Admin مدير المنتدى
عدد المساهمات : 18938 التقييم : 35320 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Material Modeling in Finite Element Analysis الأحد 18 أغسطس 2024, 1:47 am | |
|
أخواني في الله أحضرت لكم كتاب Material Modeling in Finite Element Analysis Second Edition Zhaochun Yang
و المحتوى كما يلي :
Contents Preface .xi Chapter 1 Introduction 1 PART I Metal Chapter 2 Structure and Material Properties of Metal .5 2.1 Structure of Metal 5 2.2 Elasticity and Plasticity of Metal .6 Reference 8 Chapter 3 Some Plastic Material Models of Metals .9 3.1 Introduction of Plasticity .9 3.2 Nonlinear Kinematic Hardening . 12 References 20 Chapter 4 Material Properties as Function of Time . 21 4.1 Viscoplasticity . 21 4.2 Creep .27 4.3 Discussion of Viscoplasticity and Creep . 33 References 33 Chapter 5 Influence of Temperature on Material Properties 35 5.1 Temperature Dependency of Material Properties 35 5.2 Simulation of Combustion Chamber under Different Temperatures . 35 References 42 Chapter 6 Subroutine UserMat 43 6.1 UserMat Development . 43 6.2 UserMat of Strain-Hardening Material Model 43 References 46vi Contents PART II Polymers Chapter 7 Structure and Features of Polymer . 51 7.1 Structure of Polymer . 51 7.2 Features of Polymer . 51 References 52 Chapter 8 Hyperelasticity 53 8.1 Some Widely Used Hyperelastic Models 53 8.2 Stability Discussion . 55 8.3 Curve-Fitting of Material Parameters from Experimental Data 56 References 58 Chapter 9 Viscoelasticity of Polymers 59 9.1 Viscoelasticity of Polymers . 59 9.2 Shift Functions 65 References 71 Chapter 10 Eight-Chain-Based Viscoplasticity Models .73 10.1 Bergstrom-Boyce Model .73 10.2 Simulation of Small Punch Test 75 References 78 Chapter 11 Mullins Effect .79 11.1 Introduction of Mullins Effect .79 11.2 Ogden-Roxburgh Mullins Effect Model 80 11.3 Simulation of a Rubber Tire with the Mullins Effect 80 References 86 Chapter 12 UserHyper for Modeling Hyperelastic Materials .89 12.1 Introduction of Subroutine UserHyper 89 12.2 Simulation of Veronda-Westman Model .89 References 94Contents vii PART III Soil Chapter 13 Soil Introduction .97 13.1 Soil Structure .97 13.2 Soil Parameters 98 References 98 Chapter 14 Cam Clay Model 99 14.1 Introduction of Modified Cam Clay Model .99 14.2 Modified Cam Clay Model in ANSYS 101 14.3 Simulation of Soil Excavation . 103 14.4 Simulation of a Tower on the Ground by Modified Cam Clay Model 104 References 109 Chapter 15 Drucker-Prager Model 111 15.1 Introduction of Drucker-Prager Model 111 15.2 Simulation of Concrete Slump Test . 112 15.3 Study of a Soil-Arch Interaction . 112 References 117 Chapter 16 Mohr-Coulomb Model 119 16.1 Introduction of Mohr-Coulomb Model . 119 16.2 Mohr-Coulomb Model in ANSYS 121 16.3 Concrete Slump Test 122 16.4 Study of Slope Stability . 123 References 127 Chapter 17 Jointed Rock Model 129 17.1 Jointed Rock Model 129 17.2 Definition of the Jointed Rock Model in ANSYS . 130 17.3 Simulation of Tunnel Excavation 131 References 135 Chapter 18 Consolidation of Soils 137 18.1 Consolidation of Soils . 137 18.2 Modeling Porous Media in ANSYS 137viii Contents 18.3 Simulation of Terzaghi’s Problem . 138 18.4 Simulation of Consolidation of Three-Well Zone . 138 References 145 PART IV Modern Materials Chapter 19 Composite Materials 149 19.1 Introduction of Composite Materials 149 19.2 Modeling Composite in ANSYS . 151 19.3 Simulation of Composite Structure in Failure Test . 152 19.4 Simulation of Crack Growth in Single Leg Bending Problem 158 References 161 Chapter 20 Functionally Graded Material 163 20.1 Introduction of Functionally Graded Material 163 20.2 Material Model of Functionally Graded Material . 163 20.3 Simulation of a Spur Gear with Functionally Graded Materials 164 References 167 Chapter 21 Shape Memory Alloys 169 21.1 Structure of SMA and Various Material Models . 169 21.2 Simulation of Orthodontic Wire 177 21.3 Simulation of a Vacuum-Tight Shape Memory Flange . 182 References 189 Chapter 22 Simulation of Piezoelectricity 191 22.1 Introduction to Piezoelectricity . 191 22.2 Structures and Mechanical Behaviors of Piezoelectric Materials 191 22.3 Constitutive Equation of Piezoelectricity 193 22.4 Simulation of Piezoelectric Accelerometer . 194 References 201 Chapter 23 Nano Materials .203 23.1 Introduction of Nano .203 23.2 Determination of Young’s Modulus of Fe Particles 203 References 207Contents ix PART V Retrospective Chapter 24 Retrospective 211 24.1 Close Association of Material Properties with the Structure 211 24.2 Significant Influences of Temperature and Time on Material Properties 211 24.3 Various Materials with Different Solution Controls 212 24.4 Various Fields with Different Units . 212 24.5 Anisotropic Material with Symmetrical Conditions 212 24.6 Application of Four Soil Models . 212 24.7 Definition of Material Parameters . 213 24.8 User Subroutine . 213 Appendix 1 Input File of Curve-Fitting of the Chaboche Model in Section 3.2 . 215 Appendix 2 Input File of the Ratcheting Model in Section 3.2 217 Appendix 3 Input File of the Forming Process Model in Section 4.1 219 Appendix 4 Input File of the Bolt Model under Pretension in Section 4.2 .223 Appendix 5 Input File of the Combustion Chamber Model in Section 5.2 .225 Appendix 6 UserMat of Strain-Hardening Model in Section 6.2 .229 Appendix 7 Input File of the Uniaxial Test with Strain-Hardening Model in Section 6.2 . 235 Appendix 8 Input File of Curve-Fitting of the Ogden Model in Section 8.3 . 237 Appendix 9 Input File of the Liver Soft Tissue Model in Section 9.1 . 239 Appendix 10 Input File of the Stress Evolution of Glass Tube in Section 9.2 . 243 Appendix 11 Input File of the Small Punch Test in Section 10.2 247 Appendix 12 Input File of the Rubber Tire Damage Model in Section 11.3 251 Appendix 13 Input File of the Breast Tumor Model in Section 12.2 . 255 Appendix 14 Input File of the Soil Excavation in Section 14.3 . 257x Contents Appendix 15 Input File of the Tower Subsidence Model in Section 14.4 .259 Appendix 16 Input File of the Concrete Slump Test in Section 15.2 . 261 Appendix 17 Input File of the Soil-Arch Interaction Model in Section 15.3 263 Appendix 18 Input File of the Concrete Slump Test in Section 16.3 .267 Appendix 19 Input File of the Slope Stability Model in Section 16.4 269 Appendix 20 Input File of the Tunnel Excavation Model in Section 17.3 .271 Appendix 21 Input File of One-Dimensional Terzaghi’s Problem in Section 18.3 .273 Appendix 22 Input File of the Settlement Model in Section 18.4 275 Appendix 23 Input File of the Composite Damage Model in Section 19.3 .279 Appendix 24 Input File of the SLB Model in Section 19.4 .283 Appendix 25 Input File of the Spur Gear Model with FGM in Section 20.3 287 Appendix 26 Input File of the Orthodontic Wire Model in Section 21.2 289 Appendix 27 Input File of the Vacuum Tight Shape Memory Flange Model in Section 21.3 291 Appendix 28 Input File of the Piezoelectric Microaccelerometer Model in Section 22.4 .295 Appendix 29 Input File of the Contact Model in Section 23.2 303 Index 305xi Index ABAQUS 1, 109, 112, 117, 127 acceleration 197, 200–201 ACEL 105, 124 aggregate materials 122, 129 anharmonicity 6 anisotropic 2, 129, 152, 159, 193, 195, 197, 201, 211–212 ANSYS 1–3, 10–11, 14, 21–23, 25, 29–30, 35–36, 43, 46, 49, 62, 66, 74, 79–80, 89, 92, 99, 101–103, 111, 119, 121–122, 126– 127, 129–130, 135, 137–138, 144, 147, 149, 151–152, 154–155, 157–158, 161, 163, 166, 172–174, 177, 191, 193–194, 196, 203–204, 206–207, 213 APDL 30, 45, 62, 80, 105 Apipose 92 atoms 5–7, 51, 203, 211 axial strain 17, 19 axial stress 17, 19 axisymmetrical 15–17, 23, 26, 67–68, 75, 77, 92, 105, 108, 112 back stress 11, 59 biaxial 53, 55–58 bilinear isotropic hardening 10 bilinear kinematic hardening 17–19 biocompatibility 177, 189 biomechanical engineering 72, 89 bolt 21, 30–31, 33 bond energy 5–6 boundary conditions 1, 17, 24–25, 28, 31, 37, 63–64, 68–69, 76, 81, 92–93, 105–106, 114–115, 124–125, 132, 140–141, 155–156, 160, 165–166, 177–178, 184, 197, 205 branched macromolecule 51 breast cancer 91 bulk modulus 51, 53, 101 Cam Clay model 2, 95, 99–105, 107, 109, 111, 212 Extended Cam Clay model 102 Modified Cam Clay model 99–105 Cauchy stress 55, 62 cell traction force 207 ceramics 7 Chaboche model 1, 12–16, 18–19, 23, 25, 35–37, 56, 213 civil engineering 33, 98, 103 clay 2, 95, 97, 99–105, 107–109, 111, 212 clockwise 129–130 coefficient of friction 114 cohesion 98, 111, 120, 122, 129 combustion chamber 1, 35–42 compaction 97–98 composite materials 149–153, 155, 157–159, 161, 163 composites 1–2, 72, 147, 150–152, 157–158, 211 compression 17, 62, 64, 70, 72, 81–82, 95, 101, 119, 121, 137, 155, 172–173, 175, 191, 203–204 conical prism 121 consistency 74, 98, 112 consolidation 2, 95, 137–141, 143–145, 211 contact 24, 63, 76, 105–107, 112, 114, 135, 182, 184–185, 187–189, 203–204, 206–207 convergence pattern 112, 115, 117, 126–127 counterclockwise 129–130 covalent bonds 51 CPT212, 67, 138 crack growth 2, 147, 152, 158–161 creep 1, 3, 21, 27–33, 49, 59–60, 213 creep strain 32–33 crosslinked macromolecule 51 CT scan 64 curve-fitting 2, 14–16, 49, 53, 56–57, 213 cutting-plane algorithm 126–127, 212 cyclic loading 11, 13, 78–79 CZM 159, 161 damage 2, 7, 49, 79–85, 147, 150–152, 155–158, 161, 177 damage accumulation 2, 79 damage evolution 79–80, 147, 152, 155, 161 damage-initiation criteria 151 Darcy’s Law 137 dashpots 59 deformation 7, 11–13, 21, 23, 25–26, 46, 49, 52–53, 55, 60, 76, 81, 86, 98–99, 102, 104, 106–107, 115, 122, 124, 126, 132–133, 141–142, 155–157, 160, 166–167, 169–170, 178–179, 181, 184–185, 192, 203–204, 211 degrees of freedom 24, 76, 114, 155, 160, 178, 184, 197, 205 delamination 150, 158, 161 density 53–55, 80, 89, 93, 98, 105, 193 dies 23–24 dilatancy angle 122 dipole moment 192 Drucker’s stability 55–56 Drucker-Prager model 2, 95, 111–113, 115, 117, 172, 212 ductility 51, 211306 Index effective stress 22, 100, 102, 137 eight-chain model 55, 73–74 Arruda-Boyce model 55, 57–58, 73 Bergstrom-Boyce model 2, 73–76 three-network model 73–74 EKILL 103, 132, 135 elastic strain 9, 14, 172, 193 elastography 91–92, 94 elastomers 2, 52–53, 55, 78–79 element birth and death 135, 189 element coordinate system 154, 157 excavation 2, 95, 99, 103–104, 131–135, 189, 212 exponential form 89, 91 Exponential Visco-Hardening 21, 23 Extended Drucker-Prager 111–112, 114–115 failure 12, 28, 100, 119–120, 131, 135–136, 151–153, 155, 157, 161, 163, 213 fatigue 14, 149–150 ferroelectric material 191–192, 211 ferroelectricity 191 fibroglandular 92–93 fibrous composite materials 149, 151 finite element analysis 1–2, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 36, 38, 40, 42, 44, 46, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 90, 92, 94–95, 98, 100, 102, 104, 106, 108, 112, 114, 116, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 147, 150, 152, 154, 156, 158, 160, 164, 166, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 192, 194, 196, 198, 200, 202–204, 206, 212 finite element method 123, 131, 147, 194, 204, 207 flange 2, 135, 147, 169, 182–184, 188–189 flow chart 205–206 flow potential 111, 122, 129 forming process 25 fracture 7, 159–161, 163, 201 Frederick-Armstrong formulas 14 frictional angle 111, 129 functionally graded material 163, 165, 167 geotechnical engineering 99–100 glass transition temperature 52, 67 glass tube 59, 67–68, 70 hardening 1, 3, 9–14, 16–23, 29–30, 43–46, 100, 121, 174 Helmholtz free energy density 80 homogeneous 149 hoop stresses 70–71 hyperelasticity 53, 55–57 Gent 54–56 Mooney-Rivlin model 53–55, 57–58, 62–64 Neo-Hookean model 53–55 Ogden model 54–58 polynomial model 54 Yeoh model 53–55 hysteresis loop 12, 18 identity tensor 62, 101, 137 inhomogeneous 129 initial stress 101, 132, 135, 175 interpolation algorithm 163–164, 166–167 invariant 102 inverse Langevin function 74 isotropic hardening 1, 3, 9–11, 14, 16 Jacobian 43 J-integral 160 joint(s) 28, 129–131, 136 Jointed Rock material model 131, 134–135 Jointed Rock model 2, 95, 129–131, 133, 135, 212 kinematic hardening 1, 3, 9, 11–13, 17–20, 30 laminated composite materials 149 large deformation 25, 49, 76, 170 layer thickness 151, 200–201 left Cauchy-Green tensor 74 limit equilibrium analysis 123 linear macromolecule 51 local coordinate system 154, 157, 197 macromolecule 51 material parameters 2, 14, 16–17, 20, 24, 37, 49, 53–54, 56–57, 62–63, 74–75, 89, 92–93, 101, 103, 105, 112, 122, 124–125, 164, 173–175, 177–178, 183–184, 213 material properties 1–3, 5, 7, 16, 21, 23, 25, 27, 29–31, 33, 35–37, 39–42, 51, 62, 68, 72, 75, 78–81, 92, 105, 114, 124, 131, 138, 151–154, 159, 163–165, 177, 183, 193, 195, 201, 204, 209, 211–212 matrix 9, 43, 101, 149, 151–152, 155, 193–196 maximum virgin potential 84 mechanical design 1, 3, 147, 164, 194, 207 melting temperature 52 metal 1, 3, 5–7, 19, 21, 23, 33, 51, 151, 169, 211 metal forming 7, 21, 23, 33 metallic bonds 5, 211 microaccelerometer 2, 147, 194, 201–202 mode I 161 mode II 161 mode shape 199–201 modern materials 2, 147, 209, 211 Mohr-Coulomb model 2, 95, 112, 115–116, 119–125, 127–130, 135, 212 moment 81–82, 84–86, 192 Mullins effect 2, 49, 79–83, 85, 87Index 307 Ogden-Roxburgh Mullins effect 80–81 Qi-Boyce Mullins effect 80 nanomaterials 203, 212 nanometer 203, 205, 207 nanoscale 2, 203, 207 natural frequencies 198–200 negative charge 192 non-associated plasticity 122 notched rod 15–16 orientation 129–131, 151 orthodontic wire 2, 147, 169, 177, 179–181 orthotropic 152–153, 194 particulate composite materials 149 perfect plastic curve 121 permeability 97, 129, 137–138 π plane 111–112, 121 piezoelectric accelerometer 191, 194–195 piezoelectric materials 2, 147, 191–194, 201, 212 piezoelectricity 191, 193, 195, 197, 199, 201, 211 plane strain 35, 62, 64, 103, 112, 123, 126, 131, 134, 138, 143, 158–159 plane stress 164 Plane182, 15, 23, 35, 62, 92, 103, 105, 112, 123, 131, 138, 158, 164 plastic deformation 7, 11–13, 21, 102, 122, 211 plastic flow 7, 49, 111 plastic strain 9–11, 14, 17, 22, 25, 28, 33, 38, 40–41, 44, 107, 115, 122, 133–134 plastic zone 124, 126–127 plasticity 1, 6–7, 9, 20, 30, 100, 109, 117, 122, 189 Poisson’s ratio 7, 36, 51, 62, 68, 101, 138, 152–153, 164, 195 polymers 2, 49, 51–52, 58–61, 63, 65, 67, 69, 71, 78, 87, 209, 211 pore pressure 137–138, 140, 142–144, 211 porosity 97–98 porous elasticity model 101 porous media 137–138 positive charge 191 potential 82, 84, 89–91, 111, 122, 129–130 Prager-Lode type 173 pressure 17, 20, 92, 102, 109, 111, 114, 137–138, 140, 142–144, 155, 184–185, 187, 191, 201, 207, 211–212 pretension 21, 30–33 PZT 194–198, 200–201 quasi-static 25 ratcheting 1, 9, 12–15 rate 14, 21–22, 24–25, 27, 31–33, 36, 60, 73–74, 79, 159–160, 203 reaction force 25, 28, 63–65, 76, 81–82, 84–85, 160–161, 205 relative moduli 62 relaxation moduli 61–62 relaxation time 62, 65, 67 rigid 24, 63, 76, 80–81, 85 robustness 45, 76 rubber tire 2, 79–82, 84 rupture 49, 98 safety factor 7, 124, 126–127 sand 97, 213 self-weight 103, 105, 108, 112, 124 sensitivity 111, 200 shape memory alloys 1–2, 147, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 211 austenite 169–171, 173, 175, 180, 182 detwinned martensite 169–171 martensite 169–175, 179, 182 phase transformation 169–170, 172, 175, 179, 184–185, 187–188, 211 shape memory effect 2, 170–175, 183–184, 188–189 superelasticity 2, 169–170, 172–173, 175, 177, 179–181 transformation strain 169, 172–176, 178–182, 184–185, 187–188 shear modulus 53, 101, 152 shear stress 119–122, 129 shearing stresses 7 SHELL181, 152 shift functions 2, 49, 59, 65–66 fictive temperature 66, 69–70 Tool-Narayanaswamy shift function 66 Williams-Landel-Ferry (WLF) 66 silt 97 simple shear 56 single-crystal iron 203, 205, 207 single-leg bending problem 2 SLB 158–159, 161 sleeve 182–185, 187–189 slope 2, 102, 114, 119, 122–124, 126–128, 175, 212 slope stability 119, 123–124, 127–128, 212 slump test 2, 111–113, 119, 122–123 SMA 169–175, 177, 179–184, 188–189 small punch test 2, 74–75, 78 soft tissues 59, 62–65 softening 2, 79, 86, 100, 121–122 soil 1–2, 95, 97–101, 103–109, 111–112, 114–117, 119, 121, 123, 126, 131, 133–135, 137–138, 143, 145, 189, 211–212 soil-arch interaction 2, 111–112, 114–116 SOLID185, 80, 143, 152, 177, 182, 204 SOLID187, 30, 204 solution setting 25, 31, 76, 184, 189, 209, 212 springs 28, 59 SPT 74–76 spur gear 164–167308 Index standard contact 24, 105, 114 stiffness 9, 51–52, 91, 101, 109, 129, 137, 150, 152, 193, 195–196, 211 strain energy density 80, 89 strain-hardening 1, 3, 43–46 stress concentration 133–135, 164–166 stress evolution 59, 67, 70 stress intensity factor 160 stress relaxation 28–29, 31, 60, 65, 67 stress-strain curve 7, 9, 11–12, 21, 56, 91–92, 100, 121, 175–176 strip footing 112 structural analysis 1, 95, 104 subroutine 3, 43, 45, 47, 49, 89–90, 94, 209, 213 subsidence 99, 104, 108–109, 212 substeps 25, 123, 126–127, 135, 205, 212 symmetrical conditions 2, 37, 178, 198, 212 tangent modulus 17 TB,CREEP 31 TBFIELD 2, 147, 163–167 TBIN,ALGO 164 TBTEMP 35–37 temperature 1–3, 6, 27–29, 33, 35, 37–42, 52, 65–70, 78–79, 95, 163, 169–171, 174–176, 183–184, 189, 192, 209, 211 temperature-dependent 35 tensile strength 101, 122, 129 tension 1, 7, 9, 17, 55–58, 70, 72, 91, 122, 129, 155, 172–173, 175, 191 Terzaghi’s problem 2, 138 thermal strain 6, 35, 38, 40–42, 70, 188, 211 thermoplastic material 73 thermorheologically simple (TRS) 65 thermoset 51 time hardening 29–30 torque 45 total strain 9, 14, 172 transducers 194 trial safety factors 124–127 tumor 91–94, 212 tunnel excavation 2, 95, 131, 134–135, 212 uniaxial 7, 9, 11–12, 45–46, 55–58, 72, 91, 111, 175 units 51, 112, 207, 212 user subroutine 3, 209, 213 UserCreep 43 UserHyper 2, 43, 49, 89–91, 93, 213 UserMat 1, 43–47, 89, 213 UserMatTh 43 VCCT 158–161 Veronda-Westman model 2, 89, 91–92, 94 vibration 169, 194 Virtual Crack Closure Technique 158, 161 viscoelastic flow 49, 73 viscoelasticity 2, 49, 59, 61–65, 67, 69, 71 Burgers model 59–61 Kelvin-Voigt model 59–61 Maxwell model 59–61 Prony series 61–62, 64, 68 viscoplastic materials 21 EVH model 22–23, 25 Peirce model 22 Perzyna model 22, 36 Perzyna option 36 viscosity 22, 59 void ratio 101–102 voids 98–99, 211 von-Mises plastic strains 18, 38–41, 104, 108, 116, 134 von-Mises stresses 18, 25, 27, 31–32, 38–41, 47, 63–65, 76–77, 86, 94, 103–104, 106–107, 115–116, 124, 126, 134–135, 141–142, 156, 166–167, 178–181, 184 wear 49, 150 yield function 9, 33, 99, 102, 111, 173–174, 212 yield stress 7, 22, 33, 35, 40, 111, 130 yield surface 10–11, 41, 100, 102, 111–112, 115–116, 121–122, 127, 129, 213 Young’s modulus 2, 14, 35–36, 42, 44–45, 52, 62, 68, 105, 114, 138–139, 147, 153, 163–167, 183, 195, 203–207, 211
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Material Modeling in Finite Element Analysis رابط مباشر لتنزيل كتاب Material Modeling in Finite Element Analysis
|
|