Admin مدير المنتدى
عدد المساهمات : 19025 التقييم : 35575 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب What Every Engineer Should Know About Computational Techniques of Finite Element Analysis الأربعاء 07 أغسطس 2024, 12:50 am | |
|
أخواني في الله أحضرت لكم كتاب What Every Engineer Should Know About Computational Techniques of Finite Element Analysis Second Edition LOUIS KOMZSIK
و المحتوى كما يلي :
Contents Preface to the second edition xiii Preface to the first edition xv Acknowledgments xvii I Numerical Model Generation 1 1 Finite Element Analysis 3 1.1 Solution of boundary value problems 3 1.2 Finite element shape functions . 6 1.3 Finite element basis functions 9 1.4 Assembly of finite element matrices . 12 1.5 Element matrix generation 15 1.6 Local to global coordinate transformation . 19 1.7 A linear quadrilateral finite element 20 1.8 Quadratic finite elements 26 References 29 2 Finite Element Model Generation 31 2.1 Bezier spline approximation . 31 2.2 Bezier surfaces 37 2.3 B-spline technology 40 2.4 Computational example . 43 2.5 NURBS objects 48 2.6 Geometric model discretization . 50 2.7 Delaunay mesh generation 51 2.8 Model generation case study . 54 References 57 3 Modeling of Physical Phenomena 59 3.1 Lagrange’s equations of motion . 59 3.2 Continuum mechanical systems . 61 3.3 Finite element analysis of elastic continuum 63 3.4 A tetrahedral finite element . 65 3.5 Equation of motion of mechanical system . 69 3.6 Transformation to frequency domain 71 viiviii References 74 4 Constraints and Boundary Conditions 75 4.1 The concept of multi-point constraints . 76 4.2 The elimination of multi-point constraints . 79 4.3 An axial bar element . 82 4.4 The concept of single-point constraints . 85 4.5 The elimination of single-point constraints . 86 4.6 Rigid body motion support . 88 4.7 Constraint augmentation approach . 90 References 92 5 Singularity Detection of Finite Element Models 93 5.1 Local singularities 93 5.2 Global singularities 97 5.3 Massless degrees of freedom . 99 5.4 Massless mechanisms . 100 5.5 Industrial case studies 102 References 104 6 Coupling Physical Phenomena 105 6.1 Fluid-structure interaction 105 6.2 A hexahedral finite element . 106 6.3 Fluid finite elements . 109 6.4 Coupling structure with compressible fluid . 111 6.5 Coupling structure with incompressible fluid 112 6.6 Structural acoustic case study 113 References 115 II Computational Reduction Techniques 117 7 Matrix Factorization and Linear Systems 119 7.1 Finite element matrix reordering 119 7.2 Sparse matrix factorization . 122 7.3 Multi-frontal factorization 124 7.4 Linear system solution 126 7.5 Distributed factorization and solution . 127 7.6 Factorization and solution case studies . 130 7.7 Iterative solution of linear systems . 134 7.8 Preconditioned iterative solution technique 137 References 139ix 8 Static Condensation 141 8.1 Single-level, single-component condensation 141 8.2 Computational example . 144 8.3 Single-level, multiple-component condensation . 147 8.4 Multiple-level static condensation 152 8.5 Static condensation case study . 155 References 158 9 Real Spectral Computations 159 9.1 Spectral transformation . 159 9.2 Lanczos reduction 161 9.3 Generalized eigenvalue problem . 164 9.4 Eigensolution computation 166 9.5 Distributed eigenvalue computation . 168 9.6 Dense eigenvalue analysis 172 9.7 Householder reduction technique 175 9.8 Normal modes analysis case studies . 177 References 181 10 Complex Spectral Computations 183 10.1 Complex spectral transformation 183 10.2 Biorthogonal Lanczos reduction . 184 10.3 Implicit operator multiplication . 186 10.4 Recovery of physical solution 188 10.5 Solution evaluation 190 10.6 Reduction to Hessenberg form 191 10.7 Rotating component application . 192 10.8 Complex modal analysis case studies 196 References 199 11 Dynamic Reduction 201 11.1 Single-level, single-component dynamic reduction . 201 11.2 Accuracy of dynamic reduction . 203 11.3 Computational example . 206 11.4 Single-level, multiple-component dynamic reduction 208 11.5 Multiple-level dynamic reduction 210 11.6 Multi-body analysis application . 212 References 215 12 Component Mode Synthesis 217 12.1 Single-level, single-component modal synthesis . 217 12.2 Mixed boundary component mode reduction 219 12.3 Computational example . 222 12.4 Single-level, multiple-component modal synthesis . 225 12.5 Multiple-level modal synthesis 228x 12.6 Component mode synthesis case study . 230 References 232 III Engineering Solution Computations 235 13 Modal Solution Technique 237 13.1 Modal solution 237 13.2 Truncation error in modal solution . 239 13.3 The method of residual flexibility 241 13.4 The method of mode acceleration 245 13.5 Coupled modal solution application . 246 13.6 Modal contributions and energies 247 References 250 14 Transient Response Analysis 251 14.1 The central difference method 251 14.2 The Newmark method 252 14.3 Starting conditions and time step changes . 254 14.4 Stability of time integration techniques . 255 14.5 Transient response case study 258 14.6 State-space formulation . 259 References 262 15 Frequency Domain Analysis 263 15.1 Direct and modal frequency response analysis . 263 15.2 Reduced-order frequency response analysis . 264 15.3 Accuracy of reduced-order solution . 267 15.4 Frequency response case study . 268 15.5 Enforced motion application . 269 References 271 16 Nonlinear Analysis 273 16.1 Introduction to nonlinear analysis 273 16.2 Geometric nonlinearity 275 16.3 Newton-Raphson methods 278 16.4 Quasi-Newton iteration techniques . 282 16.5 Convergence criteria . 284 16.6 Computational example . 285 16.7 Nonlinear dynamics 287 References 288 17 Sensitivity and Optimization 289 17.1 Design sensitivity . 289 17.2 Design optimization . 290 17.3 Planar bending of the bar 294Contents xi 17.4 Computational example . 297 17.5 Eigenfunction sensitivities 302 17.6 Variational analysis 304 References 308 18 Engineering Result Computations 309 18.1 Displacement recovery 309 18.2 Stress calculation . 311 18.3 Nodal data interpolation . 312 18.4 Level curve computation . 314 18.5 Engineering analysis case study . 316 References 319 Annotation 321 List of Figures 323 List of Tables 325 Index 327 Closing Remarks 331 Annotation Notation Meaning P Potential energy, permutation Pk Householder matrix T Kinetic energy, transformation matrix D Dissipative function, material matrix D Diagonal factor matrix WP Work potential Ps Strain energy Ni Matrix of shape functions N Shape functions B Strain displacement matrix J Jacobian matrix qe Element displacement ke Element stiffness Ae Element area Ve Element volume Ee Element energy K Stiffness matrix M Mass matrix B Damping matrix F Force matrix G Static condensation matrix H1 Hilbert space I Identity matrix C Cholesky factor L Lower triangular factor matrix U Upper triangular factor matrix S Dynamic reduction transformation matrix Sj Spline segment Pi Point coordinates R Rigid constraint matrix V (Pi) Voronoi polygon Ys Vector of enforced displacements T Tridiagonal matrix Q Permutation matrix, Lanczos vector matrix 321322 Annotation X Linear system solution Y Intermediate solution Z Residual flexibility matrix ² Strain vector σ Stress vector α Diagonal Lanczos coefficient β Off-diagonal Lanczos coefficient λ Eigenvalue, Lagrange multiplier Λ Eigenvalue matrix φ Eigenvector Φ Eigenvector matrix Ψ Residual flexibility matrix ω Frequency μ Shifted eigenvalue λs Spectral shift Δt Time step ΔF Nonlinear force imbalance Δu Nonlinear displacement increment κk Krylov subspace θ Rotational degrees of freedom bi Modal damping f(x) Objective function g(x) Constraint function ki Modal stiffness mi Modal mass qk Lanczos vectors qi Generalized degrees of freedom r Residual vector t Time u Displacement in frequency domain v Displacement in time domain w Modal displacement wi Weight coefficientsList of Figures 1.1 Membrane model 5 1.2 Local coordinates of triangular element 7 1.3 Meshing the membrane model . 12 1.4 Parametric coordinates of triangular element 16 1.5 A planar quadrilateral element 21 1.6 Parametric coordinates of quadrilateral element . 22 2.1 Bezier polygon . 32 2.2 The effect of weights on the shape of spline . 34 2.3 Multiple Bezier segments . 35 2.4 Continuity of spline segments . 36 2.5 Bezier patch definition . 37 2.6 Patch continuity definition . 39 2.7 B spline interpolation . 44 2.8 B spline approximation 46 2.9 Clamped B spline approximation . 47 2.10 Closed B spline approximation 48 2.11 Voronoi polygon 50 2.12 Delaunay triangle 52 2.13 Delaunay triangularization . 53 2.14 Design sketch of a bracket . 55 2.15 Geometric model of bracket 56 2.16 Finite element model of bracket 57 3.1 Discrete mechanical system 60 3.2 Degrees of freedom of mechanical particle 62 3.3 Tetrahedron element 66 4.1 Rigid bar 76 4.2 Boundary conditions 87 5.1 Deformed shape of bar . 96 5.2 Typical automobile body-in-white model . 103 6.1 Hexahedral finite element . 106 6.2 Fuel tank model 113 6.3 Truck cabin model . 114 323324 List of Figures 7.1 Crankshaft casing finite element model 131 8.1 Single-level, single-component partitioning 142 8.2 Single-level, multiple-component partitioning 148 8.3 Multiple-level, multiple-component partitioning . 152 8.4 Automobile crankshaft industrial example 156 9.1 Spectral transformation 160 9.2 Generalized solution scheme 165 9.3 Trimmed car body model . 178 9.4 Speedup of parallel normal modes analysis 179 9.5 Engine block model . 181 10.1 Campbell diagram . 195 10.2 Stability diagram 196 10.3 Brake model . 197 10.4 Rotating machinery model . 198 11.1 Steering mechanism 213 12.1 Convertible car body 230 13.1 Time dependent load 244 13.2 The effect of residual vector 244 13.3 Modal contributions 248 13.4 Modal kinetic energy distribution . 250 14.1 Transient response . 258 15.1 Satellite model . 268 16.1 Nonlinear stress-strain relationship 274 16.2 Rotated bar model . 277 16.3 Newton-Raphson iteration . 280 16.4 Modified Newton iteration . 281 17.1 Optimum condition . 293 17.2 Planar bending of bar element 294 17.3 Design space of optimization example 300 18.1 Stresses in triangle . 312 18.2 Level curve computation 315 18.3 Physical load on bracket 316 18.4 Constraint conditions of bracket . 317 18.5 Deformed shape of bracket . 318 18.6 Stress contours of bracket . 319List of Tables 1.1 Basis function terms for two-dimensional elements . 10 1.2 Basis function terms for three-dimensional elements 11 1.3 Gauss weights and locations 18 5.1 Element statistics of automobile model examples 103 5.2 Reduction sizes of automobile model examples . 104 6.1 Local coordinates of hexahedral element . 107 6.2 Acoustic response analysis matrix statistics . 114 7.1 Size statistics of casing component model 132 7.2 Computational statistics of casing component model 132 7.3 Linear static analysis matrix statistics 133 8.1 Component statistics of crankshaft model 157 8.2 Performance statistics of crankshaft model 157 9.1 Model statistics of trimmed car body . 178 9.2 Distributed normal modes analysis statistics . 180 9.3 Normal modes analysis dense matrix statistics 180 10.1 Statistics of brake model 198 10.2 Complex eigenvalue analysis statistics 199 12.1 Element types of case study automobile model . 231 12.2 Problem statistics . 231 12.3 Execution statistics . 232
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب What Every Engineer Should Know About Computational Techniques of Finite Element Analysis رابط مباشر لتنزيل كتاب What Every Engineer Should Know About Computational Techniques of Finite Element Analysis
|
|