Admin مدير المنتدى
عدد المساهمات : 18938 التقييم : 35320 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Finite Element Analysis Theory and Application with ANSYS - Fourth Edition الأربعاء 14 أغسطس 2024, 12:34 am | |
|
أخواني في الله أحضرت لكم كتاب Finite Element Analysis Theory and Application with ANSYS - Fourth Edition Global Edition Saeed Moaveni Minnesota State University, Mankato
و المحتوى كما يلي :
Contents Preface 13 Acknowledgments 17 1 introduction 21 1.1 Engineering Problems 22 1.2 Numerical Methods 25 1.3 A Brief History of the Finite Element Method and ANSYS 26 1.4 Basic Steps in the Finite Element Method 26 1.5 Direct Formulation 28 1.6 Minimum Total Potential Energy Formulation 57 1.7 Weighted Residual Formulations 63 1.8 Verification of Results 68 1.9 Understanding the Problem 69 Summary 74 References 74 Problems 74 2 matrix Algebra 86 2.1 Basic Definitions 86 2.2 Matrix Addition or Subtraction 89 2.3 Matrix Multiplication 89 2.4 Partitioning of a Matrix 93 2.5 Transpose of a Matrix 97 2.6 Determinant of a Matrix 101 2.7 Solutions of Simultaneous Linear Equations 106 2.8 Inverse of a Matrix 114 2.9 Eigenvalues and Eigenvectors 118 2.10 Using MATLAB to Manipulate Matrices 122 2.11 Using Excel to Manipulate Matrices 126 Summary 140 References 141 Problems 141 3 trusses 145 3.1 Definition of a Truss 145 3.2 Finite Element Formulation 146 3.3 Space Trusses 171 73.4 Overview of the ANSYS Program 173 3.5 Examples Using ANSYS 181 3.6 Verification of Results 213 Summary 215 References 215 Problems 215 4 Axial members, Beams, and Frames 225 4.1 Members Under Axial Loading 225 4.2 Beams 233 4.3 Finite Element Formulation of Beams 238 4.4 Finite Element Formulation of Frames 254 4.5 Three-Dimensional Beam Element 260 4.6 An Example Using ANSYS 262 4.7 Verification of Results 287 Summary 289 References 290 Problems 291 5 One-Dimensional elements 303 5.1 Linear Elements 303 5.2 Quadratic Elements 307 5.3 Cubic Elements 309 5.4 Global, Local, and Natural Coordinates 312 5.5 Isoparametric Elements 314 5.6 Numerical Integration: Gauss–Legendre Quadrature 316 5.7 Examples of One-Dimensional Elements in ANSYS 321 Summary 321 References 321 Problems 321 6 Analysis of One-Dimensional Problems 328 6.1 Heat Transfer Problems 328 6.2 A Fluid Mechanics Problem 347 6.3 An Example Using ANSYS 351 6.4 Verification of Results 366 Summary 367 References 367 Problems 368 7 two-Dimensional elements 371 7.1 Rectangular Elements 371 7.2 Quadratic Quadrilateral Elements 375 8 Contents7.3 Linear Triangular Elements 380 7.4 Quadratic Triangular Elements 385 7.5 Axisymmetric Elements 389 7.6 Isoparametric Elements 394 7.7 Two-Dimensional Integrals: Gauss–Legendre Quadrature 397 7.8 Examples of Two-Dimensional Elements in ANSYS 398 Summary 399 References 399 Problems 400 8 more ANSYS 407 8.1 ANSYS Program 407 8.2 ANSYS Database and Files 408 8.3 Creating a Finite Element Model with ANSYS: Preprocessing 410 8.4 h-Method Versus p-Method 424 8.5 Applying Boundary Conditions, Loads, and the Solution 424 8.6 Results of Your Finite Element Model: Postprocessing 427 8.7 Selection Options 432 8.8 Graphics Capabilities 433 8.9 Error-Estimation Procedures 435 8.10 An Example Problem 437 Summary 451 References 452 9 Analysis of two-Dimensional Heat transfer Problems 453 9.1 General Conduction Problems 453 9.2 Formulation with Rectangular Elements 460 9.3 Formulation with Triangular Elements 471 9.4 Axisymmetric Formulation of Three-Dimensional Problems 490 9.5 Unsteady Heat Transfer 497 9.6 Conduction Elements Used by ANSYS 507 9.7 Examples Using ANSYS 508 9.8 Verification of Results 548 Summary 548 References 550 Problems 550 10 Analysis of two-Dimensional solid mechanics Problems 562 10.1 Torsion of Members with Arbitrary Cross-Section Shape 562 10.2 Plane-Stress Formulation 578 10.3 Isoparametric Formulation: Using a Quadrilateral Element 586 10.4 Axisymmetric Formulation 593 10.5 Basic Failure Theories 595 Contents 910.6 Examples Using ANSYS 596 10.7 Verification of Results 618 Summary 618 References 620 Problems 620 11 Dynamic Problems 629 11.1 Review of Dynamics 629 11.2 Review of Vibration of Mechanical and Structural Systems 643 11.3 Lagrange’s Equations 660 11.4 Finite Element Formulation of Axial Members 662 11.5 Finite Element Formulation of Beams and Frames 671 11.6 Examples Using ANSYS 685 Summary 704 References 704 Problems 704 12 Analysis of Fluid mechanics Problems 711 12.1 Direct Formulation of Flow Through Pipes 711 12.2 Ideal Fluid Flow 723 12.3 Groundwater Flow 729 12.4 Examples Using ANSYS 732 12.5 Verification of Results 753 Summary 754 References 755 Problems 756 13 three-Dimensional elements 761 13.1 The Four-Node Tetrahedral Element 761 13.2 Analysis of Three-Dimensional Solid Problems Using Four-Node Tetrahedral Elements 764 13.3 The Eight-Node Brick Element 769 13.4 The Ten-Node Tetrahedral Element 771 13.5 The Twenty-Node Brick Element 772 13.6 Examples of Three-Dimensional Elements in ANSYS 774 13.7 Basic Solid-Modeling Ideas 778 13.8 A Thermal Example Using ANSYS 789 13.9 A Structural Example Using ANSYS 806 Summary 819 References 819 Problems 819 10 Contents14 Design and material selection 828 14.1 Engineering Design Process 829 14.2 Material Selection 832 14.3 Electrical, Mechanical, and Thermophysical Properties of Materials 833 14.4 Common Solid Engineering Materials 835 14.5 Some Common Fluid Materials 842 Summary 844 References 844 Problems 844 15 Design Optimization 846 15.1 Introduction to Design Optimization 846 15.2 The Parametric Design Language of ANSYS 850 15.3 Examples of Batch Files 852 Summary 863 References 864 Problems 864 Appendix A mechanical Properties of some materials 865 Appendix B thermophysical Properties of some materials 869 Appendix C Properties of Common line and Area shapes 871 Appendix D Geometrical Properties of structural steel shapes 875 Appendix e Conversion Factors 879 Appendix F An introduction to mAtlAB 881 index 915 Index A Absolute humidity, 843 Adiabatic lines, 458, 548 Adiabatic surface, 457–458 Air, 842–843 Aluminum, 836 Aluminum bronze, 837 American National Standards Institute (ANSI), 836 Angles having equal legs, 875 Anisotropic material, 838 ANSYS applications for, 26, 27 backward Euler and, 507 basic concepts of, 175 batch files and, 852 Begin level, 407 boundary conditions, 424–426 creating finite element model with, 410–424 databases and files, 408–410 degree of freedom and, 425 dialog box, 174–175, 411 dynamic problems using, 685–703 error-estimation procedures, 435–437 examples using, 181–212, 437–451 fluid mechanics problems using, 732–753 graphical picking and, 179–180 Graphical User Interface and, 176–177 graphics capabilities, 433–435 heat transfer problems using, 508–547 help system, 180 h-method, 424 input command, 409 loads, 424–426 main menu for, 176–177 meshing, 421–424, 780 method to enter, 173–175 in one-dimensional problems, 321, 351–366 overview of, 26 parametric design language of, 850–852 plotting model entities, 421–422 p-method, 424 postprocessing, 427–431 Processor level, 407 selection options, 432–433 solution, 427 stress component distribution, 595 structural example using, 806–819 three-dimensional beam element, 262–287 time integration and, 506–507 two-dimensional elements, 398– 399 two-dimensional solid mechanics problems using, 596–618 utility menu for, 177–178 verification of results on, 213–214, 287–289, 548, 618, 753–754 ANSYS element types/options BEAM188, 262–275 BEAM189, 262 KEOPTs, 410, 411 LINK180, 181 LINK31, 321916 Index LINK33, 321 LINK34, 321 PLANE35, 398, 507, 596, 732 PLANE55, 507–508, 597, 732 PLANE77, 399, 508, 597, 732 PLANE182, 399, 410, 411, 596 PLANE183, 399, 410–411, 439, 596 SOLID45, 775 SOLID65, 775–776 SOLID70, 774 SOLID90, 774–775 SOLID185, 774, 777 SOLID186, 777 SOLID187, 777 SOLID285, 776 ANSYS files Jobname.DB, 198, 409, 432 Jobname.EMAT, 410 Jobname.ERR, 409 Jobname.GRPH, 410 Jobname.LOG, 409 Jobname.OUT, 409 Jobname.RMG, 410 Jobname.RST, 410 Jobname.RTH, 410 ANSYS finite element model creation of, 410–424 element real constants, 411–412 element types, 410–411 material properties, 412–413 meshing, 421–424 model geometry, 413–417 ANSYS processors OPT, 408 POST1, 175, 407, 427, 451, 852 POST26, 175, 427, 430 PREP7, 175, 407–408, 451, 852 solution, 175, 407 ANSYS working plane coordinate system, 418 display options, 418 explanation of, 417–418 grid control, 419–420 location status, 421 offset buttons, 420 offset dialog input, 420–421 offset slider, 420 snap options, 418 Area moments of inertia, 870 Axial members, finite element formulation of, 662–671 Axisymmetric elements explanation of, 389 rectangular, 391–394 triangular, 390–391 Axisymmetric formulation formulation of stiffness matrix using, 593–595 of three-dimensional problems, 490–497 B Backward Euler, 507 Banded matrix, 88 Basic failure theories, for structural solid analysis, 595–596 Batch files examples of, 852–863 explanation of, 852 optimization, 852–863 Beams deflection and, 233–237 finite element formulation of, 238–241, 671–673 function of, 233–234 load matrices and, 241–243 stiffness matrix and, 246–247, 255 strain energy and, 230–231 stresses in, 233, 237, 239, 261–262 three-dimensional, 260–262 Bilinear rectangular elements, 380 Biot number, 499–500, 506 Boolean operations, in solidmodeling approach, 414 Boundary conditions, 69 ANSYS, 424–427, 447 in conduction problems, 456–459 ANSYS element types/options (cont.)Index 917 convective, 467–468, 474, 478–479, 496 derivative, 467 differential heat equation, 500 in elemental resistance matrices, 717 in elemental stiffness matrices, 152, 159–160, 173, 191, 205 in engineering problems, 22, 25, 32–33, 35, 37, 39, 42, 46–47, 51, 54, 61 in finite element analysis, 424–427 global coordinate system, 312 global load matrix and, 232, 242, 244, 248, 251, 570 in heat transfer problems, 329–331, 336–339, 456–458, 471, 480, 504 in linear equations, 106 stiffness matrix for an axial element, 665, 668, 684, 692, 698 weighted residual methods, 63–64 Boundary layer region, 723–724 Brass, 837 Brick elements eight-node, 769–771 twenty-node, 772–773 Bronze, 837 Bulk modulus of compressibility, 835 C Calcium chloride, 838 Carbon, 840 Centroids, 870 Chain rule, 334, 461, 473, 491, 493 Circular frequency, 646–647 Collocation method, 64–65 Column matrix, 87 Common shapes, 870–871 Composite materials, 841–842 Composite walls, 345–347 Compression strength, 834 Concatenation, 781 Concrete, 837–838 Conductance matrix for axisymmetric triangular element, 496–497 explanation of, 44, 47, 336–337 Conduction, 453–454 Conduction problems boundary conditions in, 456–459 steady-state two-dimensional, 456 Conservation of energy explanation of, 455–456 heat transfer problems and, 491–492 Convective heat transfer, 41, 42, 454–455 Conversion factors, 876–877 Cooling, 303 Copper, 837 Cramer’s rule, 102 Crank-Nicholson, 507 C shapes, 874 Cubic elements, 309–312 Cubic shape functions, natural one-dimensional, 315 D Darcy’s law, 730 Deflection, linear approximation of, 226–227 Deflection equations, 235–237 Degrees of freedom ANSYS, 425 dynamic problems and, 643, 648–649 explanation of, 643 forced vibration of single, 648–649 multiple, 655–660 nodal, 246, 255 Density, 833 Design optimization batch files and, 852–863 examples of, 847–850918 Index overview of, 846–847 parametric design language of ANSYS and, 850–852 Design process common solid engineering materials and, 835–842 fluid materials and, 842–844 material properties and, 833–835 material selection and, 832–833 overview of, 828–829 steps in, 829–832 Design variables, 848, 850 Determinants examples using, 104–106 of matrices, 101–106 properties of, 103 of square matrix, 101 Diagonal, principal, 88 Diagonal matrix, 87–88 Differential equations, 22, 25 Direct expansion, 102–103 Direct formulation of flow through pipes, 711–723 heat transfer problem using, 40–49 postprocessing phase in, 37–40 preprocessing phase in, 28–35 solution phase in, 36–37 stress distribution problem using, 52–55 torsional problem using, 49–52 Direct generation, 413 Discretization, 25 Displacement matrix, 32–35, 39 Displacement results, 62–63 Distortion-energy theory, 595 Dynamic problems ANSYS used for, 685–703 degree of freedom, 643, 648–649 forced vibration and unbalanced rotating mass and, 650–651 forces transmitted to foundation and, 652–654 Lagrange’s equations and, 660–662 multiple degrees of freedom, 655–660 support excitation and, 654–655 Dynamics finite element formulation of axial members and, 662–671 finite element formulation of beams and frames and, 671–685 kinematics of particles and, 630–632 kinematics of rigid body and, 636–638 kinetics of particles and, 633–635 kinetics of rigid body and, 638–643 Dynamic systems examples of, 644 explanation of, 629–630 period and frequency for, 646 properties of, 643 E Eigenvalues, 118 Eigenvectors explanation of, 118 method to obtain, 119–121 Eight-node brick element, 769–771 Elastically coupled system, 119, 655 Elastic energy, 230 Elasticity fundamental concepts of, 578–584 Hooke’s law and, 580–582, 593 modulus of, 565, 581, 834 Electrical networks, 24, 25 Electrical resistivity, 833 Elemental flow resistance, 718 Element real constants, 411–413 Elements axisymmetric, 389–394 beam, 671–685 cubic, 309–312 eight-node brick, 769–771 four-node tetrahedral, 761–769 Design optimization (cont.)Index 919 frame, 254–260, 673–676 isoparametric, 314–316, 394–396 linear, 225–230 linear triangular, 380–385 one-dimensional, 227, 228, 303–321 quadratic, 307–309 quadratic quadrilateral, 375–380, 399 quadratic triangular, 385–389 quadrilateral, 375 rectangular, 371–375 structural-solid, 774–777 ten-node tetrahedral, 771–772 thermal-solid, 774 three-dimensional, 260–262 triangular, 383–391, 398, 471–482 twenty-node brick, 772–773 two-dimensional, 372–399 Energy conservation, 455–456 Engineering systems parameters causing disturbances in, 25 physical properties characterizing, 23–24 Engineers, 829 Error-estimation procedures, ANSYS, 435–437 Euler parameter, 507 Excel (Microsoft), 126–132 dynamic problem, 666–671 finite element problem, solving, 132–140 finite element formulation torsional problems, 572–578 fluid mechanics problem, 718–723 formulation with triangular elements, 482–490 midpoint deflection, solving, 249–254 one-dimensional heat transfer problem, 341–345 truss problems, solving, 163–171 Explicit finite difference method, 501, 504 F Factor of safety (F.S.), 595 Failure theories, for structural solid analysis, 595–596 Feasible solution region, 848–849 Fiberglass, 841 Fibers, 841 Finite difference method explanation of, 25 explicit, 501, 504 for heat transfer problems, 501–503, 506–507 implicit, 502–503, 504–506 Finite element analysis (FEA). See also ANSYS examples using, 70–73 explanation of, 21 sources of error in, 68–69 verification of, 287–289, 753–754 Finite element formulation of axial members, 662–666 of beams and frames, 238–241, 254–260, 671–685 of fluid mechanics problems, 716–717 of viscous fluid flow problems, 728 Finite element method applications for, 26 basic steps in, 26, 28 direct formulation and, 28–56 explanation of, 25 for heat transfer problems, 506–507 historical background of, 26 minimum total potential energy formulation and, 57–63 numerical methods and, 25 results verification and, 68–69 for torsional problems, 562, 564–572 for trusses, 146–171 weighted residual formulations and, 63–68920 Index Finite element modeling of frames, 254–260 frames of reference for, 312 Finite element models (ANSYS) element types and options, 410–411 geometry, 413–417 grid control, 419–421 material properties definition, 412–413 meshing, 422–424 plotting model entities, 421–422 working plane, 417–421 Finite element problems direct formulation approach to, 28–56 minimum total potential energy formulation approach to, 57–63 steps in, 26, 28 weighted residual formulation approach to, 63–68 Fins determining temperature of, 307, 314–315 problems involving, 337–341 transient response of, 529–547 two-dimensional function and, 371, 372 use of, 303, 304 Fluid flow ideal, 723–728, 732 parameters causing disturbances in, 25 physical properties related to, 24 in porous media, 729–730 Fluid materials air as, 842–843 water as, 843–844 Fluid mechanics problems ANSYS used in, 732–753 direct formulation of flow through pipes and, 711–723 groundwater flow and, 729–732 ideal fluid flow and, 723–728 one-dimensional, 347–351 verification of results in, 753–754 for commands, 891 Forced vibration caused by unbalanced rotating mass, 650–651 equations of motion for, 658–660 of single degree of freedom system, 648–649 Foundation, forces transmitted to, 652–654 Fourier number, 499, 506 Fourier’s law, 43, 454, 482, 492 Four-node tetrahedral element analysis of three-dimensional solid problems using, 764–769 explanation of, 761–764 load matrix and, 769 Frame elements, 254–260, 673–676 Frames finite element formulation of, 254–260, 673–676 Free-body diagrams, 633, 635, 639, 642 Free meshing, 781–783 free-stream velocities, 728 G Galerkin method for analysis of two-dimensional laminar flow, 728 heat transfer problems and, 460, 473, 491 weighted residual formulations and, 66, 332 Gauss elimination method explanation of, 106–108 use of, 108, 114, 125 Galerkin residuals, 491 Gauss-Legendre formula, 316, 319, 320, 590Index 921 Gauss-Legendre quadrature explanation of, 316, 318–320 two-dimensional integrals and, 397–398 General plane motion, 637–638, 640 Geometrical properties, of structural steel shapes, 872–875 Glass, 840–841 Global conductance matrix, 45, 46, 475 Global load matrix, 475 Global matrix, 34, 35, 45, 47 Graphical picking, ANSYS and, 179–180 Graphical User Interface (GUI) ANSYS and, 175–177, 180 graphical picking, 179 layout of, 176–177 Green’s theorem, 462, 465–471, 493, 496 Groundwater, 843 Groundwater flow, 729–732 H Hardwood, 839 Heat capacity, 835 Heat conduction. See Conduction; Conduction problems Heat diffusion equation, 456–457 Heat flow matrix, 47 Heat transfer conduction, 453–454, 456–459 convection, 41, 454–455 fin, 337–345 Fourier’s law and, 454, 482, 492 Galerkin method and, 460, 473, 491 Green’s theorem and, 462, 465–471, 493, 496 modes of, 453–455 one-dimensional elements and, 303 one-dimensional transient, 500 parameters causing disturbances in, 25 physical properties related to, 23–24 unsteady, 497–500 Heat transfer problems axisymmetric formulation of three-dimensional, 490–497 conduction elements used by ANSYS, 508–509 examples using ANSYS, 508–547 finite difference approach to, 501–503 formulation with rectangular elements, 460–471 formulation with triangular elements, 471–482 general conduction, 453–459 implicit method for, 502–503 unsteady, 497–500 verification of results to, 448 Heisler charts, 500 Hooke’s law stresses and strains and, 580–582, 593 truss problems and, 146 Humidity, 843 I Identity matrix, 88 if statement, 892 if and else statement, 893 Implicit finite difference method, 501–503 Impulse approach, 641 Incompressible flow, 715 Input data, 408 Integral formulations, 25 Integrals, two-dimensional, 396–398 Inviscid flow, 723–724, 727, 754 Iron, 837 Irrotational flow, 727–728922 Index Isoparametric elements explanation of, 314–315, 394–396 one-dimensional natural quadratic and cubic shape functions and, 315–316 Isoparametric formulation explanation of, 314, 394 quadrilateral element and, 586–592 Isotherms, 454, 548 J Jobname.Ext, 198, 409–410, 432 K Kinematics of particle, 630–632 of rigid body, 636–638 Kinetics of particles, 633–635 rectilinear translation, 638–639 of rigid body, 638–643 L Lagrange interpolation functions example using, 312 explanation of, 310–311 Lagrange polynomial formula, 312 Lagrange’s equations examples using, 660–663, 671 explanation of, 660 Laminar flow, 713, 715–716 Laplace’s equation, 728 Least-squares method, 67 Legendre polynomials, 318 Lightweight metals, 836–837 Linear approximation of deflection, 226–227 of temperature distribution for element, 304 Linear elements axial loading and, 225–230 one-dimensional, 303–307 Linear triangular elements explanation of, 380–385 limitations of using, 571–572 Line segments, centroids of, 869 Lines of symmetry, 548 Load matrices change of, 108 direct formulation and, 32, 33, 35, 39 formulation of nodal, 241–243 stiffness and, 230–233 three-dimensional problems and, 769 two-dimensional plane stress and, 584–586 Local coordinates, advantages of, 312 Locational picking, 163 Lower triangular matrix, 88 LU method application of, 112–114 explanation of, 108–112 Lumped capacitance method, 499 M M-file, 894 Magnesium, 836–837 Magnetism problems, 24 Mapped meshing, 781–783 Mass moments of inertia of common shapes, 871 Materials electrical, mechanical, and thermophysical properties of, 833–835 mechanical properties of engineering, 866–867 selection of, 832–833 thermophysical properties of, 868Index 923 Mathematical models, 22, 455 MATLAB basic ideas, 878–881 commands for, 122, 880–882, 890–891 conditional statements, 892–893 curve fitting with, 908–909 default mode, 878–879 desktop layout, 879–880 disp command, 880–881 element by element operation, 883–886 explanation of, 122 for and while commands, 890–891 format command, 880–881 formulas, 883 fprintf command, 880–881 functions, 888–889 generating range of values, 882 importing of Excel and other data to, 903–905 line and symbol properties, 898 manipulating matrices using, 122–125 matrix computations with, 905–908 matrix operations, 122, 886 plotting with, 896–902 relational operators, 892 scalar operations, 122, 880 solutions to a set of linear equations, 910–912 symbolic mathematics with, 909–910 workspace, 882 Matrices banded, 88 column, 87 determinant of, 101–106 diagonal, 87–88, 118 elements of, 86 explanation of, 86–87 identity, 88, 118 inverse of, 114–118 lower triangular, 88 partitioning of, 93–97 row, 87 singular, 105–106 size of, 86 square, 87, 101 transpose of, 97–100 unit, 88 upper triangular, 88 using EXCEL to manipulate, 126–132 using MATLAB to manipulate, 122–125 Matrix addition, 89, 94 Matrix materials, 841 Matrix multiplication example of, 91–93 multiplying by scalar quantity, 89–90 multiplying matrix by another matrix, 90–91 using partitioned matrices, 94–95 Matrix subtraction, 89, 94 Maximum-normal-stress theory, 595 Maximum-sheer-stress theory, 595 Mechanical properties, of engineering materials, 866–867 Members under axial loading linear element and, 225–230 stiffness and load matrices and, 230–233 Meshing ANSYS, 421–424, 780 free vs. mapped, 781–783 Microsoft Excel. See Excel (Microsoft) Minimum total potential energy formulation, 57–63 Modal analysis, 659 Modulus of elasticity, 565, 581, 834 Modulus of resilience, 834 Modulus of rigidity, 563, 581, 834 Modulus of toughness, 834 Mohr failure criteria, 596 Momentum approach, 641924 Index Motion equations of, 658–660 general plane, 637–638, 640 Newton’s second law of, 633–635, 638–639, 645 plane curvilinear, 630–631 rectangular, 630 relative, 632 rotational, 643 translational, 642 N Natural coordinates advantages of, 312, 313 one-dimensional, 313–314 for triangular elements, 383–385 two-dimensional, 374–375 Natural shape functions, quadratic, 315 Newton’s law of cooling, 41–42 Newton’s second law of motion, 633–635, 638–639, 645 Nodal degree of freedom, 246, 260 Nonhomogenous systems, 118 Normal coordinates, 631 Numerical integration, GaussLegendre quadrature and, 316, 318–320 Numerical methods, 25 O Objective function, 848, 849 One-dimensional elements in ANSYS, 321 cubic, 309–312 Gauss-Legendre quadrature and, 316–320 global, local, and natural coordinates and, 312–314 isoparametric, 314–316 linear, 303–306 natural coordinates and, 312–314 quadratic, 307–309 shape functions and, 228, 306–307, 317 One-dimensional problems ANSYS used for, 351–366 fluid mechanics, 351 heat transfer, 328–347 verifying results of, 366–367 One-dimensional transient heat transfer, 500 Optimization, 846. See also Design optimization Optimization batch files, 852–863 P Pappus-Guldinus theorem, 494–495, 497 Parametric design language, 850–852 Particles explanation of, 630 kinematics of, 630–632 kinetics of, 633–635 Perfectly insulated surface, 458 Permeability matrix, 731 Pipe flow, 711–723 Pipes in parallel, 716 in series, 715–716 Plane curvilinear motion, 630–631 Plane-strain situation, 579–580 Plane-stress formulation, 578–586 Plane-stress situation, 579 Plane truss, 145 Plastics, 839–840 Plotting, model entities with ANSYS, 421–422 Poisson’s ratio, 581, 590, 603, 808 Polar coordinates, 631–652 Polymers, 839 Polyvinyl chloride (PVC), 839Index 925 Postprocessing phase ANSYS, 408, 427–431 direct formulation and, 37–40, 48–49 of finite element method, 28 for heat transfer problems, 329 Potential function, 727–728 Potential lines, 727–728 Prandtl formulation, 564–565 Precast concrete, 838 Preprocessing phase ANSYS, 407–408, 410–424 direct formulation and, 28–35, 40–48 finite element method and, 26, 28 for heat transfer problems, 328 truss problems and, 152–160 Prestressed concrete, 838 Primitives, 414, 417 Principal coordinates, 659 Principal diagonal, 88 Q Quadratic approximation, 308 Quadratic elements, 307–309 Quadratic natural shape functions, 315 Quadratic quadrilateral elements, 375–380, 396 Quadratic triangular elements, 385–389, 397 Quadrilateral elements explanation of, 375 isoparametric formulation and, 586–592 R Range, 132 Reaction forces, 39, 213 Reaction matrix, 32, 39 Real constants, element, 411–413 Rectangular elements axisymmetric, 391–394 bilinear, 380, 460 explanation of, 371–374 heat transfer problems and, 460–471 natural coordinates and, 374–375 permeability matrix for, 731 Rectangular motion, 630 Rectilinear translation, 638–639 Reinforced concrete, 838 Relative humidity, 843 Relative motion, 632 Results data, 409 Retrieval picking, 163 Reynolds number, 711–713 Rigid body explanation of, 636 kinematics of, 636–638 kinetics of, 638–643 Rigidity, modulus of, 563, 581, 834 Rotation about fixed axis, 639 of rigid body, 636–637 Rotational kinetic energy, 641 Rotational motion, 643 Row matrix, 87 S Seepage velocity, 730, 745, 754 distribution in the porous soil, 745–753 Semiconductors, 840 Shape functions basic ideas of, 303–306 one-dimensional, 315–317 properties of, 306–307 quadratic, 312, 315 triangular, 382, 383 two-dimensional, 371–397 Shear modulus, 563, 565, 581, 834 Silicon, 840 Silicones, 840926 Index Simple harmonic motion, 643 Singular matrix, 105–106 Soda-lime-silica glass, 840 Softwood, 839 Solid engineering materials composites as, 841–842 concrete as, 837–838 cooper and its alloys as, 837 glass as, 840–841 iron and steel as, 837 lightweight metals as, 836–837 plastics as, 839–840 silicon as, 840 wood as, 838–839 Solid mechanics, 23, 25 Solid mechanics problems. See Two-dimensional solid mechanics problems Solid-modeling approach Boolean operations, 414 bottom-up, 778, 779 explanation of, 413–415 top-down, 778 Solution phase ANSYS, 408 direct formulation and, 36–37, 48 of finite element method, 28 for heat transfer problems, 329 truss problems and, 160–163 Space trusses explanation of, 171–173 solution to problem with, 198–212 Spring mass system, 654–655 Square matrix determinant of, 101 explanation of, 87 inverse of two-dimensional, 588 St. Venant’s formulation, 564 State variables, 850 Static equilibrium, 31, 644, 645 Steel, 837 Stiffness load matrices and, 230–233 in truss problems, 153 Stiffness matrices beams and, 246–247, 255 direct formulation examples and, 32–35, 39, 52, 53 in dynamics problems, 677–678, 681–682 for a frame element, 256–260 truss, 150, 152–159, 173 using axisymmetric triangular elements, 593–595 Strain energy, 230–231, 581 Stream functions, 724–729 Stream lines, 724–727, 729 Strength-to-weight ratio, 834–835 Stresses in beams, 237, 261–262 computing principle and maximum shear, 595–596 distribution of, 52–55, 378–380 von Mises–Hencky theory, 595–596 Structural steel shapes, 872–875 Subdomain method, 65–66 Support excitation, 654–655 Surface water, 843 System of linear equations, nonhomogenous, 118 T Tangential coordinates, 631 Temperature distribution cubic approximation and, 309 heat transfer problems and, 453 linear approximation and, 304 quadratic approximation and, 308 Temperature matrix, 47 Ten-node tetrahedral element, 771–772 Tensile strength, 834 Tetrahedral elements four-node, 761–769 ten-node, 771–772Index 927 Thermal conductance matrix, 44 Thermal conductivity, 835 Thermal diffusivity, 499, 504 Thermal expansion, 835 Thermal radiation, 455 Thermal transmission, 41 Thermal transmittance coefficient, 41 Thermophysical properties of engineering materials, 868 Thermoplastics, 839 Thermosetting, 839 Third-order polynomials, 309 Three-dimensional elements in ANSYS, 260–287, 774–819 beam, 260–287 eight-node brick, 769–771 four-node tetrahedral, 761–769 solid-modeling ideas and, 778–789 structural-solid, 774–777 ten-node tetrahedral, 771–772 thermal example of, 789–805 thermal-solid, 774 twenty-node brick, 772–773 Three-dimensional solid problems, using four-node tetrahedral elements, 764–769 Three-dimensional trusses. See Space trusses Timber, 839 Titanium, 836 Torsional problems direct formulation and, 49–52 finite element method and, 562, 564–578 finite element model to analyze, 72–73 Total potential energy, 230 Total potential energy formulation, minimum, 57–63 Translation rectilinear, 638–639 of rigid body, 636 Translational motion, 642 Triangular elements axisymmetric, 390–391 heat transfer problems and, 471–491, 493, 496–497 hydraulic head for, 731 linear, 380–385, 397 natural coordinates for, 383–385 permeability matrix for, 731 quadratic, 385–389, 397 Trusses explanation of, 145–146 global and local frames of reference for, 148–152 space, 171–173, 198–212 Truss problems finite element formulation and, 146–171 space, 198–212 statistically determinate, 146, 147 statistically indeterminate, 146, 147 stiffness matrix and, 150, 152–159 using ANSYS to solve, 173–214 (See also ANSYS) Turbulent flow, 715 Twenty-node brick element, 772–773 Two-dimensional elements in ANSYS, 398–399 axisymmetric, 389–394 Gauss-Legendre quadrature and, 396, 398 isoparametric, 394–396 linear triangular, 380–385, 397 quadratic quadrilateral, 375–380 quadratic triangular, 385–389, 397 rectangular, 371–375 shape functions, 371–397 Two-dimensional flows, 724, 727, 730 Two-dimensional solid mechanics problems ANSYS used for, 596–618 axisymmetric formulation and, 593–595 basic failure theories and, 595–596 isoparametric formulation and, 586–592928 Index plane-stress formulation and, 578–586 torsion of members with arbitrary cross-section shape and, 562–578 Two-point sampling formula, 398 U U-factor conductance matrix and, 44 explanation of, 41–43 Unit matrix, 88 Upper triangular matrix, 88 V Vapor pressure, 835 Vibration, forced, 648–651 Viscosity, 723, 727–728, 730, 835 Viscous flows, 723, 728 von Mises–Hencky theory, 595–596 von Mises stresses, 596, 806, 818 W Water, 843–844 Weighted residual formulations collocation method and, 64–65 comparison of, 68 explanation of, 63–64 Galerkin method and, 66, 301 least-squares method and, 67–68 subdomain method and, 65–66 while command, 891 Wood, 838–839 Work-energy principle, 634, 635, 640–641 W shapes, 872–873 Y Young’s modulus, 565, 581, 834
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Finite Element Analysis Theory and Application with ANSYS - Fourth Edition رابط مباشر لتنزيل كتاب Finite Element Analysis Theory and Application with ANSYS - Fourth Edition
|
|