Admin مدير المنتدى
عدد المساهمات : 19001 التقييم : 35505 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Concepts and Applications of Finite Element Analysis - Fourth Edition الجمعة 02 أغسطس 2024, 2:06 am | |
|
أخواني في الله أحضرت لكم كتاب Concepts and Applications of Finite Element Analysis - Fourth Edition Robert D. Cook David S. Malkus Michael E. Plesha Robert J. Witt University of Wisconsin - Madison
و المحتوى كما يلي :
CONTENTS NOTATION Chapter 1 INTRODUCTION 1 LI Finite Element Analysis 1 L2 Problem Classification, Modeling, and Discretization 3 1.3 Interpolation. Elements, Nodes, and D.O.F. 5 1.4 Example Applications. History of FEA 8 1.5 Solving a Problem by FEA 11 1.6 Learning and Using FEA 15 Analytical Problems 17 Chapter 2 ONE-DIMENSIONAL ELEMENTS AND COMPUTATIONAL PROCEDURES 19 2.1 Introduction 19 2.2 Bar Element 20 2.3 Beam Element 24 2.4 Bar and Beam Elements of Arbitrary Orientation 29 2.5 Assembly of Elements 32 2.6 Properties of Stiffness Matrices 36 2.7 Boundary Conditions 40 2.8 Exploiting Sparsity. Solving Equations 42 2.9 Mechanical Loads. Stresses 46 2.10 Thermal Loads. Stresses 52 2.11 Structural Symmetry 54 2.12 Review. Remarks Regarding Modeling 57 2.13 An Application 59 Analytical Problems 62 Computational Problems 74 Chapter 3 BASIC ELEMENTS 78 3.1 Preliminaries 78 3.2 Interpolation and Shape Functions 83 3.3 Formulas for Element Matricies 88 3.4 Linear Triangle (CST) 91 3.5 Quadratic Triangle (LST) 95 3.6 Bilinear Rectangle (Q4) 96 3.7 Quadratic Rectangle (Q8, Q9) 100 3.8 Rectangular Solid Elements 102 3.9 Choice of Interpolation Functions 104 3.10 Improved Triangles and Quadrilaterals 106 ixX Contents 3.11 Nodal Loads 111 3.12 Stress Calculation 115 3.13 Nature of a Finite Element Solution 118 3.14 Example: A Simple Stress Concentration Problem 119 3.15 An Application with High Stress Gradient 121 Analytical Problems 124 Computational Problems 132 Chapter 4 FORMULATION TECHNIQUES: VARIATIONAL METHODS 136 4.1 Introduction 136 4.2 Principle of Stationary Potential Energy 137 4.3 Problems Having Many D.O.F. 140 4.4 Potential Energy of an Elastic Body 142 4.5 The Rayleigh-Ritz Method 146 4.6 Comments Regarding the Rayleigh-Ritz Method 149 4.7 Strong Form and Weak Form 151 4.8 Finite Element Form of the Rayleigh-Ritz Method 156 4.9 Convergence of Finite Element Solutions 161 4.10 Additional Formulations. Hybrid Elements 165 Analytical Problems 171 Chapter 5 FORMULATION TECHNIQUES: GALERKIN AND OTHER WEIGHTED RESIDUAL METHODS 179 5.1 Galerkin Method 179 5.2 Methods of Weighted Residuals (MWR) 182 5.3 Galerkin Finite Element Method in One Dimension 186 5.4 Integration by Parts 191 5.5 Galerkin Finite Element Method in Two Dimensions 193 5.6 A Mixed Formulation 195 Analytical Problems 198 Chapter 6 ISOPARAMETRIC ELEMENTS 202 6.1 Introduction 202 6.2 Bilinear Quadrilateral (Q4) 205 6.3 Quadrature: [k] Obtained by Numerical Integration 209 6.4 Quadratic Quadrilaterals (Q8, Q9) 213 6.5 Hexahedral Isoparametric Elements 217 6.6 Incompatible Modes. Nodeless D.O.F. 219 6.7 Static Condensation 221 6.8 Choices in Numerical Integration 223 6.9 Load Considerations 227 6.10 Stress Calculation 230 6.11 Effect of Element Geometry 234 6.12 Validity of Isoparametric Elements 237 6.13 Patch Test 238Contents xi 6.14 A 2D Application 240 6.15 A 3D Application 244 Analytical Problems 247 Computational Problems 255 Chapter 7 ISOPARAMETRIC TRIANGLES AND TETRAHEDRA 259 7.1 Reference Coordinates. Shape Functions 259 7.2 Element Characteristic Matrices 262 7.3 Analytical Integration. Area and Volume Coordinates 264 7.4 Numerical Integration 266 Analytical Problems 268 Chapter 8 COORDINATE TRANSFORMATION AND SELECTED ANALYSIS OPTIONS 271 8.1 Transformation: Introduction and Vector Forms 271 8.2 Strain, Stress, and Material Property Transformation 273 8.3 Transformation of the Characteristic Matrix 275 8.4 Changing the Directions of Restraints 276 8.5 Connecting Dissimilar Elements. Rigid Elements 278 8.6 Higher Derivatives as Nodal D.O.F. 282 8.7 Fracture Mechanics. Singularity Elements 283 8.8 Elastic Foundations. Infinite Media 286 8.9 Structural Modification. Reanalysis 292 8.10 Tests of Element Quality 293 Analytical Problems 295 Computational Problems 299 Chapter 9 ERROR, ERROR ESTIMATION, AND CONVERGENCE 300 9.1 Sources of Error 300 9.2 IlFConditioning 302 9.3 The Condition Number 306 9.4 Diagonal Decay Test 308 9.5 Residuals 309 9.6 Discretization Error. Convergence Rate 310 9.7 Multimesh Extrapolation 315 9.8 Mesh Revision Methods 318 9.9 Gradient (Stress) Recovery and Smoothing 320 9.10 A-Posteriori Error Estimate 326 9.11 Adaptive Meshing 329 Analytical Problems 331 Computational Problems 335 Chapter 10 MODELING CONSIDERATIONS AND SOFTWARE USE 336 10.1 Introduction 336 10.2 Physical Behavior Versus Element Behavior 337 10.3 Element Shapes and Interconnection 340Contents 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.13 10.14 10.15 10.16 10.17 10.18 Test Cases and Pilot Studies 342 Material Properties 344 Loads and Reactions 347 Connections in Structures 348 Boundary Conditions 352 Repetitive Symmetry 354 Stress Concentrations. Submodels 356 Substructures 358 Planning an Analysis 360 Common Mistakes 363 Checking the Model 365 Critique of Computed Results 366 Design Optimization 369 Software 370 Concluding Remarks 371 Analytical Problems 371 Computational Problems 372 371 Chapter 11 FINITE ELEMENTS IN STRUCTURAL DYNAMICS AND VIBRATIONS 373 11.1 Introduction 373 11.2 Dynamic Equations. Mass and Damping Matrices 374 11.3 Mass Matrices: Consistent, Diagonal, and Other 377 11.4 Natural Frequencies and Modes 383 11.5 Damping 388 11.6 Reduction of the Number of D.O.F. 390 11.7 Response History: Modal Methods 394 11.8 Response History: Ritz Vectors 398 11.9 Component Mode Synthesis (CMS) 400 11.10 Harmonic Response 405 11.11 Response History: Direct Integration Methods 407 11.12 Explicit Direct Integration 409 11.13 Implicit Direct Integration 416 11.14 Direct Integration: Stability and Accuracy Analysis 421 11.15 Analysis by Response Spectra 426 11.16 Remarks. Modeling Considerations 429 11.17 An Application: Vibration and Harmonic Response 436 11.18 An Application: Response History 439 Analytical Problems 444 Computational Problems 451 Chapter 12 HEAT TRANSFER AND SELECTED FLUID PROBLEMS 454 12.1 Heat Transfer: Introduction 454 12.2 Finite Element Formulation 459 12.3 Radiation. Nonlinear Heat Transfer Problems 462 12.4 Transient Thermal Analysis 464 12.5 Modeling Considerations. Remarks 467Contents xiii 12.6 12.7 12.8 12.9 An Application 469 Acoustic Frequencies and Modes 474 Fluid-Structure Interaction 477 Plane Incompressible Irrotational Flow 480 Analytical Problems 482 Computational Problems 486 Chapter 13 CONSTRAINTS: PENALTY FORMS, LOCKING, AND CONSTRAINT COUNTING 489 13.1 Explicit Constraints. Transformation Equations 489 13.2 Lagrange Multipliers to Enforce Constraints 492 13.3 Penalty Functions to Enforce Constraints 493 13.4 Implicit Penalty Constraints and Locking 495 13.5 Constraint Counting 499 13.6 Remarks About Techniques for Incompressible Media 502 Analytical Problems 504 Chapter 14 SOLIDS OF REVOLUTION 508 14.1 Introduction. Elasticity Relations for Axial Symmetry 508 14.2 Axisymmetric Solid Elements 510 14.3 An Application 512 14.4 Loads Without Axial Symmetry: Introduction 516 14.5 Loads Without Axial Symmetry: Some Details of FEA 521 Analytical Problems 524 Computational Problems 527 Chapter 15 PLATE BENDING 530 15.1 Introduction. Plate Behavior 530 15.2 C1 (Kirchhoff) Plate Elements 536 15.3 (Mindlin) Plate Elements 542 15.4 Mindlin Beam. More Devices for C° Plate Elements 547 15.5 Boundary Conditions. Test Problems 551z 15.6 An Application 553 Analytical Problems 556 Computational Problems 559 Chapter 16 SHELLS 561 16.1 Introduction 561 16.2 Circular Arches and Arch Elements 563 16.3 Shells of Revolution 570 16.4 General Shells: Three- and Four-Node Elements 574 16.5 General Shells: Curved Isoparametric Elements 578 16.6 Test Cases. Remarks 583 16.7 An Axisymmetric Shell Application 586 Analytical Problems 588 Computational Problems 591xiv Contents Chapter 17 NONLINEARITY: AN INTRODUCTION 595 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 17.10 Nonlinear Problems 595 Some Solution Methods 596 Plasticity: Introduction 602 Plasticity: General Formulation for Small Strains 606 Plasticity: Formulation for Von Mises Theory 609 Plasticity: Some Computational Procedures 612 Nonlinear Dynamic Problems 616 Problems of Gaps and Contact 619 Geometric Nonlinearity 621 Modeling Considerations. Remarks 626 Analytical Problems 630 Computational Problems 636 Chapter 18 STRESS STIFFNESS AND BUCKLING 639 18.1 18.2 18.3 18.4 18.5 18.6 18.7 Introduction. Energy Considerations 639 Bar and Beam Elements 642 Plate Elements 645 A General Formulation 646 Calculation of Buckling Loads 648 Remarks on Stress Stiffness and Its Uses 650 Remarks and Examples 653 Analytical Problems 656 Computational Problems 661 Appendix A MATRICES: SELECTED DEFINITIONS AND MANIPULATIONS 663 Appendix B SIMULTANEOUS ALGEBRAIC EQUATIONS 668 Appendix C EIGENVALUES AND EIGENVECTORS 675 B.1 B.2 B.3 Overview 668 Direct Solvers 668 Iterative Solvers 671 REFERENCES 682 C.1 C.2 C.3 C.4 Overview 675 The Standard Eigenproblem 675 The General Eigenproblem 676 Solution Algorithms 679 INDEX 711NOTATION Symbols used throughout most of the book are listed. Symbols less frequently used, or that have different meanings in different contexts, are defined where they are used. Matrices and vectors are identified by boldface type. MATHEMATICAL SYMBOLS an da Rectangular matrix or square matrix, diagonal matrix Column vector, row vector Matrix transpose (thus { } = |_ J7) Matrix inverse, transpose of inverse (= inverse of transpose) Norm of a matrix or vector Time differentiation; for example, u = du/dt. u = d2u/dr Partial differentiation if the following subscript is a letter; for example w,x = dw/dx, = d2w/dxdy T Represents an an an , where n = n(ab a2> • • •» dtZj 3^2 ^an 1 LATIN SYMBOLS A {a} B [B] cm [C] D {D}, {d} {D} - d.o.f. E [E] {F} fGhI rij j [j] k [K], [k] [KJ, [kJ Area or cross-sectional area Generalized d.o.f. (also known as generalized coordinates) Bulk modulus, B = E/(3 - 6p) Spatial derivatives of field variables are [B] {d} Field continuity of degree m (Section 3.2) Damping matrix; constraint matrix Displacement; flexural rigidity of a plate or a shell Nodal d.o.f. of structure and element, respectively Amplitudes of nodal d.o.f. (as in vibration or buckling) Degree(s) of freedom Modulus of elasticity Matrix of elastic stiffnesses; [E] = £ in one dimension Body forces per unit volume Cyclic frequency of vibration,/ = a)/2ir, flux Shear modulus Characteristic length; convective heat transfer coefficient Moment of inertia of cross-sectional area Unit matrix, also called identity matrix Determinant of [J] Jacobian matrix (Section 6.2) Spring stiffness, or bar stiffness AE/L, or thermal conductivity Conventional stiffness matrix of structure, element Stress stiffness matrix of structure, element xvxvi Notation L,Lp I, m, n [M], [m] ^els [N] O [0], {0} {P} p <7 {R} {re} 5Tt [T] u,uQ U, V, w {u} V x,y,z Length of element, length of structure Direction cosines Mass matrix of structure, element Number of elements Shape (or basis, or interpolation) functions Order; for example O(h") = a term of order /z2 Null matrix, null vector Externally applied concentrated loads on structure nodes Pressure; degree of a complete polynomial Distributed load, per unit length or per unit area Total load on structure nodes; {R} = {P} + {re} Loads applied to nodes by an element (Section 2.5) Surface or surface area Temperature Thickness; time Transformation matrix Strain energy, strain energy per unit volume Displacement components in coordinate directions Vector of displacements, {u} = [w v Volume Cartesian coordinates GREEK SYMBOLS a tn {e}, {e0} t? 0x, Oy, [k], {k} AV$ np {«•}, {o-q} °e [ * ] {$} <^rCoefficient of thermal expansion; penalty number Jacobian matrix inverse, [T] = [J]-1 Vector of strains, vector of initial strains A global error measure, computed from the gradient field Rotation components about coordinate axes Matrix of thermal conductivities, vector of curvatures Eigenvalue; Lagrange multiplier Poisson’s ratio Damping ratio (ratio of actual damping to critical damping) Reference coordinates of isoparametric elements A functional; for example fl^ = potential energy functional Mass density Vector of stresses, vector of initial stresses von Mises stress, Eq. 3.12-2 (also called effective stress) Modal matrix Surface tractions Circular frequency in radians per second, spectral matrix INDEX Accuracy, see Bounds; Convergence; Error Acoustics, 474-477 Active column storage, 43 Adaptive meshing, 329-331 Added mass, 383, 431,479 Admissible displacement or field, 88, 138 Analogies, problem areas, 469 Anisotropy of element behavior, 105 Arches, theory and elements, 563-570 * Arc-length method, 599 Area coordinates, 264-265 Assembly of elements congruent transformation, 160-161 direct stiffness method, 23, 32-36 matching of d.o.f., 28 Attachment d.o.f. and modes, 359, 400 Average acceleration algorithm, 417-418, 420-426 Axial symmetry strain-displacement relations, 510, 512 stress-strain relation, 509 see also Shells; Solids of revolution Bandwidth, of matrix, 44 Bar element heat conduction, 21-22 mass matrices, 377-378 stress stiffness matrix, 643 three nodes, 203-205 ' two nodes, 20-21, 29-31, 47-48, 89-90, 186-188 Basis, reduced, 390-391 Basis function, 84 Beam, curved, 244-247, 338-339, 341 Beam element beam-column, 640-641 connection to solid, 279, 349 Euler-Bernoulli beam, defined, 24 limitations of, 28-29, 338 mass matrices, 378-379 Mindlin element, 495-496, 547-550 standard element, 24-29, 32, 49-52, 90-91, 145, 170-171 stress stiffness matrix, 643 Timoshenko beam, defined, 24 Bilinear element, 96-100, 205-209 Bimoment, 29 Biquadratic element, 101-102, 213-215 Blast loading, 408 Body force, see Loads Boundary conditions computational procedures, 404-2, 276-277, 305, 354 essential (principal), 137, 151—152, 155 in heat transfer, 457-4-63 inadequate support, 38-39, 364, 523-524 in modeling, 352-354 nonessential (natural), 137, 151-152, 155 for plate bending, 551-552 for solids of revolution, 512, 523-524 on stress, 82, 119 for symmetry, various types, 54-57, 354-356 Boundary elements, 290-291 Bounds on bifurcation buckling load, 650 Gerschgorin, 413 with hybrid elements, 168 with incompatible elements, 110, 221 by modeling choices, 352, 436 on Rayleigh quotient, 678 on Rayleigh-Ritz solutions, 150-151 with reduced integration, 223 on vibration frequencies, 382-383 Box beams, 520 Brick element, 102-104, 217-219 Bubble function, 215 Buckling bifurcation, 641-642, 648, 653-655 bounds, on bifurcation load, 650 collapse, 627, 642, 654, 655 imperfection sensitivity, 654 limit point, 599, 642, 653-654 nature of, 639, 642 nonlinearities, 650, 653-656 pressure load, 651 snap-through, 599, 642, 655 symmetry, use of, 57 thin-walled structures, 651, 654 see also Stress stiffening Bulk modulus, 496 711712 Index Cables and chains, 626, 651 Central difference methods, 40SM-16, 421-426 Centrifugal softening, 652-653 CFL condition, 413 Characteristic matrix, 19 Checkerboarding, 503 Checking for mistakes, 13-15,236-237,363-369 Choleski method, 670-671 Circulation modes, 480 Cm continuity, defined, 84 Collapse load, 642, 654 Collocation residual method, 183 Compatibility in elasticity, 81 extent satisfied in FEA, 118-119 interelement, 105 see also Incompatible elements Completeness convergence and, 149-150, 313 of polynomial field, 105-106, 313 Component mode synthesis, 400-405 Condensation (reduction of order) in buckling problems, 649-650 in dynamic problems, 390-394, 396, 399, 400-405 in modal methods, 396 by Ritz vectors, 399 in static problems, 221-222, 352, 359, 490 Condition number, 44, 306-308 see also Ill-conditioning Conduction, see Heat conduction and transfer Congruence transformation, 160-161, 677 Conjugate gradient solution, 672-674 Connections of dissimilar elements, 279-282, 349, 358 interelement, 117-118, 342 partial, at nodes, 39 in structures, 348-352 Conservative system, defined, 137 Consistent penalty method, 503 Constant-strain triangle, 93-95, 102, 262-263 Constitutive matrix, see Stress-strain relations Constraint modes, 400 Constraints consistent penalty method, 503 counting of, 226, 500-502, 546-547, 568-569 incompressibility, 94, 496-497, 502-504 and Lagrange multipliers, 492-493, 620-621 multipoint, 281, 489 penalty, explicit, 493-495, 621 penalty, implicit, 495-499 and quadrature rule, 498-500 ratios, 501-502 shear, beams and plates, 495—496, 544-547 single-point, 489 transformation methods for, 276-282, 489—491 see also Locking Contact, sliding, 353 Contact problems, 340, 492, 595, 619-621 Continuity, degree of, 84 Convected coordinates, 622 Convergence equilibrium iterations for, 597-598 extrapolation for, 315-318 A-refinement, 318-320 monotonic, 162-163, 315-316 in nonlinear problems, 601-602, 626, 629 p-refinement, 318-320 rate of, dynamics, 388, 409, 411, 419^-20 rate of, statics, 164-165, 310-315, 325, 383 of Rayleigh-Ritz method, 149-151 requirements for, in FEA, 104, 161—163 see also Bounds; Error Coordinate transformation, see Transformation Corotational formulation, 622-625 Coupled field problems defined, 3 fluid-structure, 477^480 Courant number, 414 Cracks, fracture and, 283-286 Craig-Bampton method, 400-405 Critical load, defined, 639 CST element, 93-95, 102, 262-263 Curved beam, 244-247, 338-339, 341 D.o.f., see Degrees of freedom Damping algorithmic, 389,419-421, 423^26 consistent matrix for, 376 modal, 390, 395 proportional, 389-390 ratio, 384 Rayleigh, 389-390 types of, 388-389 Degenerate (degraded) elements, 264, 285, 563 Degrees of freedom defined, 8 generalized, 7-8, 146, 157 hierarchic, 305-306, 319 higher derivatives as, 282-283 nodeless, 109, 219 relative, 109, 305-306, 319Index 713 Design of experiments, 363 Determinant, calculation of, 671 Developable surface, 535 Diagonal decay test, 308-309 Direct integration in dynamics accuracy of, 414—416, 419—420, 423^-26, 434 algorithmic damping and, 389, 419—421, 423^126 average acceleration algorithm, 417-418, 420-426 central difference methods, 409^416, 421-426 cost of, relative, 408 « error, control of, 436, 619 error, order of, 409, 411, 419^420 explicit methods, 407-416, 616-618 in heat transfer, 465-466 implicit methods, 407^409, 416-421, 618-619 initial conditions, 412, 415-416, 418, 419 mass matrix for, 411, 413, 425-426, 434 mixed time integration, 421 Newmark methods, 416-421 nonlinear problems, 616-619, 629 operator splitting, 421 overview, 407^-09 spurious modes and, 227, 383, 407,412,431 stability of, 411, 419-420, 421^123,466,617 trapezoidal rule, 418 Direct stiffness method, 23, 32-36, 161 Discrete Kirchhoff elements, 538-541 Discretization, 4 Distorted elements, 234-236, 238, 340-342, 366, 570, 577-578 Divergence theorem, 191-192 Drilling d.o.f., 106-108 Dynamic problems basic equations, 189, 374-376 classified, 373-374, 455 inverse problem (identification), 435 see also Damping; Direct integration in dynamics; Eigenproblems; Harmonic response; Mass and mass matrices; Modal methods; Response history; Response spectra; Vibration Dynamic relaxation, 601 Dynamic stiffness matrix, 385 Effective stress, 117, 232-233, 609 Eigenproblems buckling, 648-650 hand calculation, 385-387 orthogonality of modes, 395, 678 Rayleigh quotient, 387-388, 432, 678-679 theory and algorithms, 675-681 vibration, 385 Eigenvalue test of elements, 293-294 Elastica, 626 Elastic support, 286-288, 353 Energy in buckling problems, 639-641 complementary, 167 conservation of, 139-140 error measure, use in, 294, 326-328 in nonlinear dynamics, 617, 619 stationary principle, 137-140 strain energy density, 142-143 in terms of d.o.f., 160 in vibration (Rayleigh quotient), 387 Equation solving, 42-46, 668-674 Equilibrium differential equations of, 81-82,156 extent satisfied in FEA, 88, 119, 194 iteration to satisfy, 322, 597-598, 619, 625 nodal, 33-34 in patch stress recovery, 325 Error a posteriori error estimate, 326-328 checking, in modeling, 363-364 discretization, 4, 165-166, 301, 310-315 extrapolation to reduce, 315-318 indicator, eigenproblems, 328,436, 650 indicator, flux or stress, 14, 326, 328, 468 indicator, modal methods, 396-397 indicator, nonlinear dynamics, 619 iterative reduction of, 310, 597-598, 619, 625 modeling, 3^4, 300-301 numerical, 4, 301-310 order of, dynamics, 383, 388, 409, 411, 419- 420 order of, statics, 165-166, 310-315, 325 of Rayleigh quotient, 388, 678 singularities, 314-315 sources, classified, 300-301 tests for, 301-302, 306-310, 326-328, 436, 601-602, 619 ZZ error estimate, 326-328 see also Bounds; Convergence; Illconditioning; Locking Euler equations, 152-153 Examples, application of FEA axisymmetric shell, 586-588714 Index axisymmetric solid, 469-473, 512-516 beam element structure, 59-62 buckling, nonlinear, 655-656 elastic foundation, 553-556 harmonic response, 438^-39 heat transfer, 469-472 plane, 119-124, 240-244 plate bending, 553-556 response history, 439-442 response spectra, 442-443 shrink fit, 512-516 solid, 3D, 244-247 spinning disk, 512-516 thermal stress, 121-124, 472-473 vibration, 436-438 wave propagation, 414-416, 617-618 Excitation, 374 Experiment comparison with, 367, 435 numerical, 363 Extrapolation, multimesh, 315-318 Fills, in equation solving, 43, 44, 46, 671 Finite element method advantages of, 1-2, 9-10 analysis procedure, 13, 15, 20 dangers of, 15-16, 331, 371, 436 defined, 5, 7 history of, 10-11 nature of, 5-8, 118-119, 150, 161 see also Modeling Finite prism method, 521 Finite strip method, 520 Flexural rigidity, 533 Fluid flow, 480-482 Fluid-structure interaction, 477—480 Follower force, 348, 626, 651 Forced vibration, 373, 405—407, 438—439 Forcing function, 374 Foundation, elastic, 286-288, 353 Fourier series, 516-524 Fracture mechanics, 283-286 Frame invariance, 105, 227 Framework analogy, 10 Frequency response analysis, 405-407, 438 439 . . ' Frontal solution, 44, 671 Fully stressed design, 370 Functionals, various, 136, 143, 152-153,197 198, 459 Galerkin method, 156, 179-197 Gaps and contact, 288, 340, 353, 595, 619-621 Gauss elimination, 45-46, 668-670 Gauss quadrature, 209-213 Generalized d.o.f., described, 7-8, 146 Geometric isotropy, 105, 227 Geometric nonlinearity, 340, 367-368, 535, 595, 621-626, 653-656 Geometry, element, 234-236, 238, 340-342, 366, 570, 577-578 Gerschgorin bound, 413 Global stiffness, defined, 22 Global-local model, 356-358 Green strain, 621-622 Guyan reduction, 390-394 Gyroscopic effects, 388 Harmonic function, 193 Harmonic response, 373, 405^107, 438^439 Heat conduction and transfer bar element, 21-22, 190-191 boundary conditions, 457^463 error measure, 328 formulation, 153, 157-159, 456-462 modeling considerations, 467-468 nomenclature and units, 454-455 radiation, 462-463 transients, 464-466 Helmholtz equation, 475 Hilbert matrix, 302 Hinge, 39, 58, 279, 349, 351-352 History of FEA, 10-11 Hourglass mode, see Spurious modes Hybrid formulation, 165-171, 233 Ill-conditioning condition number, 306-308 in equation solving, 44-45, 302, 303, 672, 674 in least squares methods, 184 modeling situations, 281, 303-308, 494, 511 with slender ring elements, 511 Impact loading, 408 Imperfection sensitivity, 654 Incompatible elements, 7, 105, 109-111, 117— 118,219-221,537 Incompressible materials, 94, 308, 496^497, 502-504 Inextensibility condition, 565 Infinite elements and media, 286-291 Initial stiffness method, 599 Initial stress and strain bar elements, 52-54 calculation procedure, 52, 115 element load formula, 89Index 715 energy expression, 143 stress calculation, 53, 115 stress-strain relation, 78-79 Instability, see Buckling; Mechanisms; Spurious modes Integration analytical, triangles and tetrahedra, 264-266 by parts, 154, 156, 181, 191-192 see also Numerical integration Interaction fluid-structure, 477^80 in general, 3 Internal forces, 374,412, 617 Interpolation choice of functions, 104-106 defined, 83 Hermitian (C1), 86-87 Lagrange’s formula (C°), 85-86 Intrinsic coordinates, 203,205-206,259,264-265 Inverse iteration, 680 Isoparametric elements bar example, 203-205 basics, plane, 205-209 basics, solid, 217-218 defined, 202 shells, 578-583 triangles and tetrahedra, 259-264 validity of, 237-240 see also Numerical integration Iterative improvement, 310, 322, 329-331, 369-370, 597-598, 625 Jacobian, 204, 207, 218, 262, 582 Joints, see Connections Kinematic mode, see Spurious modes Kirchhoff plate elements, 536-541 Lagrange elements, 97, 101, 215, 219, 545- 547, 583 Lagrange multipliers, 492-493 Lagrange’s interpolation formula, 85-86 Lanczos method, 390, 674, 680 Lap joint, 351 Laplace’s equation, 193 Large displacement and strain, 38, 57,163- 164, 535, 570, 621-623, 628 Least squares residual methods, 183 Least squares solution, 184, 185, 233, 324 Limit point, 599, 653-654 Loads acceleration, 82 axisymmetric, 347, 512 body force, 81, 113-114 concentrated, 90, 112-114, 347 consistent, 47,49, 51, 89,111-115 in contact problems, 619-621 corrective (imbalance), 397-398, 597-601, 612, 615, 625 distributed, and pressure, 47-49, 344, 348, 626, 651 by element, to element, 21, 33 follower forces, 348, 626, 651 Fourier series for, 517-518 gravity, 46, 113-114 on incompatible elements, 111-112, 220, 221 inertia, 378 initial strain and stress, 52, 89,145-146, 160 mesh layout, effect of, 344, 541 moment (couple), 114, 279, 347 moving, 435 multiple load cases, 45-46, 668, 674 on plates and shells, 536, 541 prestress, 350 reduced (lumped), 46, 49, 51-52 spinning, 512 symmetry and, 55-57, 355 thermal, 52-53, 79, 89-90, 145-146, 348 tractions (surface), 82, 112-114, 227-230 work-equivalent, 111-115 Locking constraint counting and, 500-502, 546-547, 568-569 dilatational, 94, 497, 612 discussed, 93-95, 498-500 incompressibility and, 94,497 membrane, 567-570, 582-583 penalty constraints, implicit, 495-500 quadrature rule and, 498-500 selective integration and, 227, 500-501, 543-549, 568-570 shear, 98, 99, 496, 543, 546, 548-549 volumetric, 94, 497, 612 LST element, 95-96, 102, 107, 263 Marguerre shell theory, 566 Mass and mass matrices added mass, 287, 383, 431, 479 choice of, modeling, 382-383, 411, 413, 426, 430^-31, 434, 436 condensation of, 390-394 consistent, 376, 378-379 HRZ lumping, 380-381 nonstructural, 287, 383, 431, 479716 Index optimal lumping, 381-382 particle-lumped, 377-378 Master d.o.f., 359, 391 Material nonlinearity, see Plasticity Material properties, see Stress-strain relations Mathematical model, defined, 3 Matrices, definitions and manipulations, 663 667 Mechanisms, see Spurious modes Membrane-bending coupling, 535, 563, 566 567 Membranes, 585-586, 651 Mesh generation and revision, 242, 318-320, 329-331, 341-342 Mindlin elements arches, 568-570 beams, 495^196, 547-550 plates, 534—535, 542-550 shells, 573-574, 578-583 Mistakes, common, 363-365 Mixed formulation, 166, 195-197, 538 Modal methods error correction for, 396-398 in harmonic response, 406^107 in heat transfer, 464—465 modal synthesis, 400-405 mode acceleration method, 397 in nonlinear problems, 398 number of modes needed, 397, 433, 442 orthogonality of modes, 388, 395, 678 problem type for, 408, 433 spurious modes and, 227, 412, 431 static correction, 397-398 theory of, 395-397 versus Ritz vectors, 398 Modeling dynamic problems, 429-436 element selection, 337-339 error of, 3-4, 300-301 general procedure, 11-13, 336-337, 360-363 heat transfer, 467-468 mathematical model, 3 nonlinear problems, 596, 626-629, 651-654 see also specific problem areas Modification, of structures, 292-293, 363 Multigrid methods, 320, 673-674 Natural coordinates, 203, 205-206, 259, 264-265 Natural frequencies, see Vibration Newmark methods, 416-421, 425-426 Newton-Raphson methods, 597-598 Nodeless d.o.f., 109, 219 Nonconforming elements, see Incompatible elements Nonlinearity convergence, and criteria for, 601-602, 629 in dynamic problems, 398,409,412,616-619, 629 gaps and contact, 288, 340,353, 595, 619-621 geometric, 340, 367-368, 535, 595, 621 626, 653-656 material, 340, 595, 606, 627 modeling, 596, 626-629, 602 radiation heat transfer, 463—464 solution methods, general, 464, 596-602 sources of, 288, 340, 463, 535, 595 substructures, value of, 360 see also Buckling; Plasticity Norms, matrix, 666-667 Numerical dissipation, see Damping, algorithmic Numerical experiments, 363 Numerical integration and accuracy, 213, 235-236 full, 223, 499 Gauss quadrature, 209-213 reduced and selective, 221, 223-227, 499 500, 543-547, 569-570 thickness direction, 213, 582, 585, 629 shell elements, 582 triangles and tetrahedra, 266-268 see also Locking; Spurious modes Offsets, 280-281 Optimization, design, 369-370 Ovalization, 338-339, 585 Overlays, 320 Parasitic shear, 98-100, 227, 496 see also Locking Patch recovery for gradients, 323-326 Patch test, 238-240, 552 Penalty function, 493 Perforated plate, 345-346 Petrov-Galerkin method, 182 Pilot studies, 344 Pipe bend, 338-339, 585 Plane strain, 94-95, 501-502 Plane stress, 79, 533, 581 Plasticity calculations, general, 612-616 flow rule, 606-608, 611 formulation, general, 606-609 hardening rule, 604, 606-607, 610Index 717 uniaxial, 603-605, 608-609 von Mises theory, 609-612 yield criterion, 604, 606-607, 609 Plate bending and plate elements boundary conditions, 551-552 discrete shear elements, 550 FE surface definition, 368, 536 finite strip method, 520 folded plates, 520, 576, 583 Kirchhoff (C1) elements, 536-541 layered, 535 limitations of, 530, 535 membrane-bending coupling, 535 Mindlin (C°) elements, 542-550 3 stress calculation, 552 test cases, 552-553 theory of plates, 531-535 various formulations, 550 Poisson equation, 193 Postprocessing, 13, 365-369 Potential energy principle, 138-140 Potential function (fluids), 480 Prandtl-Reuss relations, 611 Preliminary analysis, 13, 337, 361 Preprocessing, 13 Pressure, see Loads Pressure calculation, 503-504 Prestress, 350, 513-514 see also Initial stress and strain Profile, of matrix, 43, 44 Programs and programming, 370-371 Q4 element, 96-100, 102,168-170, 205-209 Q6 and QM6 elements, 109-111, 219-221 Q8 and Q9 elements, 100-102, 213-217 Quadrature, see Numerical integration Quarter-point elements, 284-286 Quasiharmonic equation, 193-194 Quasi-Newton methods, 600-601 Raasch problem, 584-585 Radiation (acoustics), 476-477 Radiation, see Heat conduction and transfer Rank deficiency, 213, 223, 226, 665 Rayleigh quotient, 387-388, 678-679 Rayleigh-Ritz method, 136, 146-150, 156-161 Reanalysis, after modifications, 292-293 Reciprocal theorem, 37, 344 Recordkeeping, 360, 364—365 Reduction of order, see Condensation Refinement methods, mesh, 318-320, 329-331 Reflection, of waves, 287, 290, 476-477 Release of d.o.f., 351-352 Repetition of form, 354-356, 359 Residual bending flexibility, 549 Residuals in dynamics, 396-398,619 as error measure, 309-310 in nonlinear problems, 597-598, 601-602, 625 weighted residual methods, 155-156,179-197 Resonant frequency, 405 Response history choice of method, 373-374, 408—4-09, 432 434 defined, 373-374 response spectra, 426—4-29, 442-443 Ritz vectors for, 398—4-00 see also Direct integration; Modal methods Response spectra, 426-429, 442-443 Restart capability, 366 Richardson extrapolation, 315-316 Rigid body motion, 38, 104, 163-164, 293, 364, 385, 396,407, 523-524 Rigid links and elements, 278-282 Ritz vectors, 398^400 Rotational periodicity, 354-356 Sampling points, see Numerical Integration Secant stiffness methods, 600-601 Serendipity elements, 100, 215, 219, 545-546, 583 Shape function, meaning of, 84 Shear center, 29, 338 Shear deformation, see Transverse shear deformation Shear lag, 338 Shells arches, as special case, 563-570 axisymmetric, 339, 561-562, 570-574 behavior of, 561-562 C° elements, 573-574, 578-583 C1 elements, 571-573,574-578 FE surface definition, 368, 536 isoparametric elements for, 578-583 layered, 585 Marguerre theory, 566 mechanisms in elements, 575-576 membrane locking, 567-570 membrane-bending coupling, 566-567, 576 modeling suggestions, 562-563, 576, 585-586 test cases, 583-585 warped quadrilateral elements, 577-578 Shock loading, 408718 Index Shock spectrum, 427 Shrink fit, 350, 468, 513-514 Single element test, 294 Singularities and convergence, 314-315 elements for, 284-286 of field quantity, 124, 283-284, 290, 291, 329, 330, 341, 347 stiffness matrix, causes of, 38-39, 108, 364, 523-524, 599, 651 Skyline, of matrix, 42-43 Slave d.o.f., 280, 359, 391 Software, remarks about, 370-371 Solids of revolution finite elements for, 510-512 nonaxisymmetric conditions, 516-524 strain-displacement relations, 510-512, 519 stress-strain relation, 509, 519 Sparsity, matrix, 37, 42^44, 671 Spectral matrix, 395 Spectral stability, 421-423 Spin softening, 652-653 Spurious modes communicable, 224—227, 546 definition and terminology, 39, 223 drilling d.o.f. and, 108, 575, 583 in dynamics, 227, 383, 407, 412, 431 plates and shells, 544-546, 575-576, 583 pressure (checkerboarding), 503 stabilization of, 227, 383, 412, 431, 545, 575, 583 tests for, 240, 293, 364 see also Hinge Stationary principles, see Variational methods Stiff region, 281-282, 302-306, 494 Stiffener, eccentric, 280-281 Stiffness matrix assembly of, 23, 32-36, 51, 160-161 formula for, derived, 88-89, 159-160, 194 195 formula for, from eigensolution, 307, 676 numerically integrated, 209-213 physical meaning of, 21 properties of, 36-39, 141-142 see also Stress stiffening Strain energy density, 142-143 Strain-displacement relations arches, 564 Cartesian coordinates, 80 large strains, 621-622 plate bending, 532, 537, 542 shell of revolution, 572, 573 solid of revolution, 510, 512, 519 Stream function, 480 Stress and stress calculation accuracy of, 6, 115, 151, 314, 325 averaging and smoothing, 114, 116, 320-326 bars and beams, 47-54 best locations for, 6, 225, 230-231, 266, 323 concentrations, 119-121, 356-357 contours, as error indicator, 14 deviatoric, 502, 609 discontinuous, 116-118 effective stress, 117, 232-233, 609 element geometry, effect of, 234-236, 238, 340-342, 366, 577-578 extrapolation from Gauss points, 231-232 with incompatible elements, 221 intensity factor, 283-284, 286 invariants of, 116-117 iteration for improvement, 322 from nodal displacements, 115 from nodal forces, 233-234 patch recovery, 323-326 residual, 627 singularities, 124, 283-286, 290, 329, 330, 341, 347 superconvergence, 314, 325 surface definition and, 368, 536 thermal stress, 52-54, 115, 234, 467 trajectories, 368 von Mises stress, 117, 232-233, 609 Stress stiffening bar, beam, plate elements, 643, 645-646 discussed, 625, 639 forms of matrix, 650-651 general formulation, 646-648 spin softening, 652-653 Stress-strain relations anisotropic, 78, 344-345, 509, 519, 535 isotropic, 79, 94, 509, 519 plane strain, 94 plane stress, 79, 533, 581 plates and shells, 533-535, 571, 581 substitute, 345-347, 549 temperature-dependent, 79 Strong form, 136, 151-156 Structure, defined, 1 Sturm sequence, 680 Sub- and super-parametric elements, 202, 238 Subdomain residual method, 183 Submodels, 356-358 Subspace iteration, 390, 680 SubstructuresIndex 719 discussed, 358-360 dynamic, 400-405 repeating, 355, 359-360 Superelement, 359 Supports, see Boundary conditions Surface tractions, 82 Surface waves, 479 Symmetry conditions antisymmetry, 55-57 buckling problems and, 57 cyclic, 354-356 heat transfer, 468 nonlinear problems and, 57, 628 reflective, 54-56 * repetitive, 354-356 skew, 56-57 vibration problems and, 57, 434 System, defined, 137 Test cases, in general, 342-344 Thermal stress calculation, 52-54, 79,115, 234, 467 Thermal transients, 464-466 Thin-walled construction, 337-339 see also Shells Transformation isoparametric, 204, 206-208, 218, 262 of material properties, 275 modeling applications, 276-282 of stiffness matrix, 29-32, 276 of stress and strain, 273-274 of support directions, 276-277 of vectors, 271-273 see also Constraints Transition elements, 215-216, 358, 585 Transverse shear deformation beams, 26-27, 170-171, 495-496, 549 plates, 533-535 Trapezoidal rule, 418, 605 Trefftz elements, 166 Trilinear solid element, 102-103 Underrelaxation, 600 Unsupported structure, 38, 364, 385, 396, 407 Variational methods, 136-171 Vibration acoustical, 474-477 bars, 380, 387 beams and frames, 380, 385-386,436-437 bound on frequencies, 382-383 computational considerations, 431^132 forced vibration, 405-407, 438-439 frequency estimates, 432, 437 harmonic response, 373, 405-407, 438-439 multiple d.o.f., 384-385 order of error, 383 plates, 381, 393 single d.o.f., 383-384 spurious modes and, 227, 383, 412,431 symmetry, use of, 57, 434 see also Eigenproblems Virtual work principle, 88, 156 Viscous relaxation, 601 Von Mises stress, 117, 232-233, 609 Warped elements, 341, 574, 577-578, 584 Wave equation, 474, 477 Wavefront solution method, 44, 671 Wave propagation, 408, 414-416, 433-434, 617-618 see also Response history Waves, fluid surface, 479 Weak form, 136, 151-156 Weight, see Loads Weighted residual methods, 179-198 Winkler foundation, 287-288, 353 Work, see Energy Zero energy mode, see Spurious modes
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Concepts and Applications of Finite Element Analysis - Fourth Edition رابط مباشر لتنزيل كتاب Concepts and Applications of Finite Element Analysis - Fourth Edition
|
|