, 151–152, 155, 193–196
maximum virgin potential 84
mechanical design 1, 3, 147, 164, 194, 207
melting temperature 52
metal 1, 3, 5–7, 19, 21, 23, 33, 51, 151, 169, 211
metal forming 7, 21, 23, 33
metallic bonds 5, 211
microaccelerometer 2, 147, 194, 201–202
mode I 161
mode II 161
mode shape 199–201
modern materials 2, 147, 209, 211
Mohr-Coulomb model 2, 95, 112, 115–116,
119–125, 127–130, 135, 212
moment 81–82, 84–86, 192
Mullins effect 2, 49, 79–83, 85, 87Index 307
Ogden-Roxburgh Mullins effect 80–81
Qi-Boyce Mullins effect 80
nanomaterials 203, 212
nanometer 203, 205, 207
nanoscale 2, 203, 207
natural frequencies 198–200
negative charge 192
non-associated plasticity 122
notched rod 15–16
orientation 129–131, 151
orthodontic wire 2, 147, 169, 177, 179–181
orthotropic 152–153, 194
particulate composite materials 149
perfect plastic curve 121
permeability 97, 129, 137–138
π plane 111–112, 121
piezoelectric accelerometer 191, 194–195
piezoelectric materials 2, 147, 191–194, 201, 212
piezoelectricity 191, 193, 195, 197, 199, 201, 211
plane strain 35, 62, 64, 103, 112, 123, 126, 131,
134, 138, 143, 158–159
plane stress 164
Plane182, 15, 23, 35, 62, 92, 103, 105, 112, 123,
131, 138, 158, 164
plastic deformation 7, 11–13, 21, 102, 122, 211
plastic flow 7, 49, 111
plastic strain 9–11, 14, 17, 22, 25, 28, 33, 38,
40–41, 44, 107, 115, 122, 133–134
plastic zone 124, 126–127
plasticity 1, 6–7, 9, 20, 30, 100, 109, 117, 122, 189
Poisson’s ratio 7, 36, 51, 62, 68, 101, 138,
152–153, 164, 195
polymers 2, 49, 51–52, 58–61, 63, 65, 67, 69, 71,
78, 87, 209, 211
pore pressure 137–138, 140, 142–144, 211
porosity 97–98
porous elasticity model 101
porous media 137–138
positive charge 191
potential 82, 84, 89–91, 111, 122, 129–130
Prager-Lode type 173
pressure 17, 20, 92, 102, 109, 111, 114, 137–138,
140, 142–144, 155, 184–185, 187, 191,
201, 207, 211–212
pretension 21, 30–33
PZT 194–198, 200–201
quasi-static 25
ratcheting 1, 9, 12–15
rate 14, 21–22, 24–25, 27, 31–33, 36, 60, 73–74,
79, 159–160, 203
reaction force 25, 28, 63–65, 76, 81–82, 84–85,
160–161, 205
relative moduli 62
relaxation moduli 61–62
relaxation time 62, 65, 67
rigid 24, 63, 76, 80–81, 85
robustness 45, 76
rubber tire 2, 79–82, 84
rupture 49, 98
safety factor 7, 124, 126–127
sand 97, 213
self-weight 103, 105, 108, 112, 124
sensitivity 111, 200
shape memory alloys 1–2, 147, 169, 171, 173, 175,
177, 179, 181, 183, 185, 187, 189, 211
austenite 169–171, 173, 175, 180, 182
detwinned martensite 169–171
martensite 169–175, 179, 182
phase transformation 169–170, 172, 175, 179,
184–185, 187–188, 211
shape memory effect 2, 170–175, 183–184,
188–189
superelasticity 2, 169–170, 172–173, 175, 177,
179–181
transformation strain 169, 172–176, 178–182,
184–185, 187–188
shear modulus 53, 101, 152
shear stress 119–122, 129
shearing stresses 7
SHELL181, 152
shift functions 2, 49, 59, 65–66
fictive temperature 66, 69–70
Tool-Narayanaswamy shift function 66
Williams-Landel-Ferry (WLF) 66
silt 97
simple shear 56
single-crystal iron 203, 205, 207
single-leg bending problem 2
SLB 158–159, 161
sleeve 182–185, 187–189
slope 2, 102, 114, 119, 122–124, 126–128,
175, 212
slope stability 119, 123–124, 127–128, 212
slump test 2, 111–113, 119, 122–123
SMA 169–175, 177, 179–184, 188–189
small punch test 2, 74–75, 78
soft tissues 59, 62–65
softening 2, 79, 86, 100, 121–122
soil 1–2, 95, 97–101, 103–109, 111–112, 114–117,
119, 121, 123, 126, 131, 133–135,
137–138, 143, 145, 189, 211–212
soil-arch interaction 2, 111–112, 114–116
SOLID185, 80, 143, 152, 177, 182, 204
SOLID187, 30, 204
solution setting 25, 31, 76, 184, 189, 209, 212
springs 28, 59
SPT 74–76
spur gear 164–167308 Index
standard contact 24, 105, 114
stiffness 9, 51–52, 91, 101, 109, 129, 137, 150,
152, 193, 195–196, 211
strain energy density 80, 89
strain-hardening 1, 3, 43–46
stress concentration 133–135, 164–166
stress evolution 59, 67, 70
stress intensity factor 160
stress relaxation 28–29, 31, 60, 65, 67
stress-strain curve 7, 9, 11–12, 21, 56, 91–92, 100,
121, 175–176
strip footing 112
structural analysis 1, 95, 104
subroutine 3, 43, 45, 47, 49, 89–90, 94, 209, 213
subsidence 99, 104, 108–109, 212
substeps 25, 123, 126–127, 135, 205, 212
symmetrical conditions 2, 37, 178, 198, 212
tangent modulus 17
TB,CREEP 31
TBFIELD 2, 147, 163–167
TBIN,ALGO 164
TBTEMP 35–37
temperature 1–3, 6, 27–29, 33, 35, 37–42, 52,
65–70, 78–79, 95, 163, 169–171,
174–176, 183–184, 189, 192,
209, 211
temperature-dependent 35
tensile strength 101, 122, 129
tension 1, 7, 9, 17, 55–58, 70, 72, 91, 122, 129,
155, 172–173, 175, 191
Terzaghi’s problem 2, 138
thermal strain 6, 35, 38, 40–42, 70, 188, 211
thermoplastic material 73
thermorheologically simple (TRS) 65
thermoset 51
time hardening 29–30
torque 45
total strain 9, 14, 172
transducers 194
trial safety factors 124–127
tumor 91–94, 212
tunnel excavation 2, 95, 131, 134–135, 212
uniaxial 7, 9, 11–12, 45–46, 55–58, 72, 91,
111, 175
units 51, 112, 207, 212
user subroutine 3, 209, 213
UserCreep 43
UserHyper 2, 43, 49, 89–91, 93, 213
UserMat 1, 43–47, 89, 213
UserMatTh 43
VCCT 158–161
Veronda-Westman model 2, 89, 91–92, 94
vibration 169, 194
Virtual Crack Closure Technique 158, 161
viscoelastic flow 49, 73
viscoelasticity 2, 49, 59, 61–65, 67, 69, 71
Burgers model 59–61
Kelvin-Voigt model 59–61
Maxwell model 59–61
Prony series 61–62, 64, 68
viscoplastic materials 21
EVH model 22–23, 25
Peirce model 22
Perzyna model 22, 36
Perzyna option 36
viscosity 22, 59
void ratio 101–102
voids 98–99, 211
von-Mises plastic strains 18, 38–41, 104, 108,
116, 134
von-Mises stresses 18, 25, 27, 31–32, 38–41,
47, 63–65, 76–77, 86, 94, 103–104,
106–107, 115–116, 124, 126, 134–135,
141–142, 156, 166–167, 178–181, 184
wear 49, 150
yield function 9, 33, 99, 102, 111, 173–174, 212
yield stress 7, 22, 33, 35, 40, 111, 130
yield surface 10–11, 41, 100, 102, 111–112,
115–116, 121–122, 127, 129, 213
Young’s modulus 2, 14, 35–36, 42, 44–45, 52,
62, 68, 105, 114, 138–139, 147, 153,
163–167, 183, 195, 203–207, 211


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Material Modeling in Finite Element Analysis
رابط مباشر لتنزيل كتاب Material Modeling in Finite Element Analysis
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Material Modeling in Finite Element Analysis
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Troubleshooting Finite-Element Modeling with Abaqus
» كتاب Finite Element Modeling for Stress Analysis
» كتاب The Finite Element Method - Linear Static and Dynamic Finite Element Analysis
» كتاب Fundamentals of Finite Element Analysis - Linear Finite Element Analysis
» كتاب Numerical Modeling in Material Science and Engineering

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: