Admin مدير المنتدى
عدد المساهمات : 18938 التقييم : 35320 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Foundations of Materials Science and Engineering - Seventh Edition الثلاثاء 06 أغسطس 2024, 10:24 pm | |
|
أخواني في الله أحضرت لكم كتاب Foundations of Materials Science and Engineering - Seventh Edition William F. Smith Late Professor Emeritus of Engineering of University of Central Florida Javad Hashemi, Ph.D. Professor of Ocean and Mechanical Engineering Florida Atlantic University
و المحتوى كما يلي :
TABLE OF CONTENTS page iv Preface xv CHAPTER 1 Introduction to Materials Science and Engineering 2 Materials and Engineering 3 Materials Science and Engineering 7 Types of Materials 9 Metallic Materials 9 Polymeric Materials 11 Ceramic Materials 14 Composite Materials 16 Electronic Materials 18 Competition Among Materials 19 Recent Advances in Materials Science and Technology and Future Trends 21 Smart Materials 21 Nanomaterials 23 Materials Selection for Engineering Applications 24 Environmental Considerations in the Selection of Materials—Life Cycle Analysis 26 Summary 29 Definitions 30 Problems 31 CHAPTER 2 Atomic Structure and Bonding 342.1 2.2 2.2.1 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.6 2.7 2.8 2.9 3.1 3.2 3.3 3.3.1 Atomic Structure and Subatomic Particles 35 Atomic Numbers, Mass Numbers, and Atomic Masses 39 Atomic Numbers and Mass Numbers 39 The Electronic Structure of Atoms 43 Planck’s Quantum Theory and Electromagnetic Radiation 43 Bohr’s Theory of the Hydrogen Atom 44 The Uncertainty Principle and Schrödinger’s Wave Functions 48 Quantum Numbers, Energy Levels, and Atomic Orbitals 51 The Energy State of Multielectron Atoms 54 The Quantum-Mechanical Model and the Periodic Table 58 Periodic Variations in Atomic Size, Ionization Energy, and Electron Affinity 61 Trends in Atomic Size 61 Trends in Ionization Energy 62 Trends in Electron Affinity 64 Metals, Metalloids, and Nonmetals 66 Primary Bonds 66 Ionic Bonds 68 Covalent Bonds 74 Metallic Bonds 81 Mixed Bonding 83 Secondary Bonds 85 Summary 88 Definitions 89 Problems 91 CHAPTER 3 Crystal and Amorphous Structure in Materials 98 The Space Lattice and Unit Cells 99 Crystal Systems and Bravais Lattices 100 Principal Metallic Crystal Structures 104 Body-Centered Cubic (BCC) Crystal Structure 1053.3.2 3.3.3 3.4 3.5 3.6 3.7 3.7.1 3.7.2 3.8 3.8.1 3.8.2 3.9 3.9.1 3.9.2 3.9.3 3.10 3.11 3.11.1 3.11.2 3.11.3 3.12 3.13 3.14 3.15 4.1 4.1.1 4.1.2 4.1.3 4.2 Face-Centered Cubic (FCC) Crystal Structure 108 page v Hexagonal Close-Packed (HCP) Crystal Structure 109 Atom Positions in Cubic Unit Cells 112 Directions in Cubic Unit Cells 113 Miller Indices for Crystallographic Planes in Cubic Unit Cells 117 Crystallographic Planes and Directions in Hexagonal Crystal Structure 122 Indices for Crystal Planes in HCP Unit Cells 122 Direction Indices in HCP Unit Cells 124 Comparison of FCC, HCP, and BCC Crystal Structures 124 FCC and HCP Crystal Structures 124 BCC Crystal Structure 127 Volume, Planar, and Linear Density Unit-Cell Calculations 127 Volume Density 127 Planar Atomic Density 128 Linear Atomic Density and Repeat Distance 130 Polymorphism or Allotropy 131 Crystal Structure Analysis 132 X-Ray Sources 133 X-Ray Diffraction 134 X-Ray Diffraction Analysis of Crystal Structures 136 Amorphous Materials 142 Summary 143 Definitions 144 Problems 145 CHAPTER 4 Solidification and Crystalline Imperfections 160 Solidification of Metals 161 The Formation of Stable Nuclei in Liquid Metals 163 Growth of Crystals in Liquid Metal and Formation of a Grain Structure 170 Grain Structure of Industrial Castings 171 Solidification of Single Crystals 1724.3 4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.5 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.6 4.7 4.8 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.3.1 5.3.2 5.4 page vi Metallic Solid Solutions 176 Substitutional Solid Solutions 177 Interstitial Solid Solutions 179 Crystalline Imperfections 183 Point Defects 183 Line Defects (Dislocations) 184 Planar Defects 188 Volume Defects 190 Experimental Techniques for Identification of Microstructure and Defects 191 Optical Metallography, ASTM Grain Size, and Grain Diameter Determination 191 Scanning Electron Microscopy (SEM) 196 Transmission Electron Microscopy (TEM) 197 High-Resolution Transmission Electron Microscopy (HRTEM) 198 Scanning Probe Microscopes and Atomic Resolution 200 Summary 204 Definitions 205 Problems 206 CHAPTER 5 Thermally Activated Processes and Diffusion in Solids 214 Rate Processes in Solids 215 Atomic Diffusion in Solids 220 Diffusion in Solids in General 220 Diffusion Mechanisms 220 Steady-State Diffusion 222 Non–Steady-State Diffusion 225 Industrial Applications of Diffusion Processes 228 Case Hardening of Steel by Gas Carburizing 228 Impurity Diffusion into Silicon Wafers for Integrated Circuits 232 Effect of Temperature on Diffusion in Solids 2355.5 5.6 5.7 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.3 6.3.1 6.3.2 6.3.3 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.6 6.6.1 Summary 238 Definitions 239 Problems 239 CHAPTER 6 Mechanical Properties of Metals I 246 The Processing of Metals and Alloys 247 The Casting of Metals and Alloys 247 Hot and Cold Rolling of Metals and Alloys 249 Extrusion of Metals and Alloys 253 Forging 254 Other Metal-Forming Processes 256 Stress and Strain in Metals 257 Elastic and Plastic Deformation 258 Engineering Stress and Engineering Strain 258 Poisson’s Ratio 261 Shear Stress and Shear Strain 262 The Tensile Test and The Engineering Stress–Strain Diagram 263 Mechanical Property Data Obtained from the Tensile Test and the Engineering Stress–Strain Diagram 265 Comparison of Engineering Stress–Strain Curves for Selected Alloys 271 True Stress and True Strain 271 Hardness and Hardness Testing 273 Plastic Deformation of Metal Single Crystals 275 Slipbands and Slip Lines on the Surface of Metal Crystals 275 Plastic Deformation in Metal Crystals by the Slip Mechanism 278 Slip Systems 278 Critical Resolved Shear Stress for Metal Single Crystals 283 Schmid’s Law 283 Twinning 286 Plastic Deformation of Polycrystalline Metals 288 Effect of Grain Boundaries on the Strength of Metals 2886.6.2 6.6.3 6.7 6.8 6.8.1 6.8.2 6.8.3 6.9 6.10 6.11 6.12 6.13 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2 7.2.1 7.2.2 7.2.3 7.3 page vii Effect of Plastic Deformation on Grain Shape and Dislocation Arrangements 290 Effect of Cold Plastic Deformation on Increasing the Strength of Metals 293 Solid-Solution Strengthening of Metals 294 Recovery and Recrystallization of Plastically Deformed Metals 295 Structure of a Heavily Cold-Worked Metal before Reheating 296 Recovery 296 Recrystallization 298 Superplasticity in Metals 302 Nanocrystalline Metals 304 Summary 305 Definitions 306 Problems 308 CHAPTER 7 Mechanical Properties of Metals II 318 Fracture of Metals 319 Ductile Fracture 320 Brittle Fracture 321 Toughness and Impact Testing 324 Ductile-to-Brittle Transition Temperature 326 Theoretical Strength, Griffith’s Theorem, and Stress Concentration Factor 327 Stress Intensity Factor and Fracture Toughness 328 Fatigue of Metals 332 Cyclic Stresses 335 Basic Structural Changes that Occur in a Ductile Metal in the Fatigue Process 336 Some Major Factors that Affect the Fatigue Strength of a Metal 337 Fatigue Crack Propagation Rate 3387.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2 7.4.3 7.5 7.6 7.7 7.7.1 7.7.2 7.8 7.9 7.10 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 Correlation of Fatigue Crack Propagation with Stress and Crack Length 338 Fatigue Crack Growth Rate versus Stress-Intensity Factor Range Plots 340 Fatigue Life Calculations 342 Creep and Stress Rupture of Metals 344 Creep of Metals 344 The Creep Test 346 Creep-Rupture Test 347 Graphical Representation of Creep- and Stress-Rupture TimeTemperature Data Using the Larsen-Miller Parameter 348 A Case Study in Failure of Metallic Components 350 Recent Advances and Future Directions in Improving the Mechanical Performance of Metals 353 Improving Ductility and Strength Simultaneously 353 Fatigue Behavior in Nanocrystalline Metals 355 Summary 355 Definitions 356 Problems 357 CHAPTER 8 Phase Diagrams 364 Phase Diagrams of Pure Substances 365 Gibbs Phase Rule 367 Cooling Curves 368 Binary Isomorphous Alloy Systems 370 The Lever Rule 372 Nonequilibrium Solidification of Alloys 376 Binary Eutectic Alloy Systems 379 Binary Peritectic Alloy Systems 387 Binary Monotectic Systems 392 Invariant Reactions 393 Phase Diagrams with Intermediate Phases and Compounds 395 Ternary Phase Diagrams 399 Summary 4028.14 8.15 9.1 9.1.1 9.1.2 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.4 9.4.1 9.4.2 9.4.3 9.4.4 9.4.5 9.4.6 page viii Definitions 403 Problems 405 CHAPTER 9 Engineering Alloys 416 Production of Iron and Steel 417 Production of Pig Iron in a Blast Furnace 418 Steelmaking and Processing of Major Steel Product Forms 419 The Iron-Carbon System 421 The Iron–Iron-Carbide Phase Diagram 421 Solid Phases in the Fe–Fe3C Phase Diagram 421 Invariant Reactions in the Fe–Fe3C Phase Diagram 422 Slow Cooling of Plain-Carbon Steels 424 Heat Treatment of Plain-Carbon Steels 431 Martensite 431 Isothermal Decomposition of Austenite 436 Continuous-Cooling Transformation Diagram for a Eutectoid Plain-Carbon Steel 441 Annealing and Normalizing of Plain-Carbon Steels 443 Tempering of Plain-Carbon Steels 445 Classification of Plain-Carbon Steels and Typical Mechanical Properties 449 Low-Alloy Steels 451 Classification of Alloy Steels 451 Distribution of Alloying Elements in Alloy Steels 451 Effects of Alloying Elements on the Eutectoid Temperature of Steels 452 Hardenability 454 Typical Mechanical Properties and Applications for Low-Alloy Steels 458 Impact of Specific Alloying Elements on Performance of Steel 4609.5 9.5.1 9.5.2 9.5.3 9.5.4 9.6 9.6.1 9.6.2 9.6.3 9.6.4 9.7 9.7.1 9.7.2 9.7.3 9.8 9.8.1 9.8.2 9.8.3 9.8.4 9.8.5 9.8.6 9.9 9.9.1 9.9.2 9.9.3 9.10 9.10.1 9.10.2 9.10.3 9.11 9.12 9.13 Aluminum Alloys 461 Precipitation Strengthening (Hardening) 461 General Properties of Aluminum and Its Production 468 Wrought Aluminum Alloys 470 Aluminum Casting Alloys 474 Copper Alloys 476 General Properties of Copper 476 Production of Copper 476 Classification of Copper Alloys 476 Wrought Copper Alloys 477 Stainless Steels 482 Ferritic Stainless Steels 482 Martensitic Stainless Steels 483 Austenitic Stainless Steels 485 Cast Irons 487 General Properties 487 Types of Cast Irons 487 White Cast Iron 489 Gray Cast Iron 489 Ductile Cast Irons 490 Malleable Cast Irons 492 Magnesium, Titanium, and Nickel Alloys 494 Magnesium Alloys 494 Titanium Alloys 496 Nickel Alloys 498 Special-Purpose Alloys and Applications 498 Intermetallics 498 Shape-Memory Alloys 500 Amorphous Metals 504 Summary 505 Definitions 506 Problems 508 CHAPTER 10 Polymeric Materials 51810.1 10.1.1 10.1.2 10.2 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 10.2.9 10.2.10 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.4.6 10.5 10.5.1 10.5.2 10.6 10.6.1 10.6.2 10.6.3 10.6.4 10.6.5 10.6.6 page ix Introduction 519 Thermoplastics 520 Thermosetting Plastics (Thermosets) 520 Polymerization Reactions 521 Covalent Bonding Structure of an Ethylene Molecule 521 Covalent Bonding Structure of an Activated Ethylene Molecule 522 General Reaction for the Polymerization of Polyethylene and the Degree of Polymerization 523 Chain Polymerization Steps 523 Average Molecular Weight for Thermoplastics 525 Functionality of a Monomer 526 Structure of Noncrystalline Linear Polymers 526 Vinyl and Vinylidene Polymers 528 Homopolymers and Copolymers 529 Other Methods of Polymerization 532 Industrial Polymerization Methods 534 Glass Transition Temperature and Crystallinity in Thermoplastics 536 Glass Transition Temperature 536 Solidification of Noncrystalline Thermoplastics 536 Solidification of Partly Crystalline Thermoplastics 537 Structure of Partly Crystalline Thermoplastic Materials 538 Stereoisomerism in Thermoplastics 540 Ziegler and Natta Catalysts 540 Processing of Plastic Materials 542 Processes Used for Thermoplastic Materials 542 Processes Used for Thermosetting Materials 546 General-Purpose Thermoplastics 548 Polyethylene 550 Polyvinyl Chloride and Copolymers 553 Polypropylene 555 Polystyrene 555 Polyacrylonitrile 556 Styrene–Acrylonitrile (SAN) 55710.6.7 10.6.8 10.6.9 10.7 10.7.1 10.7.2 10.7.3 10.7.4 10.7.5 10.7.6 10.7.7 10.7.8 10.8 10.8.1 10.8.2 10.8.3 10.8.4 10.9 10.9.1 10.9.2 10.9.3 10.9.4 10.10 10.10.1 10.10.2 10.10.3 10.10.4 10.11 10.11.1 10.11.2 10.11.3 10.12 10.13 10.14 ABS 557 Polymethyl Methacrylate (PMMA) 559 Fluoroplastics 559 Engineering Thermoplastics 561 Polyamides (Nylons) 562 Polycarbonate 565 Phenylene Oxide–Based Resins 566 Acetals 567 Thermoplastic Polyesters 568 Polyphenylene Sulfide 569 Polyetherimide 570 Polymer Alloys 570 Thermosetting Plastics (Thermosets) 571 Phenolics 573 Epoxy Resins 574 Unsaturated Polyesters 576 Amino Resins (Ureas and Melamines) 577 Elastomers (Rubbers) 579 Natural Rubber 579 Synthetic Rubbers 583 Properties of Polychloroprene Elastomers 584 Vulcanization of Polychloroprene Elastomers 585 Deformation and Strengthening of Plastic Materials 587 Deformation Mechanisms for Thermoplastics 587 Strengthening of Thermoplastics 589 Strengthening of Thermosetting Plastics 592 Effect of Temperature on the Strength of Plastic Materials 593 Creep and Fracture of Polymeric Materials 594 Creep of Polymeric Materials 594 Stress Relaxation of Polymeric Materials 596 Fracture of Polymeric Materials 597 Summary 600 Definitions 601 Problems 60311.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 11.2.8 11.2.9 11.2.10 11.2.11 11.2.12 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.4 11.4.1 11.4.2 11.4.3 11.5 11.5.1 11.5.2 11.6 11.6.1 11.6.2 page x CHAPTER 11 Ceramics 614 Introduction 615 Simple Ceramic Crystal Structures 617 Ionic and Covalent Bonding in Simple Ceramic Compounds 617 Simple Ionic Arrangements Found in Ionically Bonded Solids 618 Cesium Chloride (CsCl) Crystal Structure 621 Sodium Chloride (NaCl) Crystal Structure 622 Interstitial Sites in FCC and HCP Crystal Lattices 626 Zinc Blende (ZnS) Crystal Structure 628 Calcium Fluoride (CaF2) Crystal Structure 630 Antifluorite Crystal Structure 632 Corundum (Al2O3) Crystal Structure 632 Spinel (MgAl2O4) Crystal Structure 632 Perovskite (CaTiO3) Crystal Structure 633 Carbon and Its Allotropes 633 Silicate Structures 637 Basic Structural Unit of the Silicate Structures 637 Island, Chain, and Ring Structures of Silicates 637 Sheet Structures of Silicates 637 Silicate Networks 638 Processing of Ceramics 640 Materials Preparation 641 Forming 641 Thermal Treatments 645 Traditional and Structural Ceramics 648 Traditional Ceramics 648 Structural Ceramics 650 Mechanical Properties of Ceramics 652 General 652 Mechanisms for the Deformation of Ceramic Materials 65211.6.3 11.6.4 11.6.5 11.6.6 11.6.7 11.7 11.7.1 11.7.2 11.7.3 11.7.4 11.8 11.8.1 11.8.2 11.8.3 11.8.4 11.8.5 11.8.6 11.8.7 11.8.8 11.9 11.9.1 11.9.2 11.10 11.11 11.12 11.13 12.1 12.1.1 12.1.2 12.2 page xi Factors Affecting the Strength of Ceramic Materials 654 Toughness of Ceramic Materials 654T ransformation Toughening of Partially Stabilized Zirconia (PSZ) 656 Fatigue Failure of Ceramics 658 Ceramic Abrasive Materials 658 Thermal Properties of Ceramics 659 Ceramic Refractory Materials 659 Acidic Refractories 660 Basic Refractories 661 Ceramic Tile Insulation for the Space Shuttle Orbiter 661 Glasses 663 Definition of a Glass 663 Glass Transition Temperature 663 Structure of Glasses 663 Compositions of Glasses 666 Viscous Deformation of Glasses 666 Forming Methods for Glasses 670 Tempered Glass 671 Chemically Strengthened Glass 672 Ceramic Coatings and Surface Engineering 673 Silicate Glasses 673 Oxides and Carbides 673 Nanotechnology and Ceramics 674 Summary 676 Definitions 677 Problems 678 CHAPTER 12 Composite Materials 686 Introduction 687 Classification of Composite Materials 687 Advantages and Disadvantages of Composite Materials over Conventional Materials 688 Fibers for Reinforced-Plastic Composite Materials 68912.2.1 12.2.2 12.2.3 12.2.4 12.3 12.4 12.4.1 12.4.2 12.5 12.5.1 12.5.2 12.6 12.6.1 12.6.2 12.6.3 12.6.4 12.7 12.7.1 12.7.2 12.7.3 12.8 12.8.1 12.8.2 12.8.3 12.8.4 12.8.5 12.8.6 12.8.7 12.8.8 12.9 12.10 Glass Fibers for Reinforcing Plastic Resins 689 Carbon Fibers for Reinforced Plastics 692 Aramid Fibers for Reinforcing Plastic Resins 694 Comparison of Mechanical Properties of Carbon, Aramid, and Glass Fibers for Reinforced-Plastic Composite Materials 694 Matrix Materials for Composites 696 Fiber-Reinforced Plastic Composite Materials 697 Fiberglass-Reinforced Plastics 697 Carbon Fiber–Reinforced Epoxy Resins 698 Equations for Elastic Modulus of Composite Laminates: Isostrain and Isostress Conditions 700 Isostrain Conditions 700 Isostress Conditions 703 Open-Mold Processes for Fiber-Reinforced Plastic Composite Materials 705 Hand Lay-Up Process 705 Spray Lay-Up Process 706 Vacuum Bag–Autoclave Process 707 Filament-Winding Process 708 Closed-Mold Processes for Fiber-Reinforced Plastic Composite Materials 708 Compression and Injection Molding 708 The Sheet-Molding Compound (SMC) Process 709 Continuous-Pultrusion Process 710 Concrete 710 Portland Cement 711 Mixing Water for Concrete 714 Aggregates for Concrete 715 Air Entrainment 715 Compressive Strength of Concrete 716 Proportioning of Concrete Mixtures 716 Reinforced and Prestressed Concrete 717 Prestressed Concrete 718 Asphalt and Asphalt Mixes 720 Wood 72212.10.1 12.10.2 12.10.3 12.10.4 12.10.5 12.11 12.11.1 12.11.2 12.12 12.12.1 12.12.2 12.12.3 12.13 12.14 12.15 13.1 13.2 13.2.1 13.2.2 13.3 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5 13.3.6 13.4 page xii Macrostructure of Wood 722 Microstructure of Softwoods 725 Microstructure of Hardwoods 726 Cell-Wall Ultrastructure 727 Properties of Wood 729 Sandwich Structures 730 Honeycomb Sandwich Structure 732 Cladded Metal Structures 732 Metal-Matrix and Ceramic-Matrix Composites 733 Metal-Matrix Composites (MMCs) 733 Ceramic-Matrix Composites (CMCs) 735 Ceramic Composites and Nanotechnology 740 Summary 740 Definitions 741 Problems 744 CHAPTER 13 Corrosion 750 Corrosion and Its Economical Impact 751 Electrochemical Corrosion of Metals 752 Oxidation-Reduction Reactions 753 Standard Electrode Half-Cell Potentials for Metals 754 Galvanic Cells 756 Macroscopic Galvanic Cells with Electrolytes That Are One Molar 756 Galvanic Cells with Electrolytes That Are Not One Molar 758 Galvanic Cells with Acid or Alkaline Electrolytes with No Metal Ions Present 760 Microscopic Galvanic Cell Corrosion of Single Electrodes 761 Concentration Galvanic Cells 763 Galvanic Cells Created by Differences in Composition, Structure, and Stress 766 Corrosion Rates (Kinetics) 76813.4.1 13.4.2 13.4.3 13.4.4 13.5 13.5.1 13.5.2 13.5.3 13.5.4 13.5.5 13.5.6 13.5.7 13.5.8 13.5.9 13.5.10 13.5.11 13.6 13.6.1 13.6.2 13.6.3 13.7 13.7.1 13.7.2 13.7.3 13.7.4 13.7.5 13.8 13.9 13.10 14.1 14.1.1 Rate of Uniform Corrosion or Electroplating of a Metal in an Aqueous Solution 768 Corrosion Reactions and Polarization 771 Passivation 775 The Galvanic Series 775 Types of Corrosion 776 Uniform or General Attack Corrosion 776 Galvanic or Two-Metal Corrosion 778 Pitting Corrosion 779 Crevice Corrosion 781 Intergranular Corrosion 783 Stress Corrosion 785 Erosion Corrosion 788 Cavitation Damage 789 Fretting Corrosion 789 Selective Leaching 789 Hydrogen Damage 790 Oxidation of Metals 791 Protective Oxide Films 791 Mechanisms of Oxidation 793 Oxidation Rates (Kinetics) 794 Corrosion Control 796 Materials Selection 796 Coatings 797 Design 798 Alteration of Environment 799 Cathodic and Anodic Protection 800 Summary 801 Definitions 802 Problems 803 CHAPTER 14 Electrical Properties of Materials 810 Electrical Conduction In Metals 811 The Classic Model for Electrical Conduction in Metals 81114.1.2 14.1.3 14.1.4 14.2 14.2.1 14.2.2 14.3 14.3.1 14.3.2 14.3.3 14.3.4 14.3.5 14.4 14.4.1 14.4.2 14.4.3 14.4.4 14.4.5 14.4.6 14.5 14.5.1 14.5.2 14.5.3 14.6 14.6.1 14.6.2 14.6.3 14.7 Ohm’s Law 813 Drift Velocity of Electrons in a Conducting Metal 817 Electrical Resistivity of Metals 818 Energy-Band Model for Electrical Conduction 822 Energy-Band Model for Metals 822 Energy-Band Model for Insulators 824 Intrinsic Semiconductors 824 The Mechanism of Electrical Conduction in Intrinsic Semiconductors 824 Electrical Charge Transport in the Crystal Lattice of Pure Silicon 825 Energy-Band Diagram for Intrinsic Elemental Semiconductors 826 Quantitative Relationships for Electrical Conduction in Elemental Intrinsic Semiconductors 827 Effect of Temperature on Intrinsic Semiconductivity 829 Extrinsic Semiconductors 831 n-Type (Negative-Type) Extrinsic Semiconductors 831 p-Type (Positive-Type) Extrinsic Semiconductors 833 Doping of Extrinsic Silicon Semiconductor Material 835 Effect of Doping on Carrier Concentrations in Extrinsic Semiconductors 835 Effect of Total Ionized Impurity Concentration on the Mobility of Charge Carriers in Silicon at Room Temperature 838 Effect of Temperature on the Electrical Conductivity of Extrinsic Semiconductors 839 Semiconductor Devices 841 The pn Junction 842 Some Applications for pn Junction Diodes 845 The Bipolar Junction Transistor 846 Microelectronics 848 Microelectronic Planar Bipolar Transistors 848 Microelectronic Planar Field-Effect Transistors 849 Fabrication of Microelectronic Integrated Circuits 852 Compound Semiconductors 85914.8 14.8.1 14.8.2 14.8.3 14.8.4 14.8.5 14.9 14.10 14.11 14.12 15.1 15.2 15.3 15.3.1 15.3.2 15.4 15.4.1 15.4.2 15.4.3 15.4.4 15.5 15.5.1 15.5.2 15.6 15.6.1 15.7 15.7.1 15.7.2 15.7.3 15.7.4 15.8 page xiii Electrical Properties of Ceramics 862 Basic Properties of Dielectrics 862 Ceramic Insulator Materials 864 Ceramic Materials for Capacitors 865 Ceramic Semiconductors 866 Ferroelectric Ceramics 868 Nanoelectronics 871 Summary 872 Definitions 873 Problems 875 CHAPTER 15 Optical Properties and Superconductive Materials 880 Introduction 881 Light and the Electromagnetic Spectrum 881 Refraction of Light 883 Index of Refraction 883 Snell’s Law of Light Refraction 885 Absorption, Transmission, and Reflection of Light 886 Metals 886 Silicate Glasses 887 Plastics 888 Semiconductors 890 Luminescence 891 Photoluminescence 892 Cathodoluminescence 892 Stimulated Emission of Radiation and Lasers 893 Types of Lasers 896 Optical Fibers 898 Light Loss in Optical Fibers 899 Single-Mode and Multimode Optical Fibers 899 Fabrication of Optical Fibers 900 Modern Optical-Fiber Communication Systems 902 Superconducting Materials 90315.8.1 15.8.2 15.8.3 15.8.4 15.8.5 15.9 15.10 16.1 16.2 16.2.1 16.2.2 16.2.3 16.2.4 16.3 16.3.1 16.3.2 16.3.3 16.3.4 16.3.5 16.3.6 16.4 16.5 16.6 16.6.1 16.6.2 16.6.3 16.6.4 16.6.5 The Superconducting State 903 Magnetic Properties of Superconductors 904 Current Flow and Magnetic Fields in Superconductors 906 High-Current, High-Field Superconductors 907 High Critical Temperature (Tc) Superconducting Oxides 908 Definitions 911 Problems 912 CHAPTER 16 Magnetic Properties 916 Introduction 917 Magnetic Fields and Quantities 917 Magnetic Fields 917 Magnetic Induction 919 Magnetic Permeability 920 Magnetic Susceptibility 921 Types of Magnetism 922 Diamagnetism 922 Paramagnetism 922 Ferromagnetism 923 Magnetic Moment of a Single Unpaired Atomic Electron 925 Antiferromagnetism 927 Ferrimagnetism 927 Effect of Temperature on Ferromagnetism 927 Ferromagnetic Domains 928 Types of Energies that Determine the Structure of Ferromagnetic Domains 929 Exchange Energy 930 Magnetostatic Energy 930 Magnetocrystalline Anisotropy Energy 931 Domain Wall Energy 932 Magnetostrictive Energy 93316.7 16.8 16.8.1 16.8.2 16.8.3 16.8.4 16.8.5 16.9 16.9.1 16.9.2 16.9.3 16.9.4 16.9.5 16.10 16.10.1 16.10.2 16.11 16.12 16.13 17.1 17.2 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5 17.2.6 17.2.7 17.3 17.3.1 17.3.2 page xiv The Magnetization and Demagnetization of a Ferromagnetic Metal 935 Soft Magnetic Materials 936 Desirable Properties for Soft Magnetic Materials 936 Energy Losses for Soft Magnetic Materials 936 Iron–Silicon Alloys 937 Metallic Glasses 939 Nickel–Iron Alloys 941 Hard Magnetic Materials 942 Properties of Hard Magnetic Materials 942 Alnico Alloys 945 Rare Earth Alloys 947 Neodymium–Iron–Boron Magnetic Alloys 947 Iron–Chromium–Cobalt Magnetic Alloys 948 Ferrites 951 Magnetically Soft Ferrites 951 Magnetically Hard Ferrites 955 Summary 955 Definitions 956 Problems 959 CHAPTER 17 Biological Materials and Biomaterials 964 Introduction 965 Biological Materials: Bone 966 Composition 966 Macrostructure 966 Mechanical Properties 966 Biomechanics of Bone Fracture 969 Viscoelasticity of Bone 969 Bone Remodeling 970 A Composite Model of Bone 970 Biological Materials: Tendons and Ligaments 972 Macrostructure and Composition 972 Microstructure 97217.3.3 17.3.4 17.3.5 17.3.6 17.4 17.4.1 17.4.2 17.4.3 17.4.4 17.5 17.5.1 17.5.2 17.5.3 17.5.4 17.6 17.6.1 17.6.2 17.6.3 17.6.4 17.6.5 17.7 17.7.1 17.7.2 17.7.3 17.7.4 17.8 17.8.1 17.8.2 17.9 17.10 17.11 17.12 17.13 17.14 Mechanical Properties 973 Structure-Property Relationship 975 Constitutive Modeling and Viscoelasticity 976 Ligament and Tendon Injury 978 Biological Material: Articular Cartilage 980 Composition and Macrostructure 980 Microstructure 980 Mechanical Properties 981 Cartilage Degeneration 982 Biomaterials: Metals in Biomedical Applications 982 Stainless Steels 984 Cobalt-Based Alloys 984 Titanium Alloys 985 Some Issues in Orthopedic Application of Metals 987 Polymers in Biomedical Applications 989 Cardiovascular Applications of Polymers 989 Ophthalmic Applications 990 Drug Delivery Systems 992 Suture Materials 992 Orthopedic Applications 992 Ceramics in Biomedical Applications 993 Alumina in Orthopedic Implants 994 Alumina in Dental Implants 995 Ceramic Implants and Tissue Connectivity 996 Nanocrystalline Ceramics 997 Composites in Biomedical Applications 998 Orthopedic Applications 998 Applications in Dentistry 999 Corrosion in Biomaterials 1000 Wear in Biomedical Implants 1001 Tissue Engineering 1005 Summary 1006 Definitions 1007 Problems 1008APPENDIX I Important Properties of Selected Engineering Materials 1013 APPENDIX II Some Properties of Selected Elements 1070 APPENDIX III Ionic Radii of the Elements 1072 APPENDIX IV Glass Transition Temperature and Melting Temperature of Selected Polymers 1074 APPENDIX V Selected Physical Quantities and Their Units 1075 APPENDIX VI Unit Abbreviations 1077 APPENDIX VII Constants and Conversion Factors 1079 References for Further Study by Chapter 1082 Glossary 1086 Answers 1098 Index 1103 INDEX page 1103 Abrasive materials, ceramic materials as, 658–659 ABS, 557–559 Absorption of light, 886–891 Acceptor atoms, 835 Acceptor energy level, 833 Acetals, 567 Acidic refractories, 660 ACL (anterior cruciate ligament), 975, 978–979 Acrylonitrile, 557 Activation energy, 215–216 Activation polarization, 773–774 Adaptive Engine Technology (GE Aviation), 15 Adsorption theory, 775 Advanced ceramic materials, 14 Aerospace industry composite materials used in, 17–18 material characteristics needed by, 7–8 superalloys in, 9–10, 21 α ferrite, 421 Aggregates for concrete, 715 Air-entrained concrete, 715–716 Alloys. See also Engineering alloys; Solidification alnico (aluminum-nickel-cobalt), 945–946 binary eutectic systems of, 379–387 binary isomorphous systems of, 370–372 binary peritectic systems of, 387–392 cobalt-based, 984–985 composite materials advantages over metal, 689 electrical resistivity of metal increased by, 820–821 ferrous and nonferrous, 9 iron-chromium-cobalt (Fe-Cr-Co) magnetic, 948–950 iron-silicon, 937–938 lever rule for, 372–376neodymium-iron-boron (Nd-Fe-B) magnetic, 947–948 nickel–iron, 941–942 nonequilibrium solidification of, 376–379 polymer, 570–571 rare earth, 947 tensile test and engineering stress-strain diagram of, 271 titanium, 985–987 Alnico (aluminum-nickel-cobalt) alloys, 945–946 Aloha Airlines, Inc., 750 Alumina as ceramic insulator material, 865 in dental implants, 995–996 description of, 651 in orthopedic implants, 994–995 Aluminum alloys for casting, 474–476 precipitation strengthening, 461–468 properties of, 468–469 wrought, 470–473 Aluminum oxide, 615, 651, 865 American Concrete Institute, 716 American Society for Testing and Materials (ASTM), 289 Amino resins, 577–579 Amorphous metals, 504–505 Annealing in cold rolling of metal sheet, 250 plain-carbon steels, 443–445 in recovery and recrystallization of plastically deformed metals, 295–296 Annealing point viscosity, 669 Anodes, 754, 757 Anodic protection, for corrosion control, 800–801 Anterior cruciate ligament (ACL), 975, 978–979 Antiferromagnetism, 927 Antifluorite crystal structure, 632 Aqueous solution, metals in, 768–771 Aramid (aromatic polyamide) fibers, 694–696 Area effect, in galvanic two-metal corrosion, 778–779Aromatic polyamide (aramid) fibers, 694–696 Arrhenius, Svante August, 218n Arrhenius rate equation, 218–219 Articular cartilage, 980–982 Asperities, 1002 Asphalt, 720–721 Asphalt mix, 721 ASTM (American Society for Testing and Materials), 289 Atactic stereoisomers, 540 Atomic diffusion mechanisms of, 220–222 non-steady-state, 225–228 overview, 220 steady-state, 222–225 Atomic structure and bonding, bonding strength, 2–3 AT&T, Inc., 903 Attenuation, in optical glass fibers, 899 Austempering, 447–449 Austenite steels, 421, 436–441 Austenitic stainless steels, 485–487 Austenitizing process, 424, 426 Automotive industry, 7, 23 Average molecular weight of polymeric materials, 525–526 Axes of symmetry, 723–725 Bain, E. C., 438n Bainite structures, 438–439, 448 Ballard, Robert, 294 Ball bearings, of high performance ceramic materials, 16 Basis, 100 Basic refractories, 661 BCT (body-centered tetragonal) crystal structure, 433–434 Beam of radiation, 894 Bedworth, R.E., 791n Beryllium, copper alloyed with, 482 Biased external voltage, 842 Binary eutectic alloy systems, 379–387page 1104 Binary isomorphous alloy systems, 370–372 Binary monotectic systems, 392–393 Binary peritectic alloy systems, 387–392 Biocompatibility, 983, 989 Biodegradable polymers, 989 Biological materials and biomaterials, 964–1012 articular cartilage, 980–982 bone, 966–971 composite model of, 970–971 composition, 966 fracture, biomechanics of, 969 macrostructure of, 966 mechanical properties, 966–969 remodeling, 970 viscoelasticity of, 969–970 ceramics in biomedical applications alumina in dental implants, 995–996 alumina in orthopedic implants, 994–995 nanocrystalline, 997–998 overview, 993 tissue connectivity and, 996 composites in biomedical applications, 998–1000 corrosion in biomaterials, 1000–1001 defined, 965 materials characteristics needed by, 7–8 metals in biomedical applications cobalt-based alloys, 984–985 orthopedic application, issues in, 987–989 overview, 982–984 stainless steels, 984 titanium alloys, 985–987 overview, 964–965 polymers in biomedical applications in cardiovascular applications, 989–990 in drug delivery systems, 992 in ophthalmic applications, 990–992orthopedic applications, 992–993 suture materials, 992 tendons and ligaments constitutive modeling and viscoelasticity, 976–978 injury to, 978–980 macrostructure and composition, 972 mechanical properties of, 973–975 microstructure of, 972–973, 974 structure-property relationship, 975–976 tissue engineering, 1005–1006 wear in biomedical implants, 1001–1005 Biometals, 982–983. See also Biological materials and biomaterials Biotribology, 1001 Bipolar junction transistor (BJT), 846–848 Bitter technique, 929 Blast furnaces, 418 Blends of polymers, 12, 14 Blistering, corrosion as, 790–791 Blowmolding of thermoplastics, 544–546 Blown-glass process, 671 Body-centered tetragonal (BCT) crystal structure, 433–434 Boeing, Inc., 707, 750 Bohr magneton, 925 Boltzmann, Ludwig, 215–218 Bonding. See Atomic structure and bonding Bone, 966–971 composite model of, 970–971 composition, 966 fracture, biomechanics of, 969 macrostructure of, 966 mechanical properties, 966–969 remodeling, 970 subchondral, 981 viscoelasticity of, 969–970 Bone cement, 992–993 Borazon (cubic boron nitride), 659 Boron oxide, 664Borosilicate glasses, 666 Boundary lubrication, 1002 Breakdown diodes, 845–846 Brinell hardness, 274 Brittle fracture in ceramic materials, 654 of metals, 321–324 of polymeric materials, 598 Buckminster fullerenes (buckyballs), 635 Buckytube, 634 Bulk polymerization, 534 Butadiene, in ABS, 557 Calcium fluoride (CaF2) crystal structure, 630–631 Cambium layer, in trees, 723 Cancellous bone, 966 Capacitance, 862 Capacitors, 862, 865–866 Carbide coatings, 673–674 Carbon allotropes of, 633–636 fibers for reinforced plastics, 692–696 nanotubes, 636 Carbon black, 581 Carbon dioxide (CO2) lasers, 897 Carbon fiber–reinforced epoxy resins, 698–700 Carbon fibers in epoxy matrix, 17 Cardiovascular applications, polymeric materials in, 989–990 Cartilage, articular, 980–982 Case hardening of steel by gas carburizing, 228–232 Cast-glass process, 671 Casting process for metals, 247–249 Cast irons ductile, 490–492 gray, 489–490 malleable, 492–494properties of, 487 types of, 487–488 white, 489 Cathodes, 754, 757 Cathodic protection, for corrosion control, 800 Cathodoluminescence, 892–893 Cavitation damage, as corrosion, 789 CCT (continuous-cooling transformation) diagram for eutectoid steels, 441–443 CDA (Copper Development Association), 476–477 Cellulose crystalline molecules, 728 Cell-wall ultrastructure of wood, 727–729 Cementite (Fe3C), 421, 429 Ceramic materials, 614–685 in biomedical applications alumina in dental implants, 995–996 alumina in orthopedic implants, 994–995 nanocrystalline, 997–998 overview, 993 tissue connectivity and, 996 as capacitors, 865–866 chemical attack to deteriorate, 752 in coatings and surface engineering, 673–674 for corrosion control, 798 defined, 615 dielectric properties of, 862–864 ferrimagnetism in, 927 ferroelectric, 868–871 glasses chemically strengthened, 672–673 compositions of, 666 defined, 663 forming methods for, 670–671 structure of, 663–666 tempered, 671–672 transition temperature, 663 viscous deformation of, 666–669as insulator materials, 864–865 mechanical properties of abrasive, 658–659 deformation mechanisms, 652–654 fatigue failure, 658 overview, 650 strength, 654 toughness, 654–656 transformation toughening of partially stabilized zirconia, 656–658 nanotechnology and, 674–676 overview, 14–16, 614–617 processing of forming, 641–645 materials preparation, 641 overview, 640 thermal treatments, 645–647 properties of, 615 as semiconductors, 866–868 silicate structures, 637–640 simple crystal structures antifluorite, 632 calcium fluoride, 630–631 carbon and allotropes, 633–636 cesium chloride, 621–622 corundum, 632 interstitial sites in FCC and HCP, 626–628 ionic and covalent bonding in, 617–621 perovskite, 633 sodium chloride, 622–626 spinel, 632 zinc blende, 628–630 structural, 650–652 thermal properties of, 659–663 traditional, 648–650 Ceramic-matrix composite (CMC) materials, 16 Ceramic-matrix composites (CMCs), 735–740 Cesium chloride (CsCl) crystal structure, 621–622page 1105 CFRP (carbon fiber-reinforced plastic), 25 Chain polymerization steps, 522, 523–525 Chain structures of silicates, 637, 638 Charpy test, 324–326 Chemical industry, material characteristics needed by, 7–8 Chemically strengthened glass, 672–673 Chemical vapor deposition (CVD) process, 857–858 Chevrolet Corvette, 710 Cladded metal structures, 732–733 Cleavage planes, in brittle fracture, 321–322 Closed-mold processes for fiber-reinforced plastic composite materials, 708–710 CMC (ceramic-matrix composite) materials, 16 CMCs (ceramic-matrix composites), 735–740 CMOS (complementary metal oxide semiconductor) devices, 859 CN (coordination number), 618, 620, 622 Coatings for corrosion control, 797–798 surface engineering and, 673–674 Cobalt-based alloys, 10, 984–985 Coercive force, 936 CO2 (carbon dioxide) lasers, 897 Collagen protein, 966 Complementary metal oxide semiconductor (CMOS) devices, 859 Completely reversed stress cycle, 335 Composite materials, 686–749 advantages and disadvantages over conventional materials, 688–689 asphalt and asphalt mixes, 720–721 in biomedical applications, 998–1000 bone as, 970–971 carbon fiber-reinforced epoxy resins, 698–700 ceramic, and nanotechnology, 740 ceramic-matrix composites, 735–740 classification of, 687–688 closed-mold processes for fiber-reinforced plastic composite materials, 708–710concrete aggregates for, 715 air-entrained, 715–716 compressive strength of, 716 defned, 711 mixing water for, 714–715 overview, 710–711 portland cement, 711–714 prestressed, 718–720 proportioning of mixtures, 716–717 reinforced, 717–718 defined, 687 description of, 16–18 fiberglass-reinforced plastic, 697–698 fibers for reinforced-plastic aramid (aromatic polyamide), 694–696 carbon, 692–696 glass, 689–692, 694–696 isostrain conditions for, 700–703 isostress conditions for, 703–705 matrix materials as, 696 metal-matrix, 733–735 open-mold processes for fiber-reinforced plastic filament-winding process, 708 hand lay-up process, 705–706 spray lay-up process, 706–707 vacuum bag-autoclave process, 707–708 overview, 686–687 sandwich structures, 730–733 wood cell-wall ultrastructure of, 727–729 hardwood microstructure, 726–727 macrostructure of, 722–725 properties of, 729–730 softwood microstructure, 724–725 Compound semiconductors, 859–861 Compression moldingof composites, 708–709 of thermosetting plastics, 546–547 Concentration polarization, 774–775 Concrete aggregates for, 715 air-entrained, 715–716 compressive strength of, 716 defned, 711 mixing water for, 714–715 overview, 710–711 portland cement, 711–714 prestressed, 718–720 proportioning of mixtures, 716–717 reinforced, 717–718 Conduction band, in energy-band model for insulators, 824 Conductivity, electrical, 814, 825 Congruently melting compounds, 398 Continuous-cooling transformation (CCT) diagram for eutectoid steels, 441–443 Continuous-fiber-reinforced CMCs, 735–736 Continuous-fiber-reinforced MMCs, 733–735 Continuous-pultrusion process for composites, 710 Continuous-wave (CW) lasers, 897 Cooling curves, 368–369, 372 Coordination number (CN), 618, 620, 622 Copolymers and homopolymers, 529–532 Copper alloys classification of, 476–477 production of, 476 properties of, 476 wrought, 477–482 Copper Development Association (CDA), 476–477 Corrosion, 750–809 in biomaterials, 1000–1001 cavitation damage as, 789 control of, 796–801 crevice, 781–783defined, 751 economical impact of, 751–752 electrochemical, 752–756 erosion, 788 fretting, 789 galvanic cells with acid or alkaline electrolytes, 760–761 composition, structure, and stress differences to create, 766–768 concentration, 763–766 with electrolytes that are not one molar, 758–759 macroscopic, with one molar electrolytes, 756–758 microscopic corrosion of single electrodes, 761–763 galvanic/two-metal, 778–779 hydrogen damage as, 790–791 intergranular, 783–785 oxidation of metals, 791–795 pitting, 779–781 rates of galvanic series, 775–776 of metal in aqueous solution, 768–771 passivation of metals, 775 reactions and polarization, 771–775 selective leaching, 789–790 stress, 785–788 uniform/general attack, 776–777 Corrosion fatigue in metals, 338 Cortical bone, 966 Corundum (Al2O3) crystal structure, 632 Covalent bonding in ceramic materials, 617–621, 653 of ethylene molecules, 521–522 Creep of metals, 344–346 of polymeric materials, 594–596 of soft biological tissues, 977–978 Creep-rupture (stress-rupture) test of metals, 347–350 Crevice corrosion, 781–783, 1000page 1106 Cristobalite, 639–640 Critical density, 904 Critical field, 904 Critical radius (r*), 167 Critical (minimum) radius ratio, 618–620 Critical resolved shear stress in, 283 Critical temperature, 904 Crystalline silica, 638–639 Crystallinity in polymer materials, 536–541 Cube-on-edge (COE) materials, 938 Cubic boron nitride (Borazon), 614, 659 Cubic soft ferrites, 951–952 Curie temperature, 868, 928 Current, electrical, 906–907 Current density, 904 electric, 816 Current flow, electric, 813 CVD (chemical vapor deposition) process, 857–858 CW (continuous-wave) lasers, 897 Cyclic stresses, in fatigue of metals, 335–336 DBT (ductile-to-brittle transition), 318, 324, 326 Decibels per kilometer (dB/km), 899 Deep drawing process for metals, 256–257 Deformation of ceramic materials, 652–654 of glasses, 666–669 twinning in, 286–288 Degree of polymerization (DP), 523 Degrees of freedom, in Gibbs phase rule, 367–368 Dense packing in ionic solids, 618 Dental applications, 995–996, 999–1000 Depletion region, 842 Design for corrosion prevention, 798–799 δ ferrite, 421 Diamagnetism, 922Diamond, 634–635 Die casting of aluminum, 475 Dielectric constant, 863 Dielectric loss factor, 864 Dielectric properties of ceramic materials, 862–864 Dielectric strength, 864 Diffusion atomic mechanisms of, 220–222 non-steady-state, 225–228 overview, 220 steady-state, 222–225 case hardening of steel by gas carburizing, 228–232 in integrated circuit fabrication, 853–855 temperature effects on, 235–238 Digital video disks (DVDs), polymeric materials in, 11, 12 Discontinuous (whisker)- and particulate-reinforced CMCs, 736–740 Discontinuous-fiber-reinforced MMCs, 735 Dislocations, in plastically deformed metals, 290–292 Domain wall energy, 932–933, 934 Donor energy level, 832 Donor impurity atoms, 832 Dopants, 835 Doping extrinsic semiconductors, 835–838 DP (degree of polymerization), 523 Drift velocity, 812 of electrons, 817–818 Drug delivery systems, polymeric materials for, 992 Drying ceramic materials, 645 Dry pressing ceramic materials, 642 Ductile cast irons, 490–492 Ductile fracture of polymeric materials, 598–600 Ductile metals fatigue-related structural changes in, 336–337 fracture of, 320–321 strength and ductility improvement in, 353–355 Ductile-to-brittle transition (DBT), 318, 324, 326Ductility of metals, 269 Du Pont, Inc., 694 DVDs (digital video disks), polymeric materials in, 11, 12 Dynamic toughness, 324 Eddy-current energy losses, 937, 954 EDFAs (erbium-doped optical-fiber amplifiers), 903 Edge dislocations, 278 Effective nuclear charge, 54 E (electrical) glass, 690 Elastically deformed metals, 258 Elastomers, 519 natural rubber, 579–583 polychloroprene, 584–587 synthetic rubber, 583–584 Electrical conductivity, 814, 825 Electrical conductors, 814 Electrical industry, material characteristics needed by, 7–8 Electrical insulator porcelains, 649–650 Electrical insulators, 814 Electrical porcelains, 865 Electrical properties of materials, 810–879. See also Superconducting materials ceramic materials as capacitors, 865–866 dielectric properties, 862–864 ferroelectric, 868–871 as insulator materials, 864–865 as semiconductors, 866–868 compound semiconductors, 859–861 energy-band model for, 822–824 extrinsic semiconductors carrier concentrations in, 837–838 charge densities in, 835–836 doping of, 835–838 n-type, 831–833 p-type, 833–835temperature effects on, 839–841 total ionized impurity concentration and, 838–839 intrinsic semiconductors carrier concentrations in, 837–838 electrical conduction in, 824–825 energy-band diagrams for, 826–827 pure silicon, 825–826 quantitative relationships for electrical conduction in, 827–829 temperature effects on, 829–831 metals, electrical conduction in classic model of, 811–813 drift velocity of electrons in, 817–818 Ohm’s law, 813–816 resistivity, 818–821 microelectronics integrated circuits, fabrication of, 852–859 planar bipolar transistors, 848–849 planar field-effect transistors, 849–852 nanoelectronics, 871–872 semiconductor devices bipolar junction transistor, 846–848 overview, 841 pn junction, 842–846 Electrical resistance, 814 Electrical resistivity, 814, 818 Electric current density, 816 Electric current flow, 813 Electrolytic tough-pitch (ETP) copper, 476, 477, 480 Electromagnetic spectrum, 881–883 Electromotive force (emf), 758 Electronic materials, 18–19 Electrons conduction, 825, 828 drift velocity of, 817–818 single unpaired, magnetic moment of, 925–926 Embryo, 163 Emulsion polymerization, 535page 1107 Encasement phenomenon, 391–392, 393 Endurance (fatigue) limit, 334 Energy activation, 215–216 domain wall, 932–933 exchange, 930 losses for soft magnetic materials, 936–937 magnetocrystalline anisotropy, 931–932 magnetostatic, 930–931 magnetostrictive, 933–935 types, determine structure of ferromagnetic domains, 929–935 Energy-band model for electrical properties of materials insulators, 824 intrinsic semiconductors, 826–827 metals, 822–824 Energy industry, material characteristics needed by, 6–7 Engineering for corrosion prevention, 798–799 materials and, 3–7 materials science and, 7–9 tissue, 1005–1006 Engineering alloys, 416–517 aluminum alloys for casting, 474–476 precipitation strengthening, 461–468 properties of, 468–469 wrought, 470–473 amorphous metals, 504–505 cast irons ductile, 490–492 gray, 489–490 malleable, 492–494 properties of, 487 types of, 487–488 white, 489 copper alloysclassification of, 476–477 production of, 476 properties of, 476 wrought, 477–482 intermetallics, 498–500 iron and steel production, 417–421 iron-iron-carbide phase diagram, 421–424 low-alloy steels alloying element distribution in, 451–452 classification of, 451 eutectoid temperature of steels and, 452–453 hardenability of, 454–458 mechanical properties and applications of, 458–460 magnesium alloys, 494–496 nickel alloys, 498 plain-carbon steels, heat treatment of annealing and normalizing, 443–445 austenite, isothermal decomposition of, 436–441 classification of, 449–450 continuous-cooling transformation diagram for eutectoid, 441–443 martensite formation, 431–435 tempering, 445–449 plain-carbon steels, slow cooling of, 424–431 shape-memory alloys, 500–504 stainless steels austenitic, 485–487 ferritic, 482–483 martensitic, 483–485 titanium alloys, 496–498 Engineering ceramic materials, 14 Engineering stress and strain in metals, 258–261 Engineering stress-strain diagram. See Tensile test and engineering stressstrain diagram Engineering thermoplastics. See also Polymeric materials; Thermoplastics acetals, 567 phenylene oxide-based resins, 566–567 polyamides, 562–565polycarbonate, 565–566 polyetherimide, 570 polymer alloys, 570–571 polyphenylene sulfide, 569–570 properties of, 561–562 thermoplastic polyesters, 568–569 Environmental conditions, corrosion and, 799 Epoxy resins, 574–576, 696 carbon fiber–reinforced, 698–700 Equilibrium phase diagrams, 365–366 Erbium-doped optical-fiber amplifiers (EDFAs), 903 Erosion corrosion, 788 ETP (electrolytic tough-pitch) copper, 476, 477, 480 Eutectic composition of alloys, 379–380 Eutectic point, 380 Eutectic reactions, 380, 423 Eutectic temperature, 380 Eutectoid cementite, 429 Eutectoid ferrite, 427 Eutectoid reactions, 423–424 Eutectoid steels continuous-cooling transformation diagram for, 441–443 isothermal transformation diagram for, 436–440 overview, 424–426 Eutectoid temperature, 452–453 Exchange energy, 930 Exhaustion temperature range, 840 Extracellular matrix, 972 Extrinsic semiconductors carrier concentrations in, 837–838 charge densities in, 835–836 doping of, 835–838 n-type, 831–833 p-type, 833–835 temperature effects on, 839–841 total ionized impurity concentration and, 838–839 Extrusion processfor ceramic materials, 644–645 for metals, 253–254 for thermoplastics, 543–544 Face-centered cubic (FCC) crystal structure interstitial sites in, 626–628 Farad (F), 862 Faraday, Michael, 767n Faraday’s equation, 768–769 Fatigue failure, 332, 658 Fatigue of metals cyclic stresses, 335–336 factors affecting, 337–338 fatigue crack propagation rate, 338–343 in nanocrystalline metals, 355 overview, 332–334 structural changes in ductile metal from, 336–337 Fatigue properties for carbon, 699 FCC (face-centered cubic) crystal structure. See Face-centered cubic (FCC) crystal structure Feldspars, 640 Femur bone, 969 Ferrimagnetism, 927 Ferrites, 951–955 hard, 955 soft, 951–954 Ferritic stainless steels, 482–483 Ferroelectric ceramic materials, 868–871 Ferromagnetism domains, 928–929 effect of temperature on, 927–928 energies determining structure of domains of, 929–935 magnetization and demagnetization of ferromagnetic metals, 935–936 overview, 917, 923–925 Ferrous metals and alloys, 9 Ferroxdure (Philips Company), 955 Fiberglass-reinforced plastic composite materials, 697–698Fiberglass-reinforcing material in polyester or epoxy matrix, 17 Fibers for reinforced-plastic composite materials aramid (aromatic polyamide), 694–696 carbon, 692–696 glass, 689–692, 694–696 Fibrils, 973 Fibroblasts, 972 Fibrocartilage, 981 Fick, Adolf Eugen, 223n Fick’s first law of diffusion, 223–225 Fick’s second law of diffusion, 225, 227 Fields, magnetic, 917–919 Filament-winding process, 708 Fillers, as additives, 554 Fireclays, 660 Firing ceramic materials, 640 Flight systems and subsystems, 3 Float-glass process, 670–671 Fluid film lubrication, 1002–1003 Fluorescence, 891 Fluoroplastics, 559–561 Fluxoids, 907 Fontana, M.G., 786 Forging process for metals, 254–256 Forward-biased pn junction, 843–845 Fosterite, 865 Fracture bone, biomechanics of, 969 of ceramic materials, 654–656 of metals brittle, 321–324 ductile, 320–321 ductile-to-brittle transition temperature, 326 fracture toughness, 328–331 overview, 319–320 toughness and impact testing, 324–325 of polymeric materials, 597–600page 1108 Frenkel, Yakov Ilyich, 183n Fretting corrosion, 789 Fully stabilized zirconia, 656 Functionality of monomers, 526 Galvanic cells with acid or alkaline electrolytes, 760–761 composition, structure, and stress differences to create, 766–768 concentration, 763–766 with electrolytes that are not one molar, 758–759 macroscopic, with one molar electrolytes, 756–758 microscopic corrosion of single electrodes, 761–763 Galvanic corrosion, 778–779, 1000 Galvanic series, 775–776 Galvanized steel, 778 GE Aviation, 15 General attack corrosion, 776–777 Gibbs free energy, 165 Gibbs, Josiah Willard, 367n Gibbs phase rule, 367–368 Glass enamel, 673 Glasses chemically strengthened, 672–673 compositions of, 666 for corrosion control, 798 defined, 663 as fibers for reinforced-plastic composite materials, 689–692, 694–696 forming methods for, 670–671 metallic, 939–941 silicate, light reflection, absorption, and transmittance by, 887–888 structure of, 663–666 tempered, 671–672 transition temperature, 663 types of, 690 viscous deformation of, 666–669 Glass-forming oxides, 663–664Glass-modifying oxides, 664–665 Glass transition temperature, 536–541, 663 Glaze, 673 Goodyear, Charles, 580 Grain–grain boundary electrochemical cells, 766 Grain shape in plastically deformed metals, 290–292 Graphite, 634 Gray cast irons, 489–490 Greene, N.D., 786 Half-cell potentials for metals, 754–756 Hall-Petch equation, 289, 304 Hand lay-up process, 705–706 Hardenability of low-alloy steels, 454–458 Hardening of aluminum alloys, 461–468 Hard magnetic materials alnico (aluminum-nickel-cobalt), 945–946 iron-chromium-cobalt (Fe-Cr-Co) magnetic alloy, 948–950 neodymium-iron-boron (Nd-Fe-B) magnetic alloy, 947–948 properties of, 942–945 rare earth alloy, 947 Hardness of ceramic materials, 658–659 of Fe-C martensites, 435 of metals, 273–275 tempering temperature effect on, 446 Hardwoods (angiosperms), 723 microstructure of, 726–727 HCP (hexagonal close-packed) structure. See Hexagonal close-packed (HCP) structure HDPE (high-density polyethylene), 550–552 Heartwood, in trees, 723 Heat stabilizer additives, 553 Hemicellulose, 728 Hexagonal close-packed (HCP) structure interstitial sites in, 626–628 High-alloy cast iron, 487High-alumina refractories, 660 High critical temperature superconducting oxides, 908–910 High-current, high-field superconducting materials, 907–908 High-density polyethylene (HDPE), 550–552 High resolution transmission electron microscopy (HRTEM), 364 High-temperature reusable-surface insulation (HRSI) tile material, 661–662 HIP (hot isostatic pressing), 675 Holes, in pure silicon semiconductors, 825–826 Homogeneous nucleation, 163 Homogenization, 379 Homopolymers and copolymers, 529–532 Honeycomb sandwich structure, 732 Hooke, Robert, 266n Hooke’s law, 266 Hot and cold rolling process for metals, 249–253 Hot isostatic pressing (HIP), 675 Hot pressing ceramic materials, 643 HRTEM (high resolution transmission electron microscopy), 364 Hume-Rothery, William, 370n Hume-Rothery solid solubility rules, 370 Hydration reactions, 713–714 Hydrogel contact lenses, 990–991 Hydrogen damage, as corrosion, 790–791 Hydrogen embrittlement, 790 Hypereutectic alloys, 381 Hypereutectoid steels, 424, 429–431, 444 Hypoeutectic alloys, 381 Hypoeutectoid steels, 424, 426–428, 444 Hysteresis energy losses, 936–937 Hysteresis loop, 936 Impact testing of metals, 324–325 Impact toughness, 324 Impurities corrosion impact of, 767 in extrinsic semiconductors, 838–839 in silicon wafers for integrated circuits, 234Index of refraction, 883–885 Induction, magnetic, 919–920 Industrial polymerization, 534–536 Injection molding of composites, 708–709 of thermoplastics, 542–543 of thermosetting plastics, 548 Inner bark layer, in trees, 723 Insulative applications, 11, 14 Integrated circuits complementary metal oxide semiconductor devices, 859 diffusion technique, 853–855 impurity diffusion into silicon wafers for, 234 ion implementation technique, 853–855 microelectronic, fabrication of, 852–859 MOS fabrication technology for, 856–859 photolithography for, 852–853 Intel, Inc., 810, 812 Intergranular brittle fractures, 323 Intergranular corrosion, 783–785 Intermediate oxides, 666 Intermediate phases, 395–398 Intermetallics, 397 International Space Station (ISS), 5, 6 Interstitial mechanism of diffusion, 220, 222–223 Interstitial sites in FCC and HCP, 626–628 Interstitial solid solution, 179 Intraocular lens implants, for cataracts, 991–992 Intrinsic semiconductors carrier concentrations in, 837–838 defined, 824 electrical conduction in, 824–825 energy-band diagrams for, 826–827 pure silicon, 825–826 quantitative relationships for electrical conduction in, 827–829 temperature effects on, 829–831 Invariant reactionspage 1109 in Fe-Fe3C phase diagram, 422–424 phase diagrams of, 380, 393–395 Inverse spinel ferrites, 952–954 Ion-concentration cells, 763–764 Ionic bonding in ceramic materials, 617–621, 653 Ion implementation technique for integrated circuit fabrication, 855 Iron and steel production, 417–421. See also Cast irons; Steels Iron-chromium-cobalt (Fe-Cr-Co) magnetic alloy, 948–950 Iron-iron-carbide phase diagram, 421–424 Iron–silicon alloys, 937–938 Island structures of silicates, 637 Isomorphous alloy systems, 370 Isostatic pressing of ceramic materials, 642 Isostrain conditions for composite materials, 700–703 Isostress conditions for composite materials, 703–705 Isotactic stereoisomers, 540 Isothermal transformation (IT) diagrams for eutectoid plain-carbon steel, 436–440 for noneutectoid plain-carbon steel, 440–441 ISS (International Space Station), 5, 6 Joint simulators, 1004 Jominy hardenability test, 454–458 Kevlar aramid fibers (Du Pont, Inc.), 694 Kirkendall effect, 221–222 Knoop hardness, 274 Lamellar composite structure, 702–703 Lamina, 698 Laminated carbon fiber–epoxy material, 698 Large-scale integrated (LSI) microelectronic circuits, 848, 851 Larsen-Miller (L.M.) parameter, 348–350 Lasers, 893–898Lath martensite, 431–432 LDPE (low-density polyethylene), 550–552 Lead glasses, 666 Lever rule, 372–376 Life cycle analysis, 26 Life, fatigue, 333, 342–343 Ligaments. see Tendons and ligaments Light. See Optical properties Lignins, in woods, 722, 728 Linear density, 625 Linear low-density polyethylene (LLDPE), 551 Lipids, 966 Liquidus, in phase diagrams, 370–371 LLDPE (linear low-density polyethylene), 551 L.M. (Larsen-Miller) parameter, 348–350 Lockheed Martin, Inc., 2–3 Loss factor dielectric, 864 Low-alloy steels alloying element distribution in, 451–452 classification of, 451 eutectoid temperature of steels and, 452–453 hardenability of, 454–458 mechanical properties and applications of, 458–460 Low-density polyethylene (LDPE), 550–552 Lower critical field, 905 LSI (large-scale integrated) microelectronic circuits, 848, 851 Lubricant additives, 553 Lumen, in softwoods, 725 Luminescence, 891–893 Macroscopic form of Ohm’s law, 816 Magnesium alloys, 494–496 Magnetic anneal, 946 Magnetic domains, 924 Magnetic moment of single unpaired atomic electrons, 925–926Magnetic moments of inverse spinel ferrites, 952–954 Magnetic properties, 916–963 antiferromagnetism, 927 diamagnetism, 922 ferrimagnetism, 927 ferromagnetism domains, 928–929 effect of temperature on, 927–928 energies determining structure of domains of, 929–935 magnetization and demagnetization of ferromagnetic metals, 935–936 overview, 917, 923–925 hard magnetic materials alnico (aluminum-nickel-cobalt), 945–946 iron-chromium-cobalt (Fe-Cr-Co) magnetic alloy, 948–950 maximum energy product, 943–945 neodymium-iron-boron (Nd-Fe-B) magnetic alloy, 947–948 properties of, 942–945 rare earth alloy, 947 magnetic fields, 917–919 magnetic induction, 919–920 magnetic permeability, 920–921 magnetic susceptibility, 921–922 overview, 916–917 paramagnetism, 922–923 soft magnetic materials, 936–942 in superconducting materials, 904–907 temperature effect on, 927–928 Magnetic resonance imaging (MRI), 916 Magnetization, 919–920 Magnetocrystalline anisotropy energy, 931–932 Magnetostatic energy, 930–931 Magnetostriction, 933 Magnetostrictive energy, 933–935 Majority-carrier devices, 851 Majority carriers, in extrinsic semiconductors, 835 Malleable cast irons, 492–494Mars, NASA mission to, 2–3, 5 Mars Exploration Rover (MER) mission, 2, 5 Martempering, 446–447 Martensites formation of, 431–435 tempering, 445–446 Martensitic stainless steels, 483–485 Mass action law, 835 Materials science, introduction to ceramic materials, 14–15 competition among materials, 19–21 composite materials, 16–18 electronic materials, 18–19 engineering and, 7–9 materials and engineering, 3–7 metallic materials, 9–11 nanomaterials, 23–24 overview, 2–3 polymeric materials, 11–14 smart materials, 21–23 Matrix materials for composite, 696 Matrix phase, composite material, 688 Maximum energy product, of hard magnetic materials, 943–945 McDonnell Douglas Aircraft Co., 707–708 MCVD (modified chemical vapor deposition) process, 900–901 Mechanical properties of metals. See Metals, mechanical properties of Meissner effect, 905, 906 Melamines (amino resins)
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Foundations of Materials Science and Engineering - Seventh Edition رابط مباشر لتنزيل كتاب Foundations of Materials Science and Engineering - Seventh Edition
|
|