Admin مدير المنتدى
عدد المساهمات : 18938 التقييم : 35320 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Finite Element Analysis for Building Assessment - Advanced Use and Practical Recommendations الثلاثاء 06 أغسطس 2024, 8:55 pm | |
|
أخواني في الله أحضرت لكم كتاب Finite Element Analysis for Building Assessment - Advanced Use and Practical Recommendations Paulo B. Lourenço and Angelo Gaetani
و المحتوى كما يلي :
Contents Foreword xi Preface xiii Authors xvii 1 Fundamentals of the finite element method 1 1.1 Equilibrium of a three-dimensional body in elasticity 1 1.2 Basics 4 1.2.1 Weak form of governing equations in elasticity 4 1.2.2 Example of an axially loaded column 8 1.3 Generalization 13 1.3.1 Convergence criteria on shape functions 15 1.3.2 Matrix formulation 18 1.3.3 Example of a beam subjected to bending 22 1.4 Shape functions and numerical integration 28 1.4.1 Hermitian beam elements 29 1.4.2 Isoparametric elements 33 1.4.3 Completeness of shape functions for quadrilateral elements 42 1.4.4 Numerical integration, integration points and integration schemes 44 1.4.5 Recovery process 51 1.5 Commonly used finite elements 55 Bibliography and further reading 62 2 Nonlinear structural analysis 63 2.1 Potential sources of nonlinearities 64 2.2 Geometrical nonlinearities and stability 67 2.2.1 Introduction to finite displacements: the von Mises truss structure 68vi Contents 2.2.2 Geometric stiffness and linear buckling analysis 74 2.2.3 Postbuckling analysis and geometrical imperfection 78 2.2.4 Stability of compressed elements 82 2.3 Computational strategies 88 2.3.1 Incremental-iterative methods with material nonlinearities 88 2.3.1.1 Forward Euler method 91 2.3.1.2 Newton–Raphson method (regular, modified and linear) 94 2.3.1.3 Quasi-Newton methods 100 2.3.2 Advanced solution procedures 104 2.3.2.1 Arc-length control 106 2.3.2.2 Direct and indirect displacement control 114 2.3.2.3 Line search 116 2.3.3 Convergence criteria 119 2.3.4 Example 122 Bibliography and further reading 125 3 Constitutive models 127 3.1 Material behaviour 128 3.1.1 Main constitutive models 128 3.1.2 Failure of concrete-like materials 133 3.1.3 Simple nonlinear problems 136 3.2 Elastoplasticity models 143 3.2.1 Elastic domain and perfect elastoplasticity 145 3.2.2 Yield functions for isotropic materials 149 3.2.3 Constitutive law with associated plastic flow and perfect elastoplasticity 159 3.2.4 Constitutive law with associated plastic flow and hardening 163 3.2.5 Euler Forward and Euler Backward incremental methods with perfect elastoplasticity 168 3.3 Damage models 177 3.3.1 Uniaxial loading 178 3.3.2 Isotropic and anisotropic damage models 182 3.3.3 Damage deactivation 188 3.4 Smeared crack models 190 3.4.1 Main concept and strain decomposition 190Contents vii 3.4.2 Implementation of the fixed and rotating smeared crack model 193 3.5 Strain localization and mesh sensitivity 196 3.6 Examples of constitutive models in commercial software codes 199 3.6.1 Smeared crack model (in tension) and plasticity in compression 199 3.6.2 Plasticity models in tension and compression 201 3.6.3 Total strain crack model 203 3.6.4 Damaged plasticity 204 Bibliography and further reading 207 4 Recommended properties for advanced numerical analysis 209 4.1 Masonry 210 4.1.1 Masonry morphologies 211 4.1.2 Introduction to numerical modelling 213 4.1.3 Mechanical properties of masonry components 218 4.1.3.1 Unit 218 4.1.3.2 Mortar 223 4.1.4 Mechanical properties of interface 225 4.1.4.1 Elastic parameters 228 4.1.4.2 Mode I failure 229 4.1.4.3 Mode II failure 232 4.1.4.4 Shear–tension and shear– compression interaction 239 4.1.4.5 Compressive failure 240 4.1.5 Mechanical properties of masonry as a composite material 240 4.1.5.1 Axial behaviour (compression) 241 4.1.5.2 Axial behaviour (tension) 247 4.1.5.3 Biaxial behaviour 248 4.1.6 Structural behaviour of masonry as a composite 249 4.1.6.1 Shear walls 251 4.1.6.2 Masonry Quality Index 253 4.1.7 Synthesis of the mechanical properties 261 4.1.7.1 Individual masonry components 262 4.1.7.2 Masonry as a composite material 262viii Contents 4.1.7.3 Data from Italian code 263 4.1.7.4 Data from American code 268 4.2 Timber 268 4.2.1 Strength grading 270 4.2.2 Mechanical properties 272 4.3 Reinforced concrete 273 4.3.1 Mechanical properties of concrete and reinforcement 274 4.3.1.1 Elastic parameters 275 4.3.1.2 Compressive behaviour 276 4.3.1.3 Tensile behaviour and tension stiffening 278 4.3.1.4 Biaxial behaviour 282 4.3.1.5 Reinforcement behaviour and modelling 283 4.3.2 Nonlinear models of frame elements 284 4.4 Steel and iron 287 4.4.1 General behaviour and material properties 288 4.4.1.1 Tensile strength 289 4.4.1.2 Ductility 289 4.4.1.3 Code properties 290 4.4.2 Mechanical properties of various types of iron and steel 290 4.5 Safety assessment 296 4.5.1 Eurocode 8 and Italian code 297 4.5.1.1 Knowledge levels KL and confidence factors CF 298 4.5.1.2 Masonry 299 4.5.1.3 Timber 301 4.5.1.4 Concrete and steel 303 4.5.2 Italian guidelines for built heritage 307 4.5.3 Safety formats for nonlinear analysis according to Model Code 2010 310 4.5.3.1 Basic principles 311 4.5.3.2 Probabilistic method 313 4.5.3.3 Global resistance factor method (GRF) 314 4.5.3.4 Method of estimation of a coefficient of variation of resistance (ECOV) 314 4.5.3.5 Partial safety factor method (PSF) 315 Bibliography and further reading 315Contents ix 5 Guidelines for practical use of nonlinear finite element analysis 321 5.1 Overview 321 5.2 Preprocessing 324 5.2.1 Type and main aspects of analysis 325 5.2.2 Geometry 327 5.2.3 Type of element 332 5.2.4 Mesh 338 5.2.4.1 Mesh refinement 339 5.2.4.2 Mesh quality and controls 344 5.2.5 Examples of element types and mesh refinement 349 5.2.6 Material properties 359 5.2.7 Constraints and loads 360 5.3 Solution process 363 5.4 Postprocessing 367 5.5 Structural analysis report 369 5.6 Examples 371 5.6.1 Steel plate 371 5.6.2 Concrete beam 377 5.6.3 Masonry shear wall 385 5.6.3.1 Macro-modelling 388 5.6.3.2 Micro-modelling 390 Bibliography and further reading 397 Index 399 xi Index Note: Bold page numbers refer to tables and italic page numbers refer to figures. accuracy 15, 120 additive strain decomposition 128 Almazán, F. J. A. 271 Amadio, C. 235 arc-length control 106, 106–113, 107–110, 112–113 Atkinson, R. H. 235 Augenti, N. 235 automatic loading 365, 366 Bauschinger effect 144, 289 beam elements 56–57 Bernoulli–Euler beam 16, 23, 56 bifurcation 77, 79 Binda, L. 214, 235, 242 Bisoffi-Sauve, M. 230 bond stone see diatone bond-slip behaviour 226 Borri, A. 253, 260 boundary value problem 2, 4, 7 Brazilian test 221 Briceño, C. 231 buckling buckling length 85 elastic and inelastic buckling 86 linear buckling analysis 74–77, 74, 75 nonlinear buckling analysis 86–87, 87 postbuckling analysis 78–82, 78–82 Bussell, M. N. 291 cast iron 290, 291 Collins, M. P. 277 commercial software codes damaged plasticity 204–207, 205–207 plasticity models 201–203, 202, 203 smeared crack model 199–201, 199–201 total strain crack model 203–204, 204 compatibility (FEM) 15 composite material (masonry) 240–241 axial behaviour (compression) 241–247, 242–243, 245–247 axial behaviour (tension) 247–248, 248 biaxial behaviour 248–249, 249, 250 computational strategies convergence criteria 119–122, 120, 121 incremental-iterative methods 88–91, 90 (see also incremental-iterative methods) solution procedure (see solution procedure) concentrated plasticity (concrete) 284 concrete-like materials 133–136, 133–135 confidence factor (CF) 297 constitutive models 128–132, 129–130, 131–132 contact elements 61, 61 convergence 15 criterion 120, 121 rate 119–120, 124–125400 Index Crack Mouth Opening Displacement control (CMOD) 116 crack-opening behaviour 226 damage 131 damage function 183 damage models 177–178, 176, 178 anisotropic 182–188, 184–188 constitutive laws 181 isotropic 182–188, 184–188 uniaxial loading 178–182, 179–181 damage surfaces 184 Degrees of Freedom (DOF) 4, 5 design working life 307 detailed micro-modelling 215 deviatoric plane 150 diatone 211 dilatancy 162, 237–238, 238 direct displacement control 114–116, 115 discretization 4, 18 displacement control 73, 104 distributed plasticity in concrete 284 Drucker’s stability 159 Drucker–Prager yield function 155 dry-joint masonry 210 Drysdale, R. G. 235 duplicate elements 347 duplicate nodes 346–347 elastic perfectly plastic 128 elastic stiffness 76 elasticity 128, 129–130 elasticity problems closed-form solution 2 integral form solution 4 strong form of equilibrium 3 weak form of equilibrium 7 elastoplastic stiffness 168 elastoplasticity models consistency condition 145 constitutive law elastic domain evolution 165 perfectly plastic materials 159–163, 161, 162 plastic flow and hardening 163–168, 164–166 elastic domain 145–148, 147 Euler Backward method (see Euler Backward method) Euler Forward method (see Euler Forward method) hardening (see hardening) load directions 147, 153 load history 144, 146 loading process 145 yield functions 145, 149–159 yield surface 145, 149 errors in FEM calculation, sources of 18 estimation of a coefficient of variation (ECOV) 313, 314–315 Euler Backward method (elastoplasticity) 168–177, 170, 171, 173, 174 Euler Forward method (elastoplasticity) 168–177, 170, 171, 173, 174 Euler’s critical load 83 Eurocode 8 see safety assessment event-driven approach 139, 142 explicit method 174 external constrains 362–363 fibre model (concrete) 285, 285 finite element method (FEM) 5 elasticity 4–8 matrix formulation 18–22 shape functions 15–18 flat shell elements 59 flow rule 143; see also elastoplasticity models force control 73 Forward Euler method 91–94, 92, 92, 93 fracture energy 134 fracture modes 133 free edges 342, 373 free faces 346 free nodes 346 full integration scheme 50 fully probabilistic design method 313 Gardner, L. 296 Gauss quadrature 47 generalized strain 28, 29 generalized stress 29 geometric stiffness 75 geometrical nonlinearities linear kinematics 82, 82 stability 72 stability of compressed elements 82–87, 82, 84–87 stiffness 74–77, 74, 75 von Mises truss structure 68–74, 68–70, 72, 73Index 401 Giuffrè, A. 211 global resistance factor (GRF) 313–314 h-refinement method 340, 356 hanging nodes 348 hardening, anisotropic 144 hardening, kinematic 144, 164 hardening, isotropic 143, 164 hardening modulus 166, 167 hardening parameter 165 hardening process 131, 143 Hegemeier, G. A. 235 Hermite interpolation polynomial function 30 Hermitian beam elements 29–33 Hilsdorf, H. K. 241 historical-critical analysis 298 Hoffmann, G. 242 Hofmann, P. 235 homogeneous materials 128 hourglassing 335, 336, 337 hp-refinement method 340 hydrostatic stresses 149 ideal plasticity 128 ill-posed problem 80 implicit method (elastoplasticity) 174 incremental-iterative methods Forward Euler method 91–94, 92, 92, 93 Newton–Raphson method 94–100, 96, 99, 99 Quasi-Newton methods 100–104, 101, 103, 103, 104 indirect displacement control method 106, 114–116, 115 initial elastic domain 164 integration points 45 interface (masonry) 225–228, 227, 228 compressive failure 240 elastic parameters 228–229 Mode I failure 229–232, 230, 231, 232 Mode II failure 232–239, 233, 234, 235, 236, 237, 238 shear-tension and shearcompression interaction 239–240, 239 interface element 59, 60 inverse parameter identification 324 isoparametric elements bar element 34 completeness and compatibility 42 definition 33 four-node quadrilateral element 36, 37 Jacobian operator 38–39 local reference system 42 shape function matrix 40 stiffness matrix 35 strain-displacement transformation matrix 35 isotropy 149 Italian code see safety assessment iterative solution algorithm 88 Jacobian operator 38–39 joints (masonry) 214 Khelifa, M. 269 knowledge level (KL) 297, 298 Kržan, M. 224, 224, 231 leaf 212 limit point 74, 104 line search algorithm 116–119, 118 linear elastic stiffness 72 load/force control method 104 load increments 73 load path–following methods 74 load steps 73 Lobatto quadrature 48–49 local coordinate system 34, 34 Lourenço, P. B. 230, 236, 249, 263 lumped plasticity (concrete) 286 macro-modelling 216 Magenes, G. 235, 385, 385 Magonette, G. 385, 385 Mann, W. 233 masonry 210–211 compressive behaviour 214 compressive strength 245, 244, 245, 247, 246, 247 in-plane action 212 mechanical properties 218 composite material (see composite material) interface (see interface) mortar (see mortar) nonlinear static analysis 217 units 218–223, 219, 220, 221, 223 modelling strategies 215402 Index masonry (cont.) morphologies 211–213 numerical modelling 213–218 structural behaviour 249–251, 250 MQI 253–261, 252, 254, 255–257, 258, 259, 260, 261 shear walls 251, 253, 251 synthesis of mechanical properties 261–268 Masonry Quality Index (MQI) 253–261, 252, 254, 255–257, 258, 259, 260, 261 master/slave nodes 62 material behaviour concrete-like materials 133, 133–136, 134, 135 constitutive models 128–132, 129–130, 131, 132 nonlinear problems 136–143, 137, 138, 138, 140, 142 matrix formulation (FEM) 18–22 membrane elements 57 mesh; see also preprocessing dependency 194, 196–198, 197 sensitivity 196–198, 197, 351 meshing blocks 344 Mindlin–Reissner plate 58 vonMises, R. 68 Model Code 2010 220, 222, 223, 273, 275, 277, 278, 280 model calibration 323 model optimization 322, 322 Modulus Of Elasticity (MOE) 271 Mohr–Coulomb yield surface 151, 152, 155, 156, 151, 153 monotonic loads 144 mortar 223–225, 224, 226 Müller, H. 233 Muñoz, G. R. 271 natural coordinate system 34, 34 Newton–Cotes method 45, 46, 47 Newton–Raphson method 94–100, 96, 99, 99, 108, 110, 111, 175 nonassociated plastic flow 162 nonlinear constitutive relations 18 nonlinearities, sources of 64 numerical integration 44–45 Oudjene, M. 269 p-refinement method 340, 352 Parisi, F. 235 partial safety factor method (PSF) 312, 315 Pereira, J. M. 263 performance-based design 310 plane strain elements 58 plane stress elements 57, 57 plastic flow 143, 159–163, 161, 162; see also elastoplasticity models plastic potential 168 plate bending element 59, 59 polynomial interpolation 43 postbuckling analysis 78, 78–82, 79, 81, 81; see also buckling postprocessing 317, 367–369, 368, 369 preprocessing 322, 324–325 constraints 360–363, 361, 362 geometry 327–332, 328–331 material properties 359–360 mesh (see also mesh) automatic 338 convergence study 339 quality and controls 344–349, 345, 347–349 refinement 15, 339–344, 342, 343 type of analysis 325–327 type of element 332–337, 333, 334, 335, 337, 349–359, 352, 350–355, 356, 357, 358 pressure-dependent behaviour 277 Principle of Virtual Displacements 3 Principle of Virtual Work 3 probabilistic method 312 proportional loading 144 quadratic convergence 124 quadrilateral elements 42–44 Quasi-Newton methods 100–104, 101, 103, 103, 104, 110, 111 quasi-static problems 1 Rajgelj, S. 235 Ramberg–Osgood model 296 Rankine yield function 156, 157 Rankine–Hill anisotropic model 203 recovery process 53–54 reduced integration scheme 50 Regula–Falsi method 118 reinforced concreteIndex 403 biaxial behaviour 282–283 compressive behaviour 276, 276–277 elastic parameters 275–276 nonlinear effects 275 nonlinear models 284–287, 285–286 reinforcement behaviour and modelling 283, 283–284, 284 tensile behaviour 278–282, 278–282 report (contents) 320, 369–371, 370–371 residual stresses 139 reversible strain 128 Ridley-Ellis, D. 270 Riks–Wempner method 111, 112 Roberti, G. M. 235 Roca, P. 307, 310 Roman opus quadratum 211, 212 Rots, J. G. 234 rules of the art (masonry) 211 safety assessment Eurocode 8/Italian code concrete and steel 303–307, 305, 306 geometric survey 301 KL/CF 298 masonry 299–301 mechanical characterization 299 timber 301–303, 301 Italian guidelines for built heritage 307–310, 309 Model Code 2010 ECOV 314–315 GRF 314 safety formats 310–313 probabilistic method 313 PSF 315 Saint-Venant’s principle 17, 342 Schubert, P. 242 secant elastic modulus 131, 181 Secant methods see Quasi-Newton methods Selby, R. G. 285 semi-probabilistic method 312 shear locking 335 shear retention factor 194 shell normals 347 Shim, W. 377, 379 simplified micro-modelling 215–216 Simpson rule 48–49 skewness 345 smeared crack models concept 190–193, 190–192 fixed multi-directional crack concept 194 fixed smeared crack models 191 rotating smeared crack models 191 strain decomposition 190–193, 190–192 total strain crack model 195 snap-back instability 106, 107 snap-through instability 74, 106, 107 softening 128, 132 solid elements 59, 60 solution procedure 105, 107 arc-length control 107, 106–113, 107, 110, 112, 113 displacement control 114–116, 115 line search 116–119, 118 solution process 363–367 spherical arc-length method 111 spring elements 61 stainless steel 294 steel and iron basic behaviour 288–289, 288 material properties 288–289, 288 code properties 290, 291 ductility 289–290 tensile strength 289, 290 mechanical properties 291, 290–296, 292, 293, 294, 295, 295 stiffness matrix 6 Stöckl, S. 235 strain localization 196–198, 197 strain singularities 55 stress stiffening 75 superconvergent points 51 tangent modulus 128, 166 tangent stiffness 72 target reliability level 311, 312 tearing mode 133 tension stiffening 280 through stone see diatone timber 268, 269–270, 269 mechanical properties 268, 272–273, 273, 274 strength grading 270–271, 271 Tomaževič, M. 245 Total Lagrangian formulation 326404 Index Tresca yield function 149, 150, 166 truss elements 56, 56 uncertainties 325 unloading–reloading process 128 Updated Lagrangian formulation 326 Van der Pluijm, R. 230, 233, 233, 234, 237, 237, 238 Vasconcelos, G. 233, 234, 235, 251, 251 Vecchio, F. J. 273, 281, 377, 379 verificationprocess 323 volumetric locking 335, 336 von Mises yield function 154, 170 well-posed problem 80 wrought iron 291, 292 wythe see leaf yield stress 128 yield surface 145, 149 Young’s modulus 64 Yun, X. 29400 Index Crack Mouth Opening Displacement control (CMOD) 116 crack-opening behaviour 226 damage 131 damage function 183 damage models 177–178, 176, 178 anisotropic 182–188, 184–188 constitutive laws 181 isotropic 182–188, 184–188 uniaxial loading 178–182, 179–181 damage surfaces 184 Degrees of Freedom (DOF) 4, 5 design working life 307 detailed micro-modelling 215 deviatoric plane 150 diatone 211 dilatancy 162, 237–238, 238 direct displacement control 114–116, 115 discretization 4, 18 displacement control 73, 104 distributed plasticity in concrete 284 Drucker’s stability 159 Drucker–Prager yield function 155 dry-joint masonry 210 Drysdale, R. G. 235 duplicate elements 347 duplicate nodes 346–347 elastic perfectly plastic 128 elastic stiffness 76 elasticity 128, 129–130 elasticity problems closed-form solution 2 integral form solution 4 strong form of equilibrium 3 weak form of equilibrium 7 elastoplastic stiffness 168 elastoplasticity models consistency condition 145 constitutive law elastic domain evolution 165 perfectly plastic materials 159–163, 161, 162 plastic flow and hardening 163–168, 164–166 elastic domain 145–148, 147 Euler Backward method (see Euler Backward method) Euler Forward method (see Euler Forward method) hardening (see hardening) load directions 147, 153 load history 144, 146 loading process 145 yield functions 145, 149–159 yield surface 145, 149 errors in FEM calculation, sources of 18 estimation of a coefficient of variation (ECOV) 313, 314–315 Euler Backward method (elastoplasticity) 168–177, 170, 171, 173, 174 Euler Forward method (elastoplasticity) 168–177, 170, 171, 173, 174 Euler’s critical load 83 Eurocode 8 see safety assessment event-driven approach 139, 142 explicit method 174 external constrains 362–363 fibre model (concrete) 285, 285 finite element method (FEM) 5 elasticity 4–8 matrix formulation 18–22 shape functions 15–18 flat shell elements 59 flow rule 143; see also elastoplasticity models force control 73 Forward Euler method 91–94, 92, 92, 93 fracture energy 134 fracture modes 133 free edges 342, 373 free faces 346 free nodes 346 full integration scheme 50 fully probabilistic design method 313 Gardner, L. 296 Gauss quadrature 47 generalized strain 28, 29 generalized stress 29 geometric stiffness 75 geometrical nonlinearities linear kinematics 82, 82 stability 72 stability of compressed elements 82–87, 82, 84–87 stiffness 74–77, 74, 75 von Mises truss structure 68–74, 68–70, 72, 73Index 401 Giuffrè, A. 211 global resistance factor (GRF) 313–314 h-refinement method 340, 356 hanging nodes 348 hardening, anisotropic 144 hardening, kinematic 144, 164 hardening, isotropic 143, 164 hardening modulus 166, 167 hardening parameter 165 hardening process 131, 143 Hegemeier, G. A. 235 Hermite interpolation polynomial function 30 Hermitian beam elements 29–33 Hilsdorf, H. K. 241 historical-critical analysis 298 Hoffmann, G. 242 Hofmann, P. 235 homogeneous materials 128 hourglassing 335, 336, 337 hp-refinement method 340 hydrostatic stresses 149 ideal plasticity 128 ill-posed problem 80 implicit method (elastoplasticity) 174 incremental-iterative methods Forward Euler method 91–94, 92, 92, 93 Newton–Raphson method 94–100, 96, 99, 99 Quasi-Newton methods 100–104, 101, 103, 103, 104 indirect displacement control method 106, 114–116, 115 initial elastic domain 164 integration points 45 interface (masonry) 225–228, 227, 228 compressive failure 240 elastic parameters 228–229 Mode I failure 229–232, 230, 231, 232 Mode II failure 232–239, 233, 234, 235, 236, 237, 238 shear-tension and shearcompression interaction 239–240, 239 interface element 59, 60 inverse parameter identification 324 isoparametric elements bar element 34 completeness and compatibility 42 definition 33 four-node quadrilateral element 36, 37 Jacobian operator 38–39 local reference system 42 shape function matrix 40 stiffness matrix 35 strain-displacement transformation matrix 35 isotropy 149 Italian code see safety assessment iterative solution algorithm 88 Jacobian operator 38–39 joints (masonry) 214 Khelifa, M. 269 knowledge level (KL) 297, 298 Kržan, M. 224, 224, 231 leaf 212 limit point 74, 104 line search algorithm 116–119, 118 linear elastic stiffness 72 load/force control method 104 load increments 73 load path–following methods 74 load steps 73 Lobatto quadrature 48–49 local coordinate system 34, 34 Lourenço, P. B. 230, 236, 249, 263 lumped plasticity (concrete) 286 macro-modelling 216 Magenes, G. 235, 385, 385 Magonette, G. 385, 385 Mann, W. 233 masonry 210–211 compressive behaviour 214 compressive strength 245, 244, 245, 247, 246, 247 in-plane action 212 mechanical properties 218 composite material (see composite material) interface (see interface) mortar (see mortar) nonlinear static analysis 217 units 218–223, 219, 220, 221, 223 modelling strategies 215402 Index masonry (cont.) morphologies 211–213 numerical modelling 213–218 structural behaviour 249–251, 250 MQI 253–261, 252, 254, 255–257, 258, 259, 260, 261 shear walls 251, 253, 251 synthesis of mechanical properties 261–268 Masonry Quality Index (MQI) 253–261, 252, 254, 255–257, 258, 259, 260, 261 master/slave nodes 62 material behaviour concrete-like materials 133, 133–136, 134, 135 constitutive models 128–132, 129–130, 131, 132 nonlinear problems 136–143, 137, 138, 138, 140, 142 matrix formulation (FEM) 18–22 membrane elements 57 mesh; see also preprocessing dependency 194, 196–198, 197 sensitivity 196–198, 197, 351 meshing blocks 344 Mindlin–Reissner plate 58 vonMises, R. 68 Model Code 2010 220, 222, 223, 273, 275, 277, 278, 280 model calibration 323 model optimization 322, 322 Modulus Of Elasticity (MOE) 271 Mohr–Coulomb yield surface 151, 152, 155, 156, 151, 153 monotonic loads 144 mortar 223–225, 224, 226 Müller, H. 233 Muñoz, G. R. 271 natural coordinate system 34, 34 Newton–Cotes method 45, 46, 47 Newton–Raphson method 94–100, 96, 99, 99, 108, 110, 111, 175 nonassociated plastic flow 162 nonlinear constitutive relations 18 nonlinearities, sources of 64 numerical integration 44–45 Oudjene, M. 269 p-refinement method 340, 352 Parisi, F. 235 partial safety factor method (PSF) 312, 315 Pereira, J. M. 263 performance-based design 310 plane strain elements 58 plane stress elements 57, 57 plastic flow 143, 159–163, 161, 162; see also elastoplasticity models plastic potential 168 plate bending element 59, 59 polynomial interpolation 43 postbuckling analysis 78, 78–82, 79, 81, 81; see also buckling postprocessing 317, 367–369, 368, 369 preprocessing 322, 324–325 constraints 360–363, 361, 362 geometry 327–332, 328–331 material properties 359–360 mesh (see also mesh) automatic 338 convergence study 339 quality and controls 344–349, 345, 347–349 refinement 15, 339–344, 342, 343 type of analysis 325–327 type of element 332–337, 333, 334, 335, 337, 349–359, 352, 350–355, 356, 357, 358 pressure-dependent behaviour 277 Principle of Virtual Displacements 3 Principle of Virtual Work 3 probabilistic method 312 proportional loading 144 quadratic convergence 124 quadrilateral elements 42–44 Quasi-Newton methods 100–104, 101, 103, 103, 104, 110, 111 quasi-static problems 1 Rajgelj, S. 235 Ramberg–Osgood model 296 Rankine yield function 156, 157 Rankine–Hill anisotropic model 203 recovery process 53–54 reduced integration scheme 50 Regula–Falsi method 118 reinforced concreteIndex 403 biaxial behaviour 282–283 compressive behaviour 276, 276–277 elastic parameters 275–276 nonlinear effects 275 nonlinear models 284–287, 285–286 reinforcement behaviour and modelling 283, 283–284, 284 tensile behaviour 278–282, 278–282 report (contents) 320, 369–371, 370–371 residual stresses 139 reversible strain 128 Ridley-Ellis, D. 270 Riks–Wempner method 111, 112 Roberti, G. M. 235 Roca, P. 307, 310 Roman opus quadratum 211, 212 Rots, J. G. 234 rules of the art (masonry) 211 safety assessment Eurocode 8/Italian code concrete and steel 303–307, 305, 306 geometric survey 301 KL/CF 298 masonry 299–301 mechanical characterization 299 timber 301–303, 301 Italian guidelines for built heritage 307–310, 309 Model Code 2010 ECOV 314–315 GRF 314 safety formats 310–313 probabilistic method 313 PSF 315 Saint-Venant’s principle 17, 342 Schubert, P. 242 secant elastic modulus 131, 181 Secant methods see Quasi-Newton methods Selby, R. G. 285 semi-probabilistic method 312 shear locking 335 shear retention factor 194 shell normals 347 Shim, W. 377, 379 simplified micro-modelling 215–216 Simpson rule 48–49 skewness 345 smeared crack models concept 190–193, 190–192 fixed multi-directional crack concept 194 fixed smeared crack models 191 rotating smeared crack models 191 strain decomposition 190–193, 190–192 total strain crack model 195 snap-back instability 106, 107 snap-through instability 74, 106, 107 softening 128, 132 solid elements 59, 60 solution procedure 105, 107 arc-length control 107, 106–113, 107, 110, 112, 113 displacement control 114–116, 115 line search 116–119, 118 solution process 363–367 spherical arc-length method 111 spring elements 61 stainless steel 294 steel and iron basic behaviour 288–289, 288 material properties 288–289, 288 code properties 290, 291 ductility 289–290 tensile strength 289, 290 mechanical properties 291, 290–296, 292, 293, 294, 295, 295 stiffness matrix 6 Stöckl, S. 235 strain localization 196–198, 197 strain singularities 55 stress stiffening 75 superconvergent points 51 tangent modulus 128, 166 tangent stiffness 72 target reliability level 311, 312 tearing mode 133 tension stiffening 280 through stone see diatone timber 268, 269–270, 269 mechanical properties 268, 272–273, 273, 274 strength grading 270–271, 271 Tomaževič, M. 245 Total Lagrangian formulation 326404 Index Tresca yield function 149, 150, 166 truss elements 56, 56 uncertainties 325 unloading–reloading process 128 Updated Lagrangian formulation 326 Van der Pluijm, R. 230, 233, 233, 234, 237, 237, 238 Vasconcelos, G. 233, 234, 235, 251, 251 Vecchio, F. J. 273, 281, 377, 379 verificationprocess 323 volumetric locking 335, 336 von Mises yield function 154, 170 well-posed problem 80 wrought iron 291, 292 wythe see leaf yield stress 128 yield surface 145, 149 Young’s modulus 64 Yun, X. 296
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Finite Element Analysis for Building Assessment - Advanced Use and Practical Recommendations رابط مباشر لتنزيل كتاب Finite Element Analysis for Building Assessment - Advanced Use and Practical Recommendations
|
|