كتاب Foundations of Materials Science and Engineering - Seventh Edition
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Foundations of Materials Science and Engineering - Seventh Edition

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18938
التقييم : 35320
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Foundations of Materials Science and Engineering - Seventh Edition  Empty
مُساهمةموضوع: كتاب Foundations of Materials Science and Engineering - Seventh Edition    كتاب Foundations of Materials Science and Engineering - Seventh Edition  Emptyالثلاثاء 06 أغسطس 2024, 10:24 pm

أخواني في الله
أحضرت لكم كتاب
Foundations of Materials Science and Engineering - Seventh Edition
William F. Smith
Late Professor Emeritus of Engineering of
University of Central Florida
Javad Hashemi, Ph.D.
Professor of Ocean and Mechanical Engineering
Florida Atlantic University  

كتاب Foundations of Materials Science and Engineering - Seventh Edition  F_o_m_32
و المحتوى كما يلي :


TABLE OF CONTENTS page iv
Preface xv
CHAPTER 1
Introduction to Materials Science and Engineering 2
Materials and Engineering 3
Materials Science and Engineering 7
Types of Materials 9
Metallic Materials 9
Polymeric Materials 11
Ceramic Materials 14
Composite Materials 16
Electronic Materials 18
Competition Among Materials 19
Recent Advances in Materials Science and Technology and Future
Trends 21
Smart Materials 21
Nanomaterials 23
Materials Selection for Engineering Applications 24
Environmental Considerations in the Selection of Materials—Life
Cycle Analysis 26
Summary 29
Definitions 30
Problems 31
CHAPTER 2
Atomic Structure and Bonding 342.1
2.2
2.2.1
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
2.7
2.8
2.9
3.1
3.2
3.3
3.3.1
Atomic Structure and Subatomic Particles 35
Atomic Numbers, Mass Numbers, and Atomic Masses 39
Atomic Numbers and Mass Numbers 39
The Electronic Structure of Atoms 43
Planck’s Quantum Theory and Electromagnetic Radiation
43
Bohr’s Theory of the Hydrogen Atom 44
The Uncertainty Principle and Schrödinger’s Wave
Functions 48
Quantum Numbers, Energy Levels, and Atomic Orbitals 51
The Energy State of Multielectron Atoms 54
The Quantum-Mechanical Model and the Periodic Table 58
Periodic Variations in Atomic Size, Ionization Energy, and Electron
Affinity 61
Trends in Atomic Size 61
Trends in Ionization Energy 62
Trends in Electron Affinity 64
Metals, Metalloids, and Nonmetals 66
Primary Bonds 66
Ionic Bonds 68
Covalent Bonds 74
Metallic Bonds 81
Mixed Bonding 83
Secondary Bonds 85
Summary 88
Definitions 89
Problems 91
CHAPTER 3
Crystal and Amorphous Structure in Materials 98
The Space Lattice and Unit Cells 99
Crystal Systems and Bravais Lattices 100
Principal Metallic Crystal Structures 104
Body-Centered Cubic (BCC) Crystal Structure 1053.3.2
3.3.3
3.4
3.5
3.6
3.7
3.7.1
3.7.2
3.8
3.8.1
3.8.2
3.9
3.9.1
3.9.2
3.9.3
3.10
3.11
3.11.1
3.11.2
3.11.3
3.12
3.13
3.14
3.15
4.1
4.1.1
4.1.2
4.1.3
4.2
Face-Centered Cubic (FCC) Crystal Structure 108 page v
Hexagonal Close-Packed (HCP) Crystal Structure
109
Atom Positions in Cubic Unit Cells 112
Directions in Cubic Unit Cells 113
Miller Indices for Crystallographic Planes in Cubic Unit Cells 117
Crystallographic Planes and Directions in Hexagonal Crystal
Structure 122
Indices for Crystal Planes in HCP Unit Cells 122
Direction Indices in HCP Unit Cells 124
Comparison of FCC, HCP, and BCC Crystal Structures 124
FCC and HCP Crystal Structures 124
BCC Crystal Structure 127
Volume, Planar, and Linear Density Unit-Cell Calculations 127
Volume Density 127
Planar Atomic Density 128
Linear Atomic Density and Repeat Distance 130
Polymorphism or Allotropy 131
Crystal Structure Analysis 132
X-Ray Sources 133
X-Ray Diffraction 134
X-Ray Diffraction Analysis of Crystal Structures 136
Amorphous Materials 142
Summary 143
Definitions 144
Problems 145
CHAPTER 4
Solidification and Crystalline Imperfections 160
Solidification of Metals 161
The Formation of Stable Nuclei in Liquid Metals 163
Growth of Crystals in Liquid Metal and Formation of a
Grain Structure 170
Grain Structure of Industrial Castings 171
Solidification of Single Crystals 1724.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.6
4.7
4.8
5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.4
page vi
Metallic Solid Solutions 176
Substitutional Solid Solutions 177
Interstitial Solid Solutions 179
Crystalline Imperfections 183
Point Defects 183
Line Defects (Dislocations) 184
Planar Defects 188
Volume Defects 190
Experimental Techniques for Identification of Microstructure and
Defects 191
Optical Metallography, ASTM Grain Size, and Grain
Diameter Determination 191
Scanning Electron Microscopy (SEM) 196
Transmission Electron Microscopy (TEM) 197
High-Resolution Transmission Electron Microscopy
(HRTEM) 198
Scanning Probe Microscopes and Atomic Resolution 200
Summary 204
Definitions 205
Problems 206
CHAPTER 5
Thermally Activated Processes and Diffusion in Solids 214
Rate Processes in Solids 215
Atomic Diffusion in Solids 220
Diffusion in Solids in General 220
Diffusion Mechanisms 220
Steady-State Diffusion 222
Non–Steady-State Diffusion 225
Industrial Applications of Diffusion Processes 228
Case Hardening of Steel by Gas Carburizing 228
Impurity Diffusion into Silicon Wafers for Integrated
Circuits 232
Effect of Temperature on Diffusion in Solids 2355.5
5.6
5.7
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.3.3
6.4
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.6
6.6.1
Summary 238
Definitions 239
Problems 239
CHAPTER 6
Mechanical Properties of Metals I 246
The Processing of Metals and Alloys 247
The Casting of Metals and Alloys 247
Hot and Cold Rolling of Metals and Alloys 249
Extrusion of Metals and Alloys 253
Forging 254
Other Metal-Forming Processes 256
Stress and Strain in Metals 257
Elastic and Plastic Deformation 258
Engineering Stress and Engineering Strain 258
Poisson’s Ratio 261
Shear Stress and Shear Strain 262
The Tensile Test and The Engineering Stress–Strain Diagram 263
Mechanical Property Data Obtained from the Tensile Test
and the Engineering Stress–Strain Diagram 265
Comparison of Engineering Stress–Strain Curves for
Selected Alloys 271
True Stress and True Strain 271
Hardness and Hardness Testing 273
Plastic Deformation of Metal Single Crystals 275
Slipbands and Slip Lines on the Surface of Metal Crystals
275
Plastic Deformation in Metal Crystals by the Slip
Mechanism 278
Slip Systems 278
Critical Resolved Shear Stress for Metal Single Crystals 283
Schmid’s Law 283
Twinning 286
Plastic Deformation of Polycrystalline Metals 288
Effect of Grain Boundaries on the Strength of Metals 2886.6.2
6.6.3
6.7
6.8
6.8.1
6.8.2
6.8.3
6.9
6.10
6.11
6.12
6.13
7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.2
7.2.1
7.2.2
7.2.3
7.3
page vii
Effect of Plastic Deformation on Grain Shape and
Dislocation Arrangements 290
Effect of Cold Plastic Deformation on Increasing the
Strength of Metals 293
Solid-Solution Strengthening of Metals 294
Recovery and Recrystallization of Plastically Deformed Metals 295
Structure of a Heavily Cold-Worked Metal before Reheating
296
Recovery 296
Recrystallization 298
Superplasticity in Metals 302
Nanocrystalline Metals 304
Summary 305
Definitions 306
Problems 308
CHAPTER 7
Mechanical Properties of Metals II 318
Fracture of Metals 319
Ductile Fracture 320
Brittle Fracture 321
Toughness and Impact Testing 324
Ductile-to-Brittle Transition Temperature 326
Theoretical Strength, Griffith’s Theorem, and Stress
Concentration Factor 327
Stress Intensity Factor and Fracture Toughness 328
Fatigue of Metals 332
Cyclic Stresses 335
Basic Structural Changes that Occur in a Ductile Metal in
the Fatigue Process 336
Some Major Factors that Affect the Fatigue Strength
of a Metal 337
Fatigue Crack Propagation Rate 3387.3.1
7.3.2
7.3.3
7.4
7.4.1
7.4.2
7.4.3
7.5
7.6
7.7
7.7.1
7.7.2
7.8
7.9
7.10
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
Correlation of Fatigue Crack Propagation with Stress and
Crack Length 338
Fatigue Crack Growth Rate versus Stress-Intensity Factor
Range Plots 340
Fatigue Life Calculations 342
Creep and Stress Rupture of Metals 344
Creep of Metals 344
The Creep Test 346
Creep-Rupture Test 347
Graphical Representation of Creep- and Stress-Rupture TimeTemperature Data Using the Larsen-Miller Parameter 348
A Case Study in Failure of Metallic Components 350
Recent Advances and Future Directions in Improving the
Mechanical Performance of Metals 353
Improving Ductility and Strength Simultaneously 353
Fatigue Behavior in Nanocrystalline Metals 355
Summary 355
Definitions 356
Problems 357
CHAPTER 8
Phase Diagrams 364
Phase Diagrams of Pure Substances 365
Gibbs Phase Rule 367
Cooling Curves 368
Binary Isomorphous Alloy Systems 370
The Lever Rule 372
Nonequilibrium Solidification of Alloys 376
Binary Eutectic Alloy Systems 379
Binary Peritectic Alloy Systems 387
Binary Monotectic Systems 392
Invariant Reactions 393
Phase Diagrams with Intermediate Phases and Compounds 395
Ternary Phase Diagrams 399
Summary 4028.14
8.15
9.1
9.1.1
9.1.2
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
page viii
Definitions 403
Problems 405
CHAPTER 9
Engineering Alloys 416
Production of Iron and Steel 417
Production of Pig Iron in a Blast Furnace 418
Steelmaking and Processing of Major Steel Product Forms
419
The Iron-Carbon System 421
The Iron–Iron-Carbide Phase Diagram 421
Solid Phases in the Fe–Fe3C Phase Diagram 421
Invariant Reactions in the Fe–Fe3C Phase Diagram 422
Slow Cooling of Plain-Carbon Steels 424
Heat Treatment of Plain-Carbon Steels 431
Martensite 431
Isothermal Decomposition of Austenite 436
Continuous-Cooling Transformation Diagram for a
Eutectoid Plain-Carbon Steel 441
Annealing and Normalizing of Plain-Carbon Steels 443
Tempering of Plain-Carbon Steels 445
Classification of Plain-Carbon Steels and Typical
Mechanical Properties 449
Low-Alloy Steels 451
Classification of Alloy Steels 451
Distribution of Alloying Elements in Alloy Steels 451
Effects of Alloying Elements on the Eutectoid Temperature
of Steels 452
Hardenability 454
Typical Mechanical Properties and Applications for
Low-Alloy Steels 458
Impact of Specific Alloying Elements on Performance of
Steel 4609.5
9.5.1
9.5.2
9.5.3
9.5.4
9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.7
9.7.1
9.7.2
9.7.3
9.8
9.8.1
9.8.2
9.8.3
9.8.4
9.8.5
9.8.6
9.9
9.9.1
9.9.2
9.9.3
9.10
9.10.1
9.10.2
9.10.3
9.11
9.12
9.13
Aluminum Alloys 461
Precipitation Strengthening (Hardening) 461
General Properties of Aluminum and Its Production 468
Wrought Aluminum Alloys 470
Aluminum Casting Alloys 474
Copper Alloys 476
General Properties of Copper 476
Production of Copper 476
Classification of Copper Alloys 476
Wrought Copper Alloys 477
Stainless Steels 482
Ferritic Stainless Steels 482
Martensitic Stainless Steels 483
Austenitic Stainless Steels 485
Cast Irons 487
General Properties 487
Types of Cast Irons 487
White Cast Iron 489
Gray Cast Iron 489
Ductile Cast Irons 490
Malleable Cast Irons 492
Magnesium, Titanium, and Nickel Alloys 494
Magnesium Alloys 494
Titanium Alloys 496
Nickel Alloys 498
Special-Purpose Alloys and Applications 498
Intermetallics 498
Shape-Memory Alloys 500
Amorphous Metals 504
Summary 505
Definitions 506
Problems 508
CHAPTER 10
Polymeric Materials 51810.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.2.9
10.2.10
10.3
10.4
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.5
10.5.1
10.5.2
10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.6.6
page ix
Introduction 519
Thermoplastics 520
Thermosetting Plastics (Thermosets) 520
Polymerization Reactions 521
Covalent Bonding Structure of an Ethylene Molecule 521
Covalent Bonding Structure of an Activated Ethylene
Molecule 522
General Reaction for the Polymerization of Polyethylene
and the Degree of Polymerization 523
Chain Polymerization Steps 523
Average Molecular Weight for Thermoplastics 525
Functionality of a Monomer 526
Structure of Noncrystalline Linear Polymers 526
Vinyl and Vinylidene Polymers 528
Homopolymers and Copolymers 529
Other Methods of Polymerization 532
Industrial Polymerization Methods 534
Glass Transition Temperature and Crystallinity in Thermoplastics
536
Glass Transition Temperature 536
Solidification of Noncrystalline Thermoplastics 536
Solidification of Partly Crystalline Thermoplastics 537
Structure of Partly Crystalline Thermoplastic Materials 538
Stereoisomerism in Thermoplastics 540
Ziegler and Natta Catalysts 540
Processing of Plastic Materials 542
Processes Used for Thermoplastic Materials 542
Processes Used for Thermosetting Materials 546
General-Purpose Thermoplastics 548
Polyethylene 550
Polyvinyl Chloride and Copolymers 553
Polypropylene 555
Polystyrene 555
Polyacrylonitrile 556
Styrene–Acrylonitrile (SAN) 55710.6.7
10.6.8
10.6.9
10.7
10.7.1
10.7.2
10.7.3
10.7.4
10.7.5
10.7.6
10.7.7
10.7.8
10.8
10.8.1
10.8.2
10.8.3
10.8.4
10.9
10.9.1
10.9.2
10.9.3
10.9.4
10.10
10.10.1
10.10.2
10.10.3
10.10.4
10.11
10.11.1
10.11.2
10.11.3
10.12
10.13
10.14
ABS 557
Polymethyl Methacrylate (PMMA) 559
Fluoroplastics 559
Engineering Thermoplastics 561
Polyamides (Nylons) 562
Polycarbonate 565
Phenylene Oxide–Based Resins 566
Acetals 567
Thermoplastic Polyesters 568
Polyphenylene Sulfide 569
Polyetherimide 570
Polymer Alloys 570
Thermosetting Plastics (Thermosets) 571
Phenolics 573
Epoxy Resins 574
Unsaturated Polyesters 576
Amino Resins (Ureas and Melamines) 577
Elastomers (Rubbers) 579
Natural Rubber 579
Synthetic Rubbers 583
Properties of Polychloroprene Elastomers 584
Vulcanization of Polychloroprene Elastomers 585
Deformation and Strengthening of Plastic Materials 587
Deformation Mechanisms for Thermoplastics 587
Strengthening of Thermoplastics 589
Strengthening of Thermosetting Plastics 592
Effect of Temperature on the Strength of Plastic Materials
593
Creep and Fracture of Polymeric Materials 594
Creep of Polymeric Materials 594
Stress Relaxation of Polymeric Materials 596
Fracture of Polymeric Materials 597
Summary 600
Definitions 601
Problems 60311.1
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
11.2.7
11.2.8
11.2.9
11.2.10
11.2.11
11.2.12
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.4
11.4.1
11.4.2
11.4.3
11.5
11.5.1
11.5.2
11.6
11.6.1
11.6.2
page x
CHAPTER 11
Ceramics 614
Introduction 615
Simple Ceramic Crystal Structures 617
Ionic and Covalent Bonding in Simple Ceramic Compounds
617
Simple Ionic Arrangements Found in Ionically Bonded
Solids 618
Cesium Chloride (CsCl) Crystal Structure 621
Sodium Chloride (NaCl) Crystal Structure 622
Interstitial Sites in FCC and HCP Crystal Lattices 626
Zinc Blende (ZnS) Crystal Structure 628
Calcium Fluoride (CaF2) Crystal Structure 630
Antifluorite Crystal Structure 632
Corundum (Al2O3) Crystal Structure 632
Spinel (MgAl2O4) Crystal Structure 632
Perovskite (CaTiO3) Crystal Structure 633
Carbon and Its Allotropes 633
Silicate Structures 637
Basic Structural Unit of the Silicate Structures 637
Island, Chain, and Ring Structures of Silicates 637
Sheet Structures of Silicates 637
Silicate Networks 638
Processing of Ceramics 640
Materials Preparation 641
Forming 641
Thermal Treatments 645
Traditional and Structural Ceramics 648
Traditional Ceramics 648
Structural Ceramics 650
Mechanical Properties of Ceramics 652
General 652
Mechanisms for the Deformation of Ceramic Materials 65211.6.3
11.6.4
11.6.5
11.6.6
11.6.7
11.7
11.7.1
11.7.2
11.7.3
11.7.4
11.8
11.8.1
11.8.2
11.8.3
11.8.4
11.8.5
11.8.6
11.8.7
11.8.8
11.9
11.9.1
11.9.2
11.10
11.11
11.12
11.13
12.1
12.1.1
12.1.2
12.2
page xi
Factors Affecting the Strength of Ceramic Materials 654
Toughness of Ceramic Materials 654T
ransformation Toughening of Partially Stabilized Zirconia
(PSZ) 656
Fatigue Failure of Ceramics 658
Ceramic Abrasive Materials 658
Thermal Properties of Ceramics 659
Ceramic Refractory Materials 659
Acidic Refractories 660
Basic Refractories 661
Ceramic Tile Insulation for the Space Shuttle Orbiter 661
Glasses 663
Definition of a Glass 663
Glass Transition Temperature 663
Structure of Glasses 663
Compositions of Glasses 666
Viscous Deformation of Glasses 666
Forming Methods for Glasses 670
Tempered Glass 671
Chemically Strengthened Glass 672
Ceramic Coatings and Surface Engineering 673
Silicate Glasses 673
Oxides and Carbides 673
Nanotechnology and Ceramics 674
Summary 676
Definitions 677
Problems 678
CHAPTER 12
Composite Materials 686
Introduction 687
Classification of Composite Materials 687
Advantages and Disadvantages of Composite Materials over
Conventional Materials 688
Fibers for Reinforced-Plastic Composite Materials 68912.2.1
12.2.2
12.2.3
12.2.4
12.3
12.4
12.4.1
12.4.2
12.5
12.5.1
12.5.2
12.6
12.6.1
12.6.2
12.6.3
12.6.4
12.7
12.7.1
12.7.2
12.7.3
12.8
12.8.1
12.8.2
12.8.3
12.8.4
12.8.5
12.8.6
12.8.7
12.8.8
12.9
12.10
Glass Fibers for Reinforcing Plastic Resins 689
Carbon Fibers for Reinforced Plastics 692
Aramid Fibers for Reinforcing Plastic Resins 694
Comparison of Mechanical Properties of Carbon, Aramid,
and Glass Fibers for Reinforced-Plastic Composite
Materials 694
Matrix Materials for Composites 696
Fiber-Reinforced Plastic Composite Materials 697
Fiberglass-Reinforced Plastics 697
Carbon Fiber–Reinforced Epoxy Resins 698
Equations for Elastic Modulus of Composite Laminates: Isostrain
and Isostress Conditions 700
Isostrain Conditions 700
Isostress Conditions 703
Open-Mold Processes for Fiber-Reinforced Plastic Composite
Materials 705
Hand Lay-Up Process 705
Spray Lay-Up Process 706
Vacuum Bag–Autoclave Process 707
Filament-Winding Process 708
Closed-Mold Processes for Fiber-Reinforced Plastic Composite
Materials 708
Compression and Injection Molding 708
The Sheet-Molding Compound (SMC) Process 709
Continuous-Pultrusion Process 710
Concrete 710
Portland Cement 711
Mixing Water for Concrete 714
Aggregates for Concrete 715
Air Entrainment 715
Compressive Strength of Concrete 716
Proportioning of Concrete Mixtures 716
Reinforced and Prestressed Concrete 717
Prestressed Concrete 718
Asphalt and Asphalt Mixes 720
Wood 72212.10.1
12.10.2
12.10.3
12.10.4
12.10.5
12.11
12.11.1
12.11.2
12.12
12.12.1
12.12.2
12.12.3
12.13
12.14
12.15
13.1
13.2
13.2.1
13.2.2
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6
13.4
page xii
Macrostructure of Wood 722
Microstructure of Softwoods 725
Microstructure of Hardwoods 726
Cell-Wall Ultrastructure 727
Properties of Wood 729
Sandwich Structures 730
Honeycomb Sandwich Structure 732
Cladded Metal Structures 732
Metal-Matrix and Ceramic-Matrix Composites 733
Metal-Matrix Composites (MMCs) 733
Ceramic-Matrix Composites (CMCs) 735
Ceramic Composites and Nanotechnology 740
Summary 740
Definitions 741
Problems 744
CHAPTER 13
Corrosion 750
Corrosion and Its Economical Impact 751
Electrochemical Corrosion of Metals 752
Oxidation-Reduction Reactions 753
Standard Electrode Half-Cell Potentials for Metals 754
Galvanic Cells 756
Macroscopic Galvanic Cells with Electrolytes That Are One
Molar 756
Galvanic Cells with Electrolytes That Are Not One Molar
758
Galvanic Cells with Acid or Alkaline Electrolytes with No
Metal Ions Present 760
Microscopic Galvanic Cell Corrosion of Single Electrodes
761
Concentration Galvanic Cells 763
Galvanic Cells Created by Differences in Composition,
Structure, and Stress 766
Corrosion Rates (Kinetics) 76813.4.1
13.4.2
13.4.3
13.4.4
13.5
13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6
13.5.7
13.5.8
13.5.9
13.5.10
13.5.11
13.6
13.6.1
13.6.2
13.6.3
13.7
13.7.1
13.7.2
13.7.3
13.7.4
13.7.5
13.8
13.9
13.10
14.1
14.1.1
Rate of Uniform Corrosion or Electroplating of a Metal in
an Aqueous Solution 768
Corrosion Reactions and Polarization 771
Passivation 775
The Galvanic Series 775
Types of Corrosion 776
Uniform or General Attack Corrosion 776
Galvanic or Two-Metal Corrosion 778
Pitting Corrosion 779
Crevice Corrosion 781
Intergranular Corrosion 783
Stress Corrosion 785
Erosion Corrosion 788
Cavitation Damage 789
Fretting Corrosion 789
Selective Leaching 789
Hydrogen Damage 790
Oxidation of Metals 791
Protective Oxide Films 791
Mechanisms of Oxidation 793
Oxidation Rates (Kinetics) 794
Corrosion Control 796
Materials Selection 796
Coatings 797
Design 798
Alteration of Environment 799
Cathodic and Anodic Protection 800
Summary 801
Definitions 802
Problems 803
CHAPTER 14
Electrical Properties of Materials 810
Electrical Conduction In Metals 811
The Classic Model for Electrical Conduction in Metals 81114.1.2
14.1.3
14.1.4
14.2
14.2.1
14.2.2
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.4.6
14.5
14.5.1
14.5.2
14.5.3
14.6
14.6.1
14.6.2
14.6.3
14.7
Ohm’s Law 813
Drift Velocity of Electrons in a Conducting Metal 817
Electrical Resistivity of Metals 818
Energy-Band Model for Electrical Conduction 822
Energy-Band Model for Metals 822
Energy-Band Model for Insulators 824
Intrinsic Semiconductors 824
The Mechanism of Electrical Conduction in Intrinsic
Semiconductors 824
Electrical Charge Transport in the Crystal Lattice of Pure
Silicon 825
Energy-Band Diagram for Intrinsic Elemental
Semiconductors 826
Quantitative Relationships for Electrical Conduction in
Elemental Intrinsic Semiconductors 827
Effect of Temperature on Intrinsic Semiconductivity 829
Extrinsic Semiconductors 831
n-Type (Negative-Type) Extrinsic Semiconductors 831
p-Type (Positive-Type) Extrinsic Semiconductors 833
Doping of Extrinsic Silicon Semiconductor Material 835
Effect of Doping on Carrier Concentrations in Extrinsic
Semiconductors 835
Effect of Total Ionized Impurity Concentration on the
Mobility of Charge Carriers in Silicon at Room Temperature
838
Effect of Temperature on the Electrical Conductivity of
Extrinsic Semiconductors 839
Semiconductor Devices 841
The pn Junction 842
Some Applications for pn Junction Diodes 845
The Bipolar Junction Transistor 846
Microelectronics 848
Microelectronic Planar Bipolar Transistors 848
Microelectronic Planar Field-Effect Transistors 849
Fabrication of Microelectronic Integrated Circuits 852
Compound Semiconductors 85914.8
14.8.1
14.8.2
14.8.3
14.8.4
14.8.5
14.9
14.10
14.11
14.12
15.1
15.2
15.3
15.3.1
15.3.2
15.4
15.4.1
15.4.2
15.4.3
15.4.4
15.5
15.5.1
15.5.2
15.6
15.6.1
15.7
15.7.1
15.7.2
15.7.3
15.7.4
15.8
page xiii
Electrical Properties of Ceramics 862
Basic Properties of Dielectrics 862
Ceramic Insulator Materials 864
Ceramic Materials for Capacitors 865
Ceramic Semiconductors 866
Ferroelectric Ceramics 868
Nanoelectronics 871
Summary 872
Definitions 873
Problems 875
CHAPTER 15
Optical Properties and Superconductive Materials 880
Introduction 881
Light and the Electromagnetic Spectrum 881
Refraction of Light 883
Index of Refraction 883
Snell’s Law of Light Refraction 885
Absorption, Transmission, and Reflection of Light 886
Metals 886
Silicate Glasses 887
Plastics 888
Semiconductors 890
Luminescence 891
Photoluminescence 892
Cathodoluminescence 892
Stimulated Emission of Radiation and Lasers 893
Types of Lasers 896
Optical Fibers 898
Light Loss in Optical Fibers 899
Single-Mode and Multimode Optical Fibers 899
Fabrication of Optical Fibers 900
Modern Optical-Fiber Communication Systems 902
Superconducting Materials 90315.8.1
15.8.2
15.8.3
15.8.4
15.8.5
15.9
15.10
16.1
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.3
16.3.1
16.3.2
16.3.3
16.3.4
16.3.5
16.3.6
16.4
16.5
16.6
16.6.1
16.6.2
16.6.3
16.6.4
16.6.5
The Superconducting State 903
Magnetic Properties of Superconductors 904
Current Flow and Magnetic Fields in Superconductors 906
High-Current, High-Field Superconductors 907
High Critical Temperature (Tc) Superconducting Oxides 908
Definitions 911
Problems 912
CHAPTER 16
Magnetic Properties 916
Introduction 917
Magnetic Fields and Quantities 917
Magnetic Fields 917
Magnetic Induction 919
Magnetic Permeability 920
Magnetic Susceptibility 921
Types of Magnetism 922
Diamagnetism 922
Paramagnetism 922
Ferromagnetism 923
Magnetic Moment of a Single Unpaired Atomic Electron
925
Antiferromagnetism 927
Ferrimagnetism 927
Effect of Temperature on Ferromagnetism 927
Ferromagnetic Domains 928
Types of Energies that Determine the Structure of Ferromagnetic
Domains 929
Exchange Energy 930
Magnetostatic Energy 930
Magnetocrystalline Anisotropy Energy 931
Domain Wall Energy 932
Magnetostrictive Energy 93316.7
16.8
16.8.1
16.8.2
16.8.3
16.8.4
16.8.5
16.9
16.9.1
16.9.2
16.9.3
16.9.4
16.9.5
16.10
16.10.1
16.10.2
16.11
16.12
16.13
17.1
17.2
17.2.1
17.2.2
17.2.3
17.2.4
17.2.5
17.2.6
17.2.7
17.3
17.3.1
17.3.2
page xiv
The Magnetization and Demagnetization of a Ferromagnetic Metal
935
Soft Magnetic Materials 936
Desirable Properties for Soft Magnetic Materials 936
Energy Losses for Soft Magnetic Materials 936
Iron–Silicon Alloys 937
Metallic Glasses 939
Nickel–Iron Alloys 941
Hard Magnetic Materials 942
Properties of Hard Magnetic Materials 942
Alnico Alloys 945
Rare Earth Alloys 947
Neodymium–Iron–Boron Magnetic Alloys 947
Iron–Chromium–Cobalt Magnetic Alloys 948
Ferrites 951
Magnetically Soft Ferrites 951
Magnetically Hard Ferrites 955
Summary 955
Definitions 956
Problems 959
CHAPTER 17
Biological Materials and Biomaterials 964
Introduction 965
Biological Materials: Bone 966
Composition 966
Macrostructure 966
Mechanical Properties 966
Biomechanics of Bone Fracture 969
Viscoelasticity of Bone 969
Bone Remodeling 970
A Composite Model of Bone 970
Biological Materials: Tendons and Ligaments 972
Macrostructure and Composition 972
Microstructure 97217.3.3
17.3.4
17.3.5
17.3.6
17.4
17.4.1
17.4.2
17.4.3
17.4.4
17.5
17.5.1
17.5.2
17.5.3
17.5.4
17.6
17.6.1
17.6.2
17.6.3
17.6.4
17.6.5
17.7
17.7.1
17.7.2
17.7.3
17.7.4
17.8
17.8.1
17.8.2
17.9
17.10
17.11
17.12
17.13
17.14
Mechanical Properties 973
Structure-Property Relationship 975
Constitutive Modeling and Viscoelasticity 976
Ligament and Tendon Injury 978
Biological Material: Articular Cartilage 980
Composition and Macrostructure 980
Microstructure 980
Mechanical Properties 981
Cartilage Degeneration 982
Biomaterials: Metals in Biomedical Applications 982
Stainless Steels 984
Cobalt-Based Alloys 984
Titanium Alloys 985
Some Issues in Orthopedic Application of Metals 987
Polymers in Biomedical Applications 989
Cardiovascular Applications of Polymers 989
Ophthalmic Applications 990
Drug Delivery Systems 992
Suture Materials 992
Orthopedic Applications 992
Ceramics in Biomedical Applications 993
Alumina in Orthopedic Implants 994
Alumina in Dental Implants 995
Ceramic Implants and Tissue Connectivity 996
Nanocrystalline Ceramics 997
Composites in Biomedical Applications 998
Orthopedic Applications 998
Applications in Dentistry 999
Corrosion in Biomaterials 1000
Wear in Biomedical Implants 1001
Tissue Engineering 1005
Summary 1006
Definitions 1007
Problems 1008APPENDIX I
Important Properties of Selected Engineering Materials 1013
APPENDIX II
Some Properties of Selected Elements 1070
APPENDIX III
Ionic Radii of the Elements 1072
APPENDIX IV
Glass Transition Temperature and Melting Temperature of
Selected Polymers 1074
APPENDIX V
Selected Physical Quantities and Their Units 1075
APPENDIX VI
Unit Abbreviations 1077
APPENDIX VII
Constants and Conversion Factors 1079
References for Further Study by Chapter 1082
Glossary 1086
Answers 1098
Index 1103
INDEX page 1103
Abrasive materials, ceramic materials as, 658–659
ABS, 557–559
Absorption of light, 886–891
Acceptor atoms, 835
Acceptor energy level, 833
Acetals, 567
Acidic refractories, 660
ACL (anterior cruciate ligament), 975, 978–979
Acrylonitrile, 557
Activation energy, 215–216
Activation polarization, 773–774
Adaptive Engine Technology (GE Aviation), 15
Adsorption theory, 775
Advanced ceramic materials, 14
Aerospace industry
composite materials used in, 17–18
material characteristics needed by, 7–8
superalloys in, 9–10, 21
α ferrite, 421
Aggregates for concrete, 715
Air-entrained concrete, 715–716
Alloys. See also Engineering alloys; Solidification
alnico (aluminum-nickel-cobalt), 945–946
binary eutectic systems of, 379–387
binary isomorphous systems of, 370–372
binary peritectic systems of, 387–392
cobalt-based, 984–985
composite materials advantages over metal, 689
electrical resistivity of metal increased by, 820–821
ferrous and nonferrous, 9
iron-chromium-cobalt (Fe-Cr-Co) magnetic, 948–950
iron-silicon, 937–938
lever rule for, 372–376neodymium-iron-boron (Nd-Fe-B) magnetic, 947–948
nickel–iron, 941–942
nonequilibrium solidification of, 376–379
polymer, 570–571
rare earth, 947
tensile test and engineering stress-strain diagram of, 271
titanium, 985–987
Alnico (aluminum-nickel-cobalt) alloys, 945–946
Aloha Airlines, Inc., 750
Alumina
as ceramic insulator material, 865
in dental implants, 995–996
description of, 651
in orthopedic implants, 994–995
Aluminum alloys
for casting, 474–476
precipitation strengthening, 461–468
properties of, 468–469
wrought, 470–473
Aluminum oxide, 615, 651, 865
American Concrete Institute, 716
American Society for Testing and Materials (ASTM), 289
Amino resins, 577–579
Amorphous metals, 504–505
Annealing
in cold rolling of metal sheet, 250
plain-carbon steels, 443–445
in recovery and recrystallization of plastically deformed metals, 295–296
Annealing point viscosity, 669
Anodes, 754, 757
Anodic protection, for corrosion control, 800–801
Anterior cruciate ligament (ACL), 975, 978–979
Antiferromagnetism, 927
Antifluorite crystal structure, 632
Aqueous solution, metals in, 768–771
Aramid (aromatic polyamide) fibers, 694–696
Area effect, in galvanic two-metal corrosion, 778–779Aromatic polyamide (aramid) fibers, 694–696
Arrhenius, Svante August, 218n
Arrhenius rate equation, 218–219
Articular cartilage, 980–982
Asperities, 1002
Asphalt, 720–721
Asphalt mix, 721
ASTM (American Society for Testing and Materials), 289
Atactic stereoisomers, 540
Atomic diffusion
mechanisms of, 220–222
non-steady-state, 225–228
overview, 220
steady-state, 222–225
Atomic structure and bonding, bonding strength, 2–3
AT&T, Inc., 903
Attenuation, in optical glass fibers, 899
Austempering, 447–449
Austenite steels, 421, 436–441
Austenitic stainless steels, 485–487
Austenitizing process, 424, 426
Automotive industry, 7, 23
Average molecular weight of polymeric materials, 525–526
Axes of symmetry, 723–725
Bain, E. C., 438n
Bainite structures, 438–439, 448
Ballard, Robert, 294
Ball bearings, of high performance ceramic materials, 16
Basis, 100
Basic refractories, 661
BCT (body-centered tetragonal) crystal structure, 433–434
Beam of radiation, 894
Bedworth, R.E., 791n
Beryllium, copper alloyed with, 482
Biased external voltage, 842
Binary eutectic alloy systems, 379–387page 1104
Binary isomorphous alloy systems, 370–372
Binary monotectic systems, 392–393
Binary peritectic alloy systems, 387–392
Biocompatibility, 983, 989
Biodegradable polymers, 989
Biological materials and biomaterials, 964–1012
articular cartilage, 980–982
bone, 966–971
composite model of, 970–971
composition, 966
fracture, biomechanics of, 969
macrostructure of, 966
mechanical properties, 966–969
remodeling, 970
viscoelasticity of, 969–970
ceramics in biomedical applications
alumina in dental implants, 995–996
alumina in orthopedic implants, 994–995
nanocrystalline, 997–998
overview, 993
tissue connectivity and, 996
composites in biomedical applications, 998–1000
corrosion in biomaterials, 1000–1001
defined, 965
materials characteristics needed by, 7–8
metals in biomedical applications
cobalt-based alloys, 984–985
orthopedic application, issues in, 987–989
overview, 982–984
stainless steels, 984
titanium alloys, 985–987
overview, 964–965
polymers in biomedical applications
in cardiovascular applications, 989–990
in drug delivery systems, 992
in ophthalmic applications, 990–992orthopedic applications, 992–993
suture materials, 992
tendons and ligaments
constitutive modeling and viscoelasticity, 976–978
injury to, 978–980
macrostructure and composition, 972
mechanical properties of, 973–975
microstructure of, 972–973, 974
structure-property relationship, 975–976
tissue engineering, 1005–1006
wear in biomedical implants, 1001–1005
Biometals, 982–983. See also Biological materials and biomaterials
Biotribology, 1001
Bipolar junction transistor (BJT), 846–848
Bitter technique, 929
Blast furnaces, 418
Blends of polymers, 12, 14
Blistering, corrosion as, 790–791
Blowmolding of thermoplastics, 544–546
Blown-glass process, 671
Body-centered tetragonal (BCT) crystal structure, 433–434
Boeing, Inc., 707, 750
Bohr magneton, 925
Boltzmann, Ludwig, 215–218
Bonding. See Atomic structure and bonding
Bone, 966–971
composite model of, 970–971
composition, 966
fracture, biomechanics of, 969
macrostructure of, 966
mechanical properties, 966–969
remodeling, 970
subchondral, 981
viscoelasticity of, 969–970
Bone cement, 992–993
Borazon (cubic boron nitride), 659
Boron oxide, 664Borosilicate glasses, 666
Boundary lubrication, 1002
Breakdown diodes, 845–846
Brinell hardness, 274
Brittle fracture
in ceramic materials, 654
of metals, 321–324
of polymeric materials, 598
Buckminster fullerenes (buckyballs), 635
Buckytube, 634
Bulk polymerization, 534
Butadiene, in ABS, 557
Calcium fluoride (CaF2) crystal structure, 630–631
Cambium layer, in trees, 723
Cancellous bone, 966
Capacitance, 862
Capacitors, 862, 865–866
Carbide coatings, 673–674
Carbon
allotropes of, 633–636
fibers for reinforced plastics, 692–696
nanotubes, 636
Carbon black, 581
Carbon dioxide (CO2) lasers, 897
Carbon fiber–reinforced epoxy resins, 698–700
Carbon fibers in epoxy matrix, 17
Cardiovascular applications, polymeric materials in, 989–990
Cartilage, articular, 980–982
Case hardening of steel by gas carburizing, 228–232
Cast-glass process, 671
Casting process for metals, 247–249
Cast irons
ductile, 490–492
gray, 489–490
malleable, 492–494properties of, 487
types of, 487–488
white, 489
Cathodes, 754, 757
Cathodic protection, for corrosion control, 800
Cathodoluminescence, 892–893
Cavitation damage, as corrosion, 789
CCT (continuous-cooling transformation) diagram for eutectoid steels,
441–443
CDA (Copper Development Association), 476–477
Cellulose crystalline molecules, 728
Cell-wall ultrastructure of wood, 727–729
Cementite (Fe3C), 421, 429
Ceramic materials, 614–685
in biomedical applications
alumina in dental implants, 995–996
alumina in orthopedic implants, 994–995
nanocrystalline, 997–998
overview, 993
tissue connectivity and, 996
as capacitors, 865–866
chemical attack to deteriorate, 752
in coatings and surface engineering, 673–674
for corrosion control, 798
defined, 615
dielectric properties of, 862–864
ferrimagnetism in, 927
ferroelectric, 868–871
glasses
chemically strengthened, 672–673
compositions of, 666
defined, 663
forming methods for, 670–671
structure of, 663–666
tempered, 671–672
transition temperature, 663
viscous deformation of, 666–669as insulator materials, 864–865
mechanical properties of
abrasive, 658–659
deformation mechanisms, 652–654
fatigue failure, 658
overview, 650
strength, 654
toughness, 654–656
transformation toughening of partially stabilized zirconia, 656–658
nanotechnology and, 674–676
overview, 14–16, 614–617
processing of
forming, 641–645
materials preparation, 641
overview, 640
thermal treatments, 645–647
properties of, 615
as semiconductors, 866–868
silicate structures, 637–640
simple crystal structures
antifluorite, 632
calcium fluoride, 630–631
carbon and allotropes, 633–636
cesium chloride, 621–622
corundum, 632
interstitial sites in FCC and HCP, 626–628
ionic and covalent bonding in, 617–621
perovskite, 633
sodium chloride, 622–626
spinel, 632
zinc blende, 628–630
structural, 650–652
thermal properties of, 659–663
traditional, 648–650
Ceramic-matrix composite (CMC) materials, 16
Ceramic-matrix composites (CMCs), 735–740
Cesium chloride (CsCl) crystal structure, 621–622page 1105
CFRP (carbon fiber-reinforced plastic), 25
Chain polymerization steps, 522, 523–525
Chain structures of silicates, 637, 638
Charpy test, 324–326
Chemical industry, material characteristics needed by, 7–8
Chemically strengthened glass, 672–673
Chemical vapor deposition (CVD) process, 857–858
Chevrolet Corvette, 710
Cladded metal structures, 732–733
Cleavage planes, in brittle fracture, 321–322
Closed-mold processes for fiber-reinforced plastic composite materials,
708–710
CMC (ceramic-matrix composite) materials, 16
CMCs (ceramic-matrix composites), 735–740
CMOS (complementary metal oxide semiconductor) devices, 859
CN (coordination number), 618, 620, 622
Coatings
for corrosion control, 797–798
surface engineering and, 673–674
Cobalt-based alloys, 10, 984–985
Coercive force, 936
CO2 (carbon dioxide) lasers, 897
Collagen protein, 966
Complementary metal oxide semiconductor (CMOS) devices, 859
Completely reversed stress cycle, 335
Composite materials, 686–749
advantages and disadvantages over conventional materials, 688–689
asphalt and asphalt mixes, 720–721
in biomedical applications, 998–1000
bone as, 970–971
carbon fiber-reinforced epoxy resins, 698–700
ceramic, and nanotechnology, 740
ceramic-matrix composites, 735–740
classification of, 687–688
closed-mold processes for fiber-reinforced plastic composite materials,
708–710concrete
aggregates for, 715
air-entrained, 715–716
compressive strength of, 716
defned, 711
mixing water for, 714–715
overview, 710–711
portland cement, 711–714
prestressed, 718–720
proportioning of mixtures, 716–717
reinforced, 717–718
defined, 687
description of, 16–18
fiberglass-reinforced plastic, 697–698
fibers for reinforced-plastic
aramid (aromatic polyamide), 694–696
carbon, 692–696
glass, 689–692, 694–696
isostrain conditions for, 700–703
isostress conditions for, 703–705
matrix materials as, 696
metal-matrix, 733–735
open-mold processes for fiber-reinforced plastic
filament-winding process, 708
hand lay-up process, 705–706
spray lay-up process, 706–707
vacuum bag-autoclave process, 707–708
overview, 686–687
sandwich structures, 730–733
wood
cell-wall ultrastructure of, 727–729
hardwood microstructure, 726–727
macrostructure of, 722–725
properties of, 729–730
softwood microstructure, 724–725
Compound semiconductors, 859–861
Compression moldingof composites, 708–709
of thermosetting plastics, 546–547
Concentration polarization, 774–775
Concrete
aggregates for, 715
air-entrained, 715–716
compressive strength of, 716
defned, 711
mixing water for, 714–715
overview, 710–711
portland cement, 711–714
prestressed, 718–720
proportioning of mixtures, 716–717
reinforced, 717–718
Conduction band, in energy-band model for insulators, 824
Conductivity, electrical, 814, 825
Congruently melting compounds, 398
Continuous-cooling transformation (CCT) diagram for eutectoid steels,
441–443
Continuous-fiber-reinforced CMCs, 735–736
Continuous-fiber-reinforced MMCs, 733–735
Continuous-pultrusion process for composites, 710
Continuous-wave (CW) lasers, 897
Cooling curves, 368–369, 372
Coordination number (CN), 618, 620, 622
Copolymers and homopolymers, 529–532
Copper alloys
classification of, 476–477
production of, 476
properties of, 476
wrought, 477–482
Copper Development Association (CDA), 476–477
Corrosion, 750–809
in biomaterials, 1000–1001
cavitation damage as, 789
control of, 796–801
crevice, 781–783defined, 751
economical impact of, 751–752
electrochemical, 752–756
erosion, 788
fretting, 789
galvanic cells
with acid or alkaline electrolytes, 760–761
composition, structure, and stress differences to create, 766–768
concentration, 763–766
with electrolytes that are not one molar, 758–759
macroscopic, with one molar electrolytes, 756–758
microscopic corrosion of single electrodes, 761–763
galvanic/two-metal, 778–779
hydrogen damage as, 790–791
intergranular, 783–785
oxidation of metals, 791–795
pitting, 779–781
rates of
galvanic series, 775–776
of metal in aqueous solution, 768–771
passivation of metals, 775
reactions and polarization, 771–775
selective leaching, 789–790
stress, 785–788
uniform/general attack, 776–777
Corrosion fatigue in metals, 338
Cortical bone, 966
Corundum (Al2O3) crystal structure, 632
Covalent bonding
in ceramic materials, 617–621, 653
of ethylene molecules, 521–522
Creep
of metals, 344–346
of polymeric materials, 594–596
of soft biological tissues, 977–978
Creep-rupture (stress-rupture) test of metals, 347–350
Crevice corrosion, 781–783, 1000page 1106
Cristobalite, 639–640
Critical density, 904
Critical field, 904
Critical radius (r*), 167
Critical (minimum) radius ratio, 618–620
Critical resolved shear stress in, 283
Critical temperature, 904
Crystalline silica, 638–639
Crystallinity in polymer materials, 536–541
Cube-on-edge (COE) materials, 938
Cubic boron nitride (Borazon), 614, 659
Cubic soft ferrites, 951–952
Curie temperature, 868, 928
Current, electrical, 906–907
Current density, 904
electric, 816
Current flow, electric, 813
CVD (chemical vapor deposition) process, 857–858
CW (continuous-wave) lasers, 897
Cyclic stresses, in fatigue of metals, 335–336
DBT (ductile-to-brittle transition), 318, 324, 326
Decibels per kilometer (dB/km), 899
Deep drawing process for metals, 256–257
Deformation
of ceramic materials, 652–654
of glasses, 666–669
twinning in, 286–288
Degree of polymerization (DP), 523
Degrees of freedom, in Gibbs phase rule, 367–368
Dense packing in ionic solids, 618
Dental applications, 995–996, 999–1000
Depletion region, 842
Design for corrosion prevention, 798–799
δ ferrite, 421
Diamagnetism, 922Diamond, 634–635
Die casting of aluminum, 475
Dielectric constant, 863
Dielectric loss factor, 864
Dielectric properties of ceramic materials, 862–864
Dielectric strength, 864
Diffusion
atomic
mechanisms of, 220–222
non-steady-state, 225–228
overview, 220
steady-state, 222–225
case hardening of steel by gas carburizing, 228–232
in integrated circuit fabrication, 853–855
temperature effects on, 235–238
Digital video disks (DVDs), polymeric materials in, 11, 12
Discontinuous (whisker)- and particulate-reinforced CMCs, 736–740
Discontinuous-fiber-reinforced MMCs, 735
Dislocations, in plastically deformed metals, 290–292
Domain wall energy, 932–933, 934
Donor energy level, 832
Donor impurity atoms, 832
Dopants, 835
Doping extrinsic semiconductors, 835–838
DP (degree of polymerization), 523
Drift velocity, 812
of electrons, 817–818
Drug delivery systems, polymeric materials for, 992
Drying ceramic materials, 645
Dry pressing ceramic materials, 642
Ductile cast irons, 490–492
Ductile fracture of polymeric materials, 598–600
Ductile metals
fatigue-related structural changes in, 336–337
fracture of, 320–321
strength and ductility improvement in, 353–355
Ductile-to-brittle transition (DBT), 318, 324, 326Ductility of metals, 269
Du Pont, Inc., 694
DVDs (digital video disks), polymeric materials in, 11, 12
Dynamic toughness, 324
Eddy-current energy losses, 937, 954
EDFAs (erbium-doped optical-fiber amplifiers), 903
Edge dislocations, 278
Effective nuclear charge, 54
E (electrical) glass, 690
Elastically deformed metals, 258
Elastomers, 519
natural rubber, 579–583
polychloroprene, 584–587
synthetic rubber, 583–584
Electrical conductivity, 814, 825
Electrical conductors, 814
Electrical industry, material characteristics needed by, 7–8
Electrical insulator porcelains, 649–650
Electrical insulators, 814
Electrical porcelains, 865
Electrical properties of materials, 810–879. See also Superconducting
materials
ceramic materials
as capacitors, 865–866
dielectric properties, 862–864
ferroelectric, 868–871
as insulator materials, 864–865
as semiconductors, 866–868
compound semiconductors, 859–861
energy-band model for, 822–824
extrinsic semiconductors
carrier concentrations in, 837–838
charge densities in, 835–836
doping of, 835–838
n-type, 831–833
p-type, 833–835temperature effects on, 839–841
total ionized impurity concentration and, 838–839
intrinsic semiconductors
carrier concentrations in, 837–838
electrical conduction in, 824–825
energy-band diagrams for, 826–827
pure silicon, 825–826
quantitative relationships for electrical conduction in, 827–829
temperature effects on, 829–831
metals, electrical conduction in
classic model of, 811–813
drift velocity of electrons in, 817–818
Ohm’s law, 813–816
resistivity, 818–821
microelectronics
integrated circuits, fabrication of, 852–859
planar bipolar transistors, 848–849
planar field-effect transistors, 849–852
nanoelectronics, 871–872
semiconductor devices
bipolar junction transistor, 846–848
overview, 841
pn junction, 842–846
Electrical resistance, 814
Electrical resistivity, 814, 818
Electric current density, 816
Electric current flow, 813
Electrolytic tough-pitch (ETP) copper, 476, 477, 480
Electromagnetic spectrum, 881–883
Electromotive force (emf), 758
Electronic materials, 18–19
Electrons
conduction, 825, 828
drift velocity of, 817–818
single unpaired, magnetic moment of, 925–926
Embryo, 163
Emulsion polymerization, 535page 1107
Encasement phenomenon, 391–392, 393
Endurance (fatigue) limit, 334
Energy
activation, 215–216
domain wall, 932–933
exchange, 930
losses for soft magnetic materials, 936–937
magnetocrystalline anisotropy, 931–932
magnetostatic, 930–931
magnetostrictive, 933–935
types, determine structure of ferromagnetic domains, 929–935
Energy-band model for electrical properties of materials
insulators, 824
intrinsic semiconductors, 826–827
metals, 822–824
Energy industry, material characteristics needed by, 6–7
Engineering
for corrosion prevention, 798–799
materials and, 3–7
materials science and, 7–9
tissue, 1005–1006
Engineering alloys, 416–517
aluminum alloys
for casting, 474–476
precipitation strengthening, 461–468
properties of, 468–469
wrought, 470–473
amorphous metals, 504–505
cast irons
ductile, 490–492
gray, 489–490
malleable, 492–494
properties of, 487
types of, 487–488
white, 489
copper alloysclassification of, 476–477
production of, 476
properties of, 476
wrought, 477–482
intermetallics, 498–500
iron and steel production, 417–421
iron-iron-carbide phase diagram, 421–424
low-alloy steels
alloying element distribution in, 451–452
classification of, 451
eutectoid temperature of steels and, 452–453
hardenability of, 454–458
mechanical properties and applications of, 458–460
magnesium alloys, 494–496
nickel alloys, 498
plain-carbon steels, heat treatment of
annealing and normalizing, 443–445
austenite, isothermal decomposition of, 436–441
classification of, 449–450
continuous-cooling transformation diagram for eutectoid, 441–443
martensite formation, 431–435
tempering, 445–449
plain-carbon steels, slow cooling of, 424–431
shape-memory alloys, 500–504
stainless steels
austenitic, 485–487
ferritic, 482–483
martensitic, 483–485
titanium alloys, 496–498
Engineering ceramic materials, 14
Engineering stress and strain in metals, 258–261
Engineering stress-strain diagram. See Tensile test and engineering stressstrain diagram
Engineering thermoplastics. See also Polymeric materials; Thermoplastics
acetals, 567
phenylene oxide-based resins, 566–567
polyamides, 562–565polycarbonate, 565–566
polyetherimide, 570
polymer alloys, 570–571
polyphenylene sulfide, 569–570
properties of, 561–562
thermoplastic polyesters, 568–569
Environmental conditions, corrosion and, 799
Epoxy resins, 574–576, 696
carbon fiber–reinforced, 698–700
Equilibrium phase diagrams, 365–366
Erbium-doped optical-fiber amplifiers (EDFAs), 903
Erosion corrosion, 788
ETP (electrolytic tough-pitch) copper, 476, 477, 480
Eutectic composition of alloys, 379–380
Eutectic point, 380
Eutectic reactions, 380, 423
Eutectic temperature, 380
Eutectoid cementite, 429
Eutectoid ferrite, 427
Eutectoid reactions, 423–424
Eutectoid steels
continuous-cooling transformation diagram for, 441–443
isothermal transformation diagram for, 436–440
overview, 424–426
Eutectoid temperature, 452–453
Exchange energy, 930
Exhaustion temperature range, 840
Extracellular matrix, 972
Extrinsic semiconductors
carrier concentrations in, 837–838
charge densities in, 835–836
doping of, 835–838
n-type, 831–833
p-type, 833–835
temperature effects on, 839–841
total ionized impurity concentration and, 838–839
Extrusion processfor ceramic materials, 644–645
for metals, 253–254
for thermoplastics, 543–544
Face-centered cubic (FCC) crystal structure
interstitial sites in, 626–628
Farad (F), 862
Faraday, Michael, 767n
Faraday’s equation, 768–769
Fatigue failure, 332, 658
Fatigue of metals
cyclic stresses, 335–336
factors affecting, 337–338
fatigue crack propagation rate, 338–343
in nanocrystalline metals, 355
overview, 332–334
structural changes in ductile metal from, 336–337
Fatigue properties for carbon, 699
FCC (face-centered cubic) crystal structure. See Face-centered cubic (FCC)
crystal structure
Feldspars, 640
Femur bone, 969
Ferrimagnetism, 927
Ferrites, 951–955
hard, 955
soft, 951–954
Ferritic stainless steels, 482–483
Ferroelectric ceramic materials, 868–871
Ferromagnetism
domains, 928–929
effect of temperature on, 927–928
energies determining structure of domains of, 929–935
magnetization and demagnetization of ferromagnetic metals, 935–936
overview, 917, 923–925
Ferrous metals and alloys, 9
Ferroxdure (Philips Company), 955
Fiberglass-reinforced plastic composite materials, 697–698Fiberglass-reinforcing material in polyester or epoxy matrix, 17
Fibers for reinforced-plastic composite materials
aramid (aromatic polyamide), 694–696
carbon, 692–696
glass, 689–692, 694–696
Fibrils, 973
Fibroblasts, 972
Fibrocartilage, 981
Fick, Adolf Eugen, 223n
Fick’s first law of diffusion, 223–225
Fick’s second law of diffusion, 225, 227
Fields, magnetic, 917–919
Filament-winding process, 708
Fillers, as additives, 554
Fireclays, 660
Firing ceramic materials, 640
Flight systems and subsystems, 3
Float-glass process, 670–671
Fluid film lubrication, 1002–1003
Fluorescence, 891
Fluoroplastics, 559–561
Fluxoids, 907
Fontana, M.G., 786
Forging process for metals, 254–256
Forward-biased pn junction, 843–845
Fosterite, 865
Fracture
bone, biomechanics of, 969
of ceramic materials, 654–656
of metals
brittle, 321–324
ductile, 320–321
ductile-to-brittle transition temperature, 326
fracture toughness, 328–331
overview, 319–320
toughness and impact testing, 324–325
of polymeric materials, 597–600page 1108
Frenkel, Yakov Ilyich, 183n
Fretting corrosion, 789
Fully stabilized zirconia, 656
Functionality of monomers, 526
Galvanic cells
with acid or alkaline electrolytes, 760–761
composition, structure, and stress differences to create, 766–768
concentration, 763–766
with electrolytes that are not one molar, 758–759
macroscopic, with one molar electrolytes, 756–758
microscopic corrosion of single electrodes, 761–763
Galvanic corrosion, 778–779, 1000
Galvanic series, 775–776
Galvanized steel, 778
GE Aviation, 15
General attack corrosion, 776–777
Gibbs free energy, 165
Gibbs, Josiah Willard, 367n
Gibbs phase rule, 367–368
Glass enamel, 673
Glasses
chemically strengthened, 672–673
compositions of, 666
for corrosion control, 798
defined, 663
as fibers for reinforced-plastic composite materials, 689–692, 694–696
forming methods for, 670–671
metallic, 939–941
silicate, light reflection, absorption, and transmittance by, 887–888
structure of, 663–666
tempered, 671–672
transition temperature, 663
types of, 690
viscous deformation of, 666–669
Glass-forming oxides, 663–664Glass-modifying oxides, 664–665
Glass transition temperature, 536–541, 663
Glaze, 673
Goodyear, Charles, 580
Grain–grain boundary electrochemical cells, 766
Grain shape in plastically deformed metals, 290–292
Graphite, 634
Gray cast irons, 489–490
Greene, N.D., 786
Half-cell potentials for metals, 754–756
Hall-Petch equation, 289, 304
Hand lay-up process, 705–706
Hardenability of low-alloy steels, 454–458
Hardening of aluminum alloys, 461–468
Hard magnetic materials
alnico (aluminum-nickel-cobalt), 945–946
iron-chromium-cobalt (Fe-Cr-Co) magnetic alloy, 948–950
neodymium-iron-boron (Nd-Fe-B) magnetic alloy, 947–948
properties of, 942–945
rare earth alloy, 947
Hardness
of ceramic materials, 658–659
of Fe-C martensites, 435
of metals, 273–275
tempering temperature effect on, 446
Hardwoods (angiosperms), 723
microstructure of, 726–727
HCP (hexagonal close-packed) structure. See Hexagonal close-packed
(HCP) structure
HDPE (high-density polyethylene), 550–552
Heartwood, in trees, 723
Heat stabilizer additives, 553
Hemicellulose, 728
Hexagonal close-packed (HCP) structure
interstitial sites in, 626–628
High-alloy cast iron, 487High-alumina refractories, 660
High critical temperature superconducting oxides, 908–910
High-current, high-field superconducting materials, 907–908
High-density polyethylene (HDPE), 550–552
High resolution transmission electron microscopy (HRTEM), 364
High-temperature reusable-surface insulation (HRSI) tile material, 661–662
HIP (hot isostatic pressing), 675
Holes, in pure silicon semiconductors, 825–826
Homogeneous nucleation, 163
Homogenization, 379
Homopolymers and copolymers, 529–532
Honeycomb sandwich structure, 732
Hooke, Robert, 266n
Hooke’s law, 266
Hot and cold rolling process for metals, 249–253
Hot isostatic pressing (HIP), 675
Hot pressing ceramic materials, 643
HRTEM (high resolution transmission electron microscopy), 364
Hume-Rothery, William, 370n
Hume-Rothery solid solubility rules, 370
Hydration reactions, 713–714
Hydrogel contact lenses, 990–991
Hydrogen damage, as corrosion, 790–791
Hydrogen embrittlement, 790
Hypereutectic alloys, 381
Hypereutectoid steels, 424, 429–431, 444
Hypoeutectic alloys, 381
Hypoeutectoid steels, 424, 426–428, 444
Hysteresis energy losses, 936–937
Hysteresis loop, 936
Impact testing of metals, 324–325
Impact toughness, 324
Impurities
corrosion impact of, 767
in extrinsic semiconductors, 838–839
in silicon wafers for integrated circuits, 234Index of refraction, 883–885
Induction, magnetic, 919–920
Industrial polymerization, 534–536
Injection molding
of composites, 708–709
of thermoplastics, 542–543
of thermosetting plastics, 548
Inner bark layer, in trees, 723
Insulative applications, 11, 14
Integrated circuits
complementary metal oxide semiconductor devices, 859
diffusion technique, 853–855
impurity diffusion into silicon wafers for, 234
ion implementation technique, 853–855
microelectronic, fabrication of, 852–859
MOS fabrication technology for, 856–859
photolithography for, 852–853
Intel, Inc., 810, 812
Intergranular brittle fractures, 323
Intergranular corrosion, 783–785
Intermediate oxides, 666
Intermediate phases, 395–398
Intermetallics, 397
International Space Station (ISS), 5, 6
Interstitial mechanism of diffusion, 220, 222–223
Interstitial sites in FCC and HCP, 626–628
Interstitial solid solution, 179
Intraocular lens implants, for cataracts, 991–992
Intrinsic semiconductors
carrier concentrations in, 837–838
defined, 824
electrical conduction in, 824–825
energy-band diagrams for, 826–827
pure silicon, 825–826
quantitative relationships for electrical conduction in, 827–829
temperature effects on, 829–831
Invariant reactionspage 1109
in Fe-Fe3C phase diagram, 422–424
phase diagrams of, 380, 393–395
Inverse spinel ferrites, 952–954
Ion-concentration cells, 763–764
Ionic bonding
in ceramic materials, 617–621, 653
Ion implementation technique for integrated circuit fabrication, 855
Iron and steel production, 417–421. See also Cast irons; Steels
Iron-chromium-cobalt (Fe-Cr-Co) magnetic alloy, 948–950
Iron-iron-carbide phase diagram, 421–424
Iron–silicon alloys, 937–938
Island structures of silicates, 637
Isomorphous alloy systems, 370
Isostatic pressing of ceramic materials, 642
Isostrain conditions for composite materials, 700–703
Isostress conditions for composite materials, 703–705
Isotactic stereoisomers, 540
Isothermal transformation (IT) diagrams
for eutectoid plain-carbon steel, 436–440
for noneutectoid plain-carbon steel, 440–441
ISS (International Space Station), 5, 6
Joint simulators, 1004
Jominy hardenability test, 454–458
Kevlar aramid fibers (Du Pont, Inc.), 694
Kirkendall effect, 221–222
Knoop hardness, 274
Lamellar composite structure, 702–703
Lamina, 698
Laminated carbon fiber–epoxy material, 698
Large-scale integrated (LSI) microelectronic circuits, 848, 851
Larsen-Miller (L.M.) parameter, 348–350
Lasers, 893–898Lath martensite, 431–432
LDPE (low-density polyethylene), 550–552
Lead glasses, 666
Lever rule, 372–376
Life cycle analysis, 26
Life, fatigue, 333, 342–343
Ligaments. see Tendons and ligaments
Light. See Optical properties
Lignins, in woods, 722, 728
Linear density, 625
Linear low-density polyethylene (LLDPE), 551
Lipids, 966
Liquidus, in phase diagrams, 370–371
LLDPE (linear low-density polyethylene), 551
L.M. (Larsen-Miller) parameter, 348–350
Lockheed Martin, Inc., 2–3
Loss factor
dielectric, 864
Low-alloy steels
alloying element distribution in, 451–452
classification of, 451
eutectoid temperature of steels and, 452–453
hardenability of, 454–458
mechanical properties and applications of, 458–460
Low-density polyethylene (LDPE), 550–552
Lower critical field, 905
LSI (large-scale integrated) microelectronic circuits, 848, 851
Lubricant additives, 553
Lumen, in softwoods, 725
Luminescence, 891–893
Macroscopic form of Ohm’s law, 816
Magnesium alloys, 494–496
Magnetic anneal, 946
Magnetic domains, 924
Magnetic moment
of single unpaired atomic electrons, 925–926Magnetic moments
of inverse spinel ferrites, 952–954
Magnetic properties, 916–963
antiferromagnetism, 927
diamagnetism, 922
ferrimagnetism, 927
ferromagnetism
domains, 928–929
effect of temperature on, 927–928
energies determining structure of domains of, 929–935
magnetization and demagnetization of ferromagnetic metals, 935–936
overview, 917, 923–925
hard magnetic materials
alnico (aluminum-nickel-cobalt), 945–946
iron-chromium-cobalt (Fe-Cr-Co) magnetic alloy, 948–950
maximum energy product, 943–945
neodymium-iron-boron (Nd-Fe-B) magnetic alloy, 947–948
properties of, 942–945
rare earth alloy, 947
magnetic fields, 917–919
magnetic induction, 919–920
magnetic permeability, 920–921
magnetic susceptibility, 921–922
overview, 916–917
paramagnetism, 922–923
soft magnetic materials, 936–942
in superconducting materials, 904–907
temperature effect on, 927–928
Magnetic resonance imaging (MRI), 916
Magnetization, 919–920
Magnetocrystalline anisotropy energy, 931–932
Magnetostatic energy, 930–931
Magnetostriction, 933
Magnetostrictive energy, 933–935
Majority-carrier devices, 851
Majority carriers, in extrinsic semiconductors, 835
Malleable cast irons, 492–494Mars, NASA mission to, 2–3, 5
Mars Exploration Rover (MER) mission, 2, 5
Martempering, 446–447
Martensites
formation of, 431–435
tempering, 445–446
Martensitic stainless steels, 483–485
Mass action law, 835
Materials science, introduction to
ceramic materials, 14–15
competition among materials, 19–21
composite materials, 16–18
electronic materials, 18–19
engineering and, 7–9
materials and engineering, 3–7
metallic materials, 9–11
nanomaterials, 23–24
overview, 2–3
polymeric materials, 11–14
smart materials, 21–23
Matrix materials for composite, 696
Matrix phase, composite material, 688
Maximum energy product, of hard magnetic materials, 943–945
McDonnell Douglas Aircraft Co., 707–708
MCVD (modified chemical vapor deposition) process, 900–901
Mechanical properties of metals. See Metals, mechanical properties of
Meissner effect, 905, 906
Melamines (amino resins)


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Foundations of Materials Science and Engineering - Seventh Edition
رابط مباشر لتنزيل كتاب Foundations of Materials Science and Engineering - Seventh Edition
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Foundations of Materials Science and Engineering - Seventh Edition
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Foundations of Materials Science and Engineering - Sixth Edition
» كتاب Maintenance Engineering Handbook - Seventh Edition
» كتاب Fundamentals of Materials Science and Engineering 5th Edition
» كتاب Titanium, 2nd Edition - Engineering Materials and Processes
» كتاب Manufacturing Processes for Engineering Materials - Sixth Edition in SI Units

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: