Admin مدير المنتدى
عدد المساهمات : 18938 التقييم : 35320 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Finite Element Analysis for Biomedical Engineering Applications الأربعاء 14 أغسطس 2024 - 1:37 | |
|
أخواني في الله أحضرت لكم كتاب Finite Element Analysis for Biomedical Engineering Applications Z. Yang
و المحتوى كما يلي :
Contents Preface . xiii About the Author . xv Chapter 1 Introduction . 1 PART I Bone Chapter 2 Bone Structure and Material Properties . 5 2.1 Bone Structure . 5 2.2 Material Properties of Bone . 7 References 8 Chapter 3 Simulation of Nonhomogeneous Bone 9 3.1 Building Bone Model from CT Data . 9 3.1.1 CT Data 10 3.1.2 Finite Element Model . 10 3.1.3 Calculation of the Average CT Number (HU) 10 3.1.4 Material Property Assignment . 13 3.1.5 Discussion 14 3.1.6 Summary . 14 3.2 Interpolation of Bone Material Properties . 15 3.2.1 Multidimensional Interpolation 15 3.2.1.1 RBAS Algorithm . 15 3.2.1.2 NNEI Algorithm 15 3.2.1.3 LMUL Algorithm . 16 3.2.2 Interpolation of Material Properties of the Ankle . 16 3.2.2.1 Defining Material Properties of Bone Using the RBAS Algorithm 18 3.2.2.2 Defining Material Properties of Bone Using the NNEI Algorithm 18 3.2.2.3 Defining Material Properties of Bone Using the LMUL Algorithm . 18 3.2.2.4 Defining Material Properties of Bone Using a Mixed Method 19 3.2.3 Discussion 20 3.2.4 Summary . 21 References . 21 vChapter 4 Simulation of Anisotropic Bone . 23 4.1 Anisotropic Material Models . 23 4.2 Finite Element Model of Femur with Anisotropic Materials 25 4.2.1 Finite Element Model of Femur with Anisotropic Materials . 25 4.2.2 Simulation of Mechanical Testing of the Femur 29 4.2.3 Discussion 29 4.2.4 Summary . 31 References . 31 Chapter 5 Simulation of Crack Growth Using the eXtended Finite Element Method (XFEM) . 33 5.1 Introduction to XFEM . 33 5.1.1 Singularity-Based Method . 33 5.1.2 Phantom-Node Method 34 5.1.3 General Process for Performing XFEM Crack-Growth Simulation . 35 5.2 Simulation of Crack Growth of the Cortical Bone . 35 5.2.1 Finite Element Model . 37 5.2.1.1 Geometry and Mesh . 37 5.2.1.2 Material Properties 37 5.2.1.3 Definition of Crack Front 38 5.2.1.4 Local Coordinate Systems . 38 5.2.1.5 Loading and Boundary Conditions . 39 5.2.1.6 Solution Setting . 39 5.2.2 Results . 40 5.2.3 Discussion 41 5.2.4 Summary . 41 References . 42 PART II Soft Tissues Chapter 6 Structure and Material Properties of Soft Tissues . 45 6.1 Cartilage 45 6.1.1 Structure of Cartilage . 45 6.1.2 Material Properties of Cartilage 45 6.2 Ligaments . 46 6.2.1 Structure of Ligaments 46 6.2.2 Material Properties of Ligaments 46 6.3 Intervertebral Disc . 47 References . 48 vi ContentsChapter 7 Nonlinear Behavior of Soft Tissues 49 7.1 Hyperelastic Models . 49 7.2 Finite Element Analysis of the Abdominal Aortic Aneurysm Wall 51 7.2.1 Finite Element Model . 52 7.2.1.1 Geometry and Mesh . 52 7.2.1.2 Material Model . 53 7.2.1.3 Loading and Boundary Conditions . 55 7.2.1.4 Solution Setting . 56 7.2.2 Results . 56 7.2.3 Discussion 57 7.2.4 Summary . 58 References . 58 Chapter 8 Viscoelasticity of Soft Tissues 61 8.1 The Maxwell Model . 61 8.2 Study of PDL Creep . 63 8.2.1 Finite Element Model . 63 8.2.1.1 Geometry and Mesh . 63 8.2.1.2 Material Models 64 8.2.1.3 Boundary Conditions 64 8.2.1.4 Loading Steps . 65 8.2.2 Results . 65 8.2.3 Discussion 65 8.2.4 Summary . 67 References . 67 Chapter 9 Fiber Enhancement . 69 9.1 Standard Fiber Enhancement . 69 9.1.1 Introduction of Standard Fiber Enhancement . 69 9.1.2 IVD Model with Fiber Enhancement . 69 9.1.2.1 Finite Element Model of IVD 70 9.1.2.2 Results . 73 9.1.2.3 Discussion 73 9.1.2.4 Summary . 75 9.2 Mesh-Independent Fiber Enhancement 75 9.2.1 Introduction of Mesh-Independent Fiber Enhancement . 75 9.2.2 IVD Model with Mesh-Independent Fiber Enhancement . 76 9.2.2.1 Finite Element Model . 76 Contents vii9.2.2.2 Creating the Fibers . 76 9.2.2.3 Results 78 9.2.2.4 Summary 79 9.3 Material Models Including Fiber Enhancement . 79 9.3.1 Anisotropic Material Model with Fiber Enhancement 79 9.3.2 Simulation of Anterior Cruciate Ligament (ACL) . 84 9.3.2.1 Finite Element Model 85 9.3.2.2 Results 88 9.3.2.3 Discussion . 88 9.3.2.4 Summary 88 References 90 Chapter 10 USERMAT for Simulation of Soft Tissues . 93 10.1 Introduction of Subroutine UserHyper 93 10.2 Simulation of AAA Using UserHyper 93 10.2.1 Using Subroutine UserHyper to Simulate Soft Tissues of the Artery 93 10.2.2 Validation . 95 10.2.3 Study the AAA Using UserHyper 96 10.2.4 Discussion 96 10.2.5 Summary 98 References 99 Chapter 11 Modeling Soft Tissues as Porous Media 101 11.1 CPT Elements . 101 11.2 Study of Head Impact 102 11.2.1 Finite Element Model of the Head . 102 11.2.1.1 Geometry and Mesh 102 11.2.1.2 Material Properties 102 11.2.1.3 Loading and Boundary Conditions 102 11.2.2 Results . 105 11.2.3 Discussion . 108 11.2.4 Summary . 108 11.3 Simulation of Creep Behavior of the IVD . 108 11.3.1 Finite Element Method 108 11.3.1.1 Geometry and Mesh 108 11.3.1.2 Material Properties 108 11.3.1.3 Loading and Boundary Conditions 109 11.3.1.4 Solution Setting . 109 viii Contents11.3.2 Results . 110 11.3.3 Discussion . 111 11.3.4 Summary . 113 References 113 PART III Joints Chapter 12 Structure and Function of Joints 117 Reference . 118 Chapter 13 Modeling Contact . 119 13.1 Contact Models . 119 13.2 3D Knee Contact Model . 120 13.2.1 Finite Element Model . 120 13.2.1.1 Geometry and Mesh 120 13.2.1.2 Material Properties 123 13.2.1.3 Contact Pairs . 123 13.2.1.4 Boundary Conditions 127 13.2.2 Results . 128 13.2.3 Discussion . 129 13.2.4 Summary . 130 13.3 2D Poroelastic Model of Knee . 130 13.3.1 Finite Element Model . 131 13.3.1.1 Geometry and Mesh 131 13.3.1.2 Material Properties 133 13.3.1.3 Contact Definitions . 134 13.3.1.4 Boundary Conditions and Loading 134 13.3.1.5 Solution Setting . 136 13.3.2 Results . 136 13.3.3 Discussion . 137 13.3.4 Summary . 138 References 140 Chapter 14 Application of the Discrete Element Method for Study of the Knee Joint 141 14.1 Introduction of Discrete Element Method . 141 14.2 Finite Element Model 141 14.2.1 Line-Plane Intersection 142 14.2.2 Building Springs 143 14.2.3 Boundary Conditions . 145 Contents ix14.2.4 Results . 145 14.2.5 Discussion . 146 14.2.6 Summary . 147 References 147 PART IV Simulation of Implants Chapter 15 Study of Contact in Ankle Replacement 151 15.1 Finite Element Model 151 15.1.1 Geometry and Mesh 151 15.1.2 Material Properties 151 15.1.3 Contact Definition 153 15.1.4 Loading and Boundary Conditions . 153 15.2 Results 154 15.3 Discussion 155 15.4 Summary . 156 References 156 Chapter 16 Simulation of Shape Memory Alloy (SMA) Cardiovascular Stent 157 16.1 SMA Models 157 16.1.1 SMA Model for Superelasticity 157 16.1.2 SMA Model with Shape Memory Effort . 160 16.2 Simulation of Angioplasty with Vascular Stenting . 161 16.2.1 Finite Element Model . 162 16.2.1.1 Geometry and Mesh 162 16.2.1.2 Material Properties 163 16.2.1.3 Contact Pairs . 164 16.2.1.4 Solution Setting . 165 16.2.2 Results . 166 16.2.3 Discussion . 166 16.2.4 Summary . 167 References 167 Chapter 17 Wear Model of Liner in Hip Replacement 169 17.1 Wear Simulation 169 17.1.1 Archard Wear Model . 169 17.1.2 Improving Mesh Quality during Wear . 169 17.2 Simulating Wear of Liner in Hip Replacement 170 17.2.1 Finite Element Method 170 17.2.1.1 Geometry and Mesh 170 x Contents17.2.1.2 Material Properties 170 17.2.1.3 Wear Model 171 17.2.1.4 Contact Definition 172 17.2.1.5 Loading and Boundary Conditions 172 17.2.1.6 Solution Setting . 172 17.2.2 Results . 173 17.2.3 Discussion . 173 17.2.4 Summary . 175 References 175 Chapter 18 Fatigue Analysis of a Mini Dental Implant (MDI) . 177 18.1 SMART Crack-Growth Technology 177 18.2 Study of Fatigue Life of an MDI . 178 18.2.1 Finite Element Model . 179 18.2.1.1 Geometry and Mesh 179 18.2.1.2 Material Properties 179 18.2.1.3 Loading and Boundary Conditions 180 18.2.1.4 Setting up Fracture Calculation . 180 18.2.2 Results . 181 18.2.3 Discussion . 183 18.2.4 Summary . 184 References 184 PART V Retrospective Chapter 19 Retrospective . 187 19.1 Principles for Modeling Biology . 187 19.2 Meshing Sensitivity 188 19.3 Units 188 19.4 Workbench 188 19.5 ANSYS Versions 188 Appendix 1: Input File of the Multidimensional Interpolation in Section 3.2.2 . 189 Appendix 2: Input File of the Anisotropic Femur Model in Section 4.2 203 Appendix 3: Input File of the XFEM Crack-Growth Model in Section 5.2 . 207 Contents xiAppendix 4: Input File of the Abdominal Aortic Aneurysm Model in Section 7.2 213 Appendix 5: Input File of the Periodontal Ligament Creep Model in Section 8.2 217 Appendix 6: Input File of the Intervertebral Disc Model with Fiber Enhancement in Section 9.1.2 . 221 Appendix 7: Input File of the Intervertebral Disc Model with Mesh Independent Fiber Enhancement in Section 9.2.2 . 229 Appendix 8: Input File of the Anterior Cruciate Ligament Model in Section 9.3.2 . 235 Appendix 9: Input File of Subroutine UserHyper in Section 10.2 239 Appendix 10: Input File of the Head Impact Model in Section 11.2 243 Appendix 11: Input File of the Intervertebral Disc Model in Section 11.3 245 Appendix 12: Input File of the Knee Contact Model in Section 13.2 . 249 Appendix 13: Input File of the 2D Axisymmetrical Poroelastic Knee Model in Section 13.3 . 259 Appendix 14: Input File of the Discrete Element Model of Knee Joint in Chapter 14 . 265 Appendix 15: Input File of the Material Definition of the Cancellous Bone in Chapter 15 . 273 Appendix 16: Input File of the Stent Implantation Model in Chapter 16 281 Appendix 17: Input File of the Wear Model of Hip Replacement in Chapter 17 . 289 Appendix 18: Input File of the Mini Dental Implant Crack-Growth Model in Chapter 18 293 Index 299 xii Contents Index A abdominal aortic aneurysm (AAA), 1, 43, 49, 51–58, 93–98 ACL, 84–89 anisotropic, 1–3, 8, 14, 23–31, 46, 57, 79–84, 86, 130, 137, 187 anisotropic bone, 1, 3, 23–31 ankle, 1–2, 15–20, 141, 149 ANSYS, 1–2, 10, 15, 23–25, 41, 43, 50, 52–53, 55, 57, 63, 86, 93, 96, 98, 101, 108, 115, 120, 130, 134, 144–145, 159, 161, 167, 169, 188 ANSYS190, 2 ,10, 14–15, 18, 21, 69–70, 75, 82, 88, 149, 151, 169–170, 175, 177, 183, 188 APDL, 2, 12, 53, 55, 82, 98, 109, 145, 188 apparent density, 9, 13 axisymmetrical, 2, 115, 130, 133, 138 B bone bone density, 9, 13 cancellous bone, 5, 8, 15–17, 20–21, 28–29, 63–64, 151, 153–156 cortical bone, 1, 3, 5, 7–8, 28, 33, 35–41, 64, 117–118, 151, 184, 187 marrow, 5, 8 periosteum, 5 Wolff’s law, 9, 21 C cadaver femur, 25–26, 29 Cardiovascular diseases, 161 cartilages, 45, 119–120, 125, 128–134, 137, 141, 146, 187 cement, 37 cohesive, 38 collagen, 5, 45–47 Collagen fibers, 5, 46–47, 69–70, 118 compliance, 23–24 composite material, 5 compression only, 145 contact always bonded, 119, 125, 129, 187–188 contact pressures, 128–129, 137, 141, 145, 175 MPC, 55, 87, 119, 122, 126, 130, 165, 172, 188 pilot node, 55, 86, 119, 126, 172, 187–188 standard contact, 119, 124, 129–130, 134, 147, 156, 164, 172, 187 coordinate, 27, 86, 146 coordinate systems element coordinate systems, 86 ESYSs, 29 global coordinate system, 38 local coordinate system, 38–39, 86, 146, 172, 180 nodal coordinates, 144, 146 CSF, 102, 104–106 CT, 1, 9–10, 12–14, 67, 76, 103 CT data, 9–14 curve-fitting, 53–54, 58 CVD, 161 D discrete element analysis (DEA), 141, 145, 147 Discrete Element Methods, 2, 115, 141–147 degrees of freedom (DOF), 29 ,34, 57, 64, 73, 86, 109, 127, 145, 154, 172, 180 Drucker-Prager function, 157 E elastic modulus, 49, 61 F fatigue, 1, 149, 177–184 Paris’ s Law, 179 femoral head, 170, 172, 175 femoral neck, 25 femur, 5–6, 10, 12–14, 25, 29–31, 85, 120, 127, 129, 132, 141, 143, 145, 188 fiber enhancement Discrete modeling, 69–70 fiber directions, 73, 88 mesh dependent fiber enhancement, 2 mesh independent fiber enhancement, 2, 69, 75–79, 188 299fiber enhancement (Continued) mesh independent method, 75, 78–79 Smeared modeling, 70, 103 finite element analysis, 1, 51–58, 120, 130, 141, 149 finite element method, 52, 102, 108–110, 120, 170–173 flexibility, 5, 24 force-distributed boundary constraints, 55, 57, 164 fracture, 9, 35, 39 crack front, 33, 35, 38, 41, 177, 181, 183–184 crack-growth, 1, 33, 35, 37 fracture parameter calculation, 39, 177, 180 inclined crack, 37, 39–40 microcracks, 36, 179 path-independent, 183 stress intensity factor, 40, 180–181, 183 H Haversian channel, 37 Haversian system, 29 head impact, 2, 43, 102–107 HI, 102 history-dependent, 46–47 homogeneous, 8, 102, 187 HU, 10, 12–13 hyperelasticity hyperelastic materials, 49, 51 hyperelastic models, 49–51 Mooney-Rivlin, 50–51, 95–96, 98, 164, 166 Neo-Hookean, 51, 83 Ogden, 51, 53, 57 I ICEM, 10 impact, 2, 43, 102–108 implants ankle arthroplasty, 151 anklereplacement, 1, 2, 151–156, 187 hip implant, 1, 2, 149, 170, 172 hip replacement, 3, 9, 169–175 MDI, 149, 177–183 stent implantation, 1, 2, 149, 161–162, 166 initial strain, 144 inorganic materials, 5 internal friction, 45, 101, 108, 187 interstitial lamellae, 37 isotropic, 8, 14, 25, 27–28, 57, 64, 85, 88, 102, 123, 151, 164, 187 intervertebral discs (IVDs), 1, 2, 43, 45, 47–48, 69–80, 108–113, 187 annulus, 2, 43, 47, 69–76, 108–110, 112 end plate, 47, 70, 73, 108, 118 nucleus, 43, 47, 74, 80, 108–110 K knee femoral cartilage, 119, 124–125, 128, 131, 134, 188 meniscus, 119–120, 123–124, 127–134, 137–138, 141, 145, 187 model, 2, 85, 115, 120, 123, 130, 134, 136–139 tibial articular cartilage, 124–125, 131, 134 L lattice structure, 8, 25 ligaments, 43, 45–47, 119–120 line-plane intersection, 141–143, 146 liner, 1, 170–175 M material identity, 13, 28, 76 material properties, 1, 5–9, 13–21, 23, 28, 37–38, 45–47, 64, 70–71, 95, 101–102, 104, 108–109, 123, 133, 151–153, 163–164, 170–171, 179, 187 medial tilting, 1–2, 155 meshing Mesh nonlinear adaptivity, 169 MESH200, 35, 38, 41, 75–76, 184 meshing sensitivity, 188 morph, 172 morphing, 33 regular meshing, 41, 169, 184 remeshing, 33, 169, 177–178, 181 microstructure, 1, 33, 36 MIMICS, 10 multidimensional interpolation, 9, 15 bounding box, 16–21 Linear Multivariate, 15, 151 LMUL, 15–21, 151 Nearest Neighbor, 15 NNEI, 15–16, 18–20, 151 query points, 15–17 300 IndexRadial Basis, 15 RBAS, 15–21, 151, 153 supporting point, 15–16 N Newton-Raphson method, 110, 136 noises, 14 nonhomogeneity, 14 nonhomogeneous, 1, 8, 9–21, 151, 187 O organic matrix, 5 orientation, 25, 46, 69–70, 72, 78 orthotropic, 24, 133 Osteoarthritis, 120–121 osteons, 37, 40–41 Osteoporosis, 35–36 P periodontal ligament (PDL), 1, 43, 61, 63–66 plane strain, 37, 102 plaque, 163–167 plastic strain, 154–156, 166–167 poroelasticity Biot coefficient, 101 Biot effective stress, 101 Biot’s consolidation theory, 101 biphasic, 101, 108, 111–112, 130 CPT, 101–102, 110, 130, 136, 187 Darcy’s Law, 101 permeability, 101, 102, 108, 109, 187, 188 pore pressure, 101–102, 105–107, 109–112, 113, 134, 136, 137 porosity, 5, 8 porous media, 2, 101–113, 130, 133, 137, 187 Prager-Lode type, 160 principal directions, 27 principal stresses, 25, 27, 29 prosthesis, 9, 161, 178 R rigid body motion, 55, 105 S shape functions, 33 skull, 102, 104–105, 117 shape memory alloy (SMA), 149, 157–167 austenite, 160 martensite, 158, 160 phase transformation, 157, 159–160, 167 shape memory effect, 157–158, 161, 163, 167 superelastic effect, 157 superelasticity, 157–159, 163, 167 SMART, 2, 149, 177–178, 180, 183–184, 188 soft tissues, 1–2, 9, 45–48, 49–57, 61–67, 69, 73, 93–98, 101–113, 130, 136, 137–138, 187–188 SpaceClaim, 52, 179 springs, 141, 143–146 stiffness, 8, 23, 157, 187 strain energy potential, 85, 88, 93 swelling, 56, 70, 73 T talar component, 2, 18, 149, 151–156, 187 Taylor series, 95 tendon, 8, 120 tension only, 71–73, 84 tetrahedral elements, 151 Thermal expansion coefficient, 70 tibia, 85–87, 120, 125–132, 134, 141, 143–144 time-dependent, 46–47, 61 U USERMAT, 2, 93–98 V viscoelasticity, 1, 61, 65, 88, 108 creep, 1–2, 61, 63, 65, 108, 111 Maxwell model, 61–63 Prony series, 61–65 von Mises strain, 88–89 von Mises stresses, 29–30, 40–41, 56–57, 66, 74, 78, 80, 88–89, 98, 127, 128–129, 138, 145, 154–155, 166–167 W wear, 1–2, 149, 169–170, 171, 172–175, 188, 205, 211 Archard Wear Model, 2, 149, 169, 171 coefficient of friction, 45, 117, 156 wear coefficient, 169, 171–172 Index 301X XFEM, 1, 33–36, 38, 41, 177, 184, 188 enrichment, 33, 40 Phantom-node method, 33–35, 38 Singularity-based method, 33–34 Y yield stress, 153, 155–156 Young’s modulus, 5, 7, 13, 16–28, 64, 70, 71, 102, 109, 137, 151, 155–15fiber enhancement (Continued) mesh independent method, 75, 78–79 Smeared modeling, 70, 103 finite element analysis, 1, 51–58, 120, 130, 141, 149 finite element method, 52, 102, 108–110, 120, 170–173 flexibility, 5, 24 force-distributed boundary constraints, 55, 57, 164 fracture, 9, 35, 39 crack front, 33, 35, 38, 41, 177, 181, 183–184 crack-growth, 1, 33, 35, 37 fracture parameter calculation, 39, 177, 180 inclined crack, 37, 39–40 microcracks, 36, 179 path-independent, 183 stress intensity factor, 40, 180–181, 183 H Haversian channel, 37 Haversian system, 29 head impact, 2, 43, 102–107 HI, 102 history-dependent, 46–47 homogeneous, 8, 102, 187 HU, 10, 12–13 hyperelasticity hyperelastic materials, 49, 51 hyperelastic models, 49–51 Mooney-Rivlin, 50–51, 95–96, 98, 164, 166 Neo-Hookean, 51, 83 Ogden, 51, 53, 57 I ICEM, 10 impact, 2, 43, 102–108 implants ankle arthroplasty, 151 anklereplacement, 1, 2, 151–156, 187 hip implant, 1, 2, 149, 170, 172 hip replacement, 3, 9, 169–175 MDI, 149, 177–183 stent implantation, 1, 2, 149, 161–162, 166 initial strain, 144 inorganic materials, 5 internal friction, 45, 101, 108, 187 interstitial lamellae, 37 isotropic, 8, 14, 25, 27–28, 57, 64, 85, 88, 102, 123, 151, 164, 187 intervertebral discs (IVDs), 1, 2, 43, 45, 47–48, 69–80, 108–113, 187 annulus, 2, 43, 47, 69–76, 108–110, 112 end plate, 47, 70, 73, 108, 118 nucleus, 43, 47, 74, 80, 108–110 K knee femoral cartilage, 119, 124–125, 128, 131, 134, 188 meniscus, 119–120, 123–124, 127–134, 137–138, 141, 145, 187 model, 2, 85, 115, 120, 123, 130, 134, 136–139 tibial articular cartilage, 124–125, 131, 134 L lattice structure, 8, 25 ligaments, 43, 45–47, 119–120 line-plane intersection, 141–143, 146 liner, 1, 170–175 M material identity, 13, 28, 76 material properties, 1, 5–9, 13–21, 23, 28, 37–38, 45–47, 64, 70–71, 95, 101–102, 104, 108–109, 123, 133, 151–153, 163–164, 170–171, 179, 187 medial tilting, 1–2, 155 meshing Mesh nonlinear adaptivity, 169 MESH200, 35, 38, 41, 75–76, 184 meshing sensitivity, 188 morph, 172 morphing, 33 regular meshing, 41, 169, 184 remeshing, 33, 169, 177–178, 181 microstructure, 1, 33, 36 MIMICS, 10 multidimensional interpolation, 9, 15 bounding box, 16–21 Linear Multivariate, 15, 151 LMUL, 15–21, 151 Nearest Neighbor, 15 NNEI, 15–16, 18–20, 151 query points, 15–17 300 IndexRadial Basis, 15 RBAS, 15–21, 151, 153 supporting point, 15–16 N Newton-Raphson method, 110, 136 noises, 14 nonhomogeneity, 14 nonhomogeneous, 1, 8, 9–21, 151, 187 O organic matrix, 5 orientation, 25, 46, 69–70, 72, 78 orthotropic, 24, 133 Osteoarthritis, 120–121 osteons, 37, 40–41 Osteoporosis, 35–36 P periodontal ligament (PDL), 1, 43, 61, 63–66 plane strain, 37, 102 plaque, 163–167 plastic strain, 154–156, 166–167 poroelasticity Biot coefficient, 101 Biot effective stress, 101 Biot’s consolidation theory, 101 biphasic, 101, 108, 111–112, 130 CPT, 101–102, 110, 130, 136, 187 Darcy’s Law, 101 permeability, 101, 102, 108, 109, 187, 188 pore pressure, 101–102, 105–107, 109–112, 113, 134, 136, 137 porosity, 5, 8 porous media, 2, 101–113, 130, 133, 137, 187 Prager-Lode type, 160 principal directions, 27 principal stresses, 25, 27, 29 prosthesis, 9, 161, 178 R rigid body motion, 55, 105 S shape functions, 33 skull, 102, 104–105, 117 shape memory alloy (SMA), 149, 157–167 austenite, 160 martensite, 158, 160 phase transformation, 157, 159–160, 167 shape memory effect, 157–158, 161, 163, 167 superelastic effect, 157 superelasticity, 157–159, 163, 167 SMART, 2, 149, 177–178, 180, 183–184, 188 soft tissues, 1–2, 9, 45–48, 49–57, 61–67, 69, 73, 93–98, 101–113, 130, 136, 137–138, 187–188 SpaceClaim, 52, 179 springs, 141, 143–146 stiffness, 8, 23, 157, 187 strain energy potential, 85, 88, 93 swelling, 56, 70, 73 T talar component, 2, 18, 149, 151–156, 187 Taylor series, 95 tendon, 8, 120 tension only, 71–73, 84 tetrahedral elements, 151 Thermal expansion coefficient, 70 tibia, 85–87, 120, 125–132, 134, 141, 143–144 time-dependent, 46–47, 61 U USERMAT, 2, 93–98 V viscoelasticity, 1, 61, 65, 88, 108 creep, 1–2, 61, 63, 65, 108, 111 Maxwell model, 61–63 Prony series, 61–65 von Mises strain, 88–89 von Mises stresses, 29–30, 40–41, 56–57, 66, 74, 78, 80, 88–89, 98, 127, 128–129, 138, 145, 154–155, 166–167 W wear, 1–2, 149, 169–170, 171, 172–175, 188, 205, 211 Archard Wear Model, 2, 149, 169, 171 coefficient of friction, 45, 117, 156 wear coefficient, 169, 171–172 Index 301X XFEM, 1, 33–36, 38, 41, 177, 184, 188 enrichment, 33, 40 Phantom-node method, 33–35, 38 Singularity-based method, 33–34 Y yield stress, 153, 155–156 Young’s modulus
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Finite Element Analysis for Biomedical Engineering Applications رابط مباشر لتنزيل كتاب Finite Element Analysis for Biomedical Engineering Applications
|
|