كتاب Handbook of Thermoplastic Elastomers
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Handbook of Thermoplastic Elastomers

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 19002
التقييم : 35506
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Handbook of Thermoplastic Elastomers  Empty
مُساهمةموضوع: كتاب Handbook of Thermoplastic Elastomers    كتاب Handbook of Thermoplastic Elastomers  Emptyالإثنين 23 أكتوبر 2023, 6:47 am

أخواني في الله
أحضرت لكم كتاب
Handbook of Thermoplastic Elastomers
Jiri George Drobny
Drobny Polymer Associates

كتاب Handbook of Thermoplastic Elastomers  H_b_o_34
و المحتوى كما يلي :


Contents
Preface xvii
1 Introduction 1
1.1 Elasticity and Elastomers . 1
1.2 Thermoplastic Elastomers 2
1.2.1 Phase Structure . 2
1.2.2 Methods of Synthesis of Thermoplastic Elastomers 3
1.2.2.1 Methods of Synthesis of Block Copolymers . 3
1.2.2.2 Methods of Synthesis of Other Thermoplastic Elastomers . 4
1.2.3 Phase Separation 4
1.2.4 Classification of Thermoplastic Elastomers 5
1.2.4.1 Nomenclature of Block Copolymers . 5
1.2.5 Advantages and Disadvantages of Thermoplastic Elastomers . 6
1.2.6 Demand for Thermoplastic Elastomers
and Its Growth 7
References . 7
2 A Brief History of Thermoplastic Elastomers . 9
References 10
3 Additives 13
3.1 Antioxidants . 13
3.2 Light Stabilizers 13
3.2.1 UV Absorbers 14
3.2.2 Quenchers 14
3.2.3 Free Radical Scavengers 14
3.2.4 Evaluation of UV Stability 14
3.3 Nucleating Agents . 14
3.4 Flame Retardants . 15
3.4.1 Flammability Tests . 16
3.5 Colorants . 17
3.5.1 Optical Properties of Colorants 17
3.5.2 Characteristics of Colorants 17
3.5.3 Inorganic Pigments 17
3.5.4 Organic Pigments . 18
3.5.5 Special Effect Pigments . 18
3.5.6 Colorant Forms . 18
3.6 Antistatic Agents 19
3.6.1 Types of Antistatic Agents . 19
3.6.2 Electrically Conductive Materials . 19
3.7 Slip Agents 19
3.8 Antiblocking Agents 20
3.9 Processing Aids 20
3.10 Fillers and Reinforcements 20
3.10.1 Fillers Commonly Used in Thermoplastic Polymers . 21
3.10.1.1 Cubic and Spheroidal Fillers . 21
3.10.1.2 Platy Fillers . 22
3.10.1.3 Fibrous Fillers . 22
3.10.1.4 Nanofillers 22
3.11 Plasticizers 23
3.11.1 Types of Plasticizers . 23
3.11.2 Methods of Incorporation 23
3.12 Other Additives . 23
3.13 Selection of Additives 24
vii3.14 Health, Hygiene, and Safety . 25
References 25
4 Processing Methods Applicable to Thermoplastic Elastomers . 29
4.1 Introduction . 29
4.1.1 Properties Influencing Processing 29
4.1.1.1 Flow Properties 29
4.1.1.2 Thermal Properties 31
4.1.1.3 Shrinkage and Warping 32
4.1.2 Pre-Processing . 33
4.1.2.1 Drying . 34
4.1.2.2 Coloring 34
4.2 Mixing and Blending . 35
4.2.1 Basic Concepts Pertaining to Mixing 36
4.2.1.1 Melting 36
4.2.1.2 Rheology and Flow Pertaining to Mixing . 36
4.2.1.3 Residence Time 38
4.2.1.4 Specific Mechanical Energy . 38
4.2.2 Polymer Blends . 39
4.2.3 Mixing Equipment . 40
4.2.3.1 Batch Mixers 40
4.2.3.2 Continuous Mixers 42
4.2.3.3 Other Mixing Machinery 43
4.2.4 Material Feeding and Feeders 47
4.2.5 Finishing Operations . 47
4.2.5.1 Filtration . 47
4.2.5.2 Size Reduction . 47
4.3 Extrusion . 51
4.3.1 Fundamentals of Extrusion Processes . 51
4.3.2 The Extruder . 52
4.3.3 Extrusion Methods . 54
4.3.3.1 Film and Sheet Extrusion . 55
4.3.3.2 Coextrusion . 60
4.3.3.3 Wire Coating 60
4.3.3.4 Extrusion of Pipe and Tubing 62
4.3.3.5 Extrusion of Profiles . 65
4.3.3.6 Extrusion Coating . 65
4.3.4 Process Control in Extrusion . 65
4.4 Injection Molding 66
4.4.1 General Considerations 66
4.4.2 Basic Technology . 67
4.4.3 The Process . 67
4.4.4 Injection Molding Machinery 67
4.4.4.1 Clamp Unit . 68
4.4.4.2 Injection Unit 69
4.4.4.3 Power Systems 72
4.4.4.4 Control Systems 72
4.4.5 The Injection Mold . 74
4.4.5.1 Injection Mold Components 74
4.4.5.2 Injection Mold Types 74
4.4.6 Injection Mold Feed Systems . 76
4.4.6.1 Cold Runners 77
4.4.6.2 Sprues 78
4.4.6.3 Gates . 78
4.4.6.4 Hot Runners 80
4.4.7 Injection Mold Features . 81
4.4.7.1 Materials . 81
4.4.7.2 Cooling 81
4.4.7.3 Venting 83
viii CONTENTS4.4.7.4 Ejection 84
4.4.8 Materials of Construction 84
4.4.9 Dimensional Stability of Parts . 84
4.5 Compression Molding 86
4.5.1 Types of Compression Molds . 87
4.5.2 The Compression Molding Press 89
4.5.3 Compression Molding of Thermoplastics . 89
4.6 Transfer Molding 90
4.6.1 Background . 90
4.6.2 Transfer-In Compression Molding 90
4.6.3 Plunger Molding 91
4.6.4 Screw Transfer Molding . 91
4.6.5 Types of Transfer Molds 91
4.6.6 Transfer Molding of TPEs . 93
4.6.6.1 Mold Design 93
4.6.6.2 Operation of the Mold 96
4.6.6.3 Transfer Molding Process Variables 96
4.7 Blow Molding 97
4.7.1 Blow Molding Processes 97
4.7.1.1 The Extruder 98
4.7.1.2 The Parison Head 98
4.7.2 Extrusion Blow Molding 99
4.7.3 Injection Blow Molding . 102
4.7.4 Stretch Blow Molding 102
4.7.5 Dip Blow Molding . 103
4.7.6 Multiblock Blow Molding 104
4.7.7 Coextrusion Blow Molding Techniques 104
4.7.8 Sequential Extrusion . 104
4.7.9 Molds for Blow Molding . 105
4.7.9.1 Basic Features . 105
4.7.9.2 Pinch-Off Zone 105
4.7.9.3 Blowing and Calibrating Devices . 106
4.7.9.4 Venting and Surface Finish . 106
4.7.9.5 Cooling . 107
4.7.10 Examples of Blow Molded Parts 108
4.8 Rotational Molding . 108
4.8.1 Background 108
4.8.2 Basic Process Technology 109
4.8.3 Rotational Molding Equipment . 110
4.8.3.1 Batch Systems 111
4.8.3.2 Carousel Machines . 111
4.8.3.3 Shuttle Machines 112
4.8.3.4 Clamshell Machines 112
4.8.4 Equipment and Process Design 112
4.8.4.1 Molds 112
4.8.4.2 Mold Surface Preparation 114
4.8.5 Operation of Rotomolding Processes 114
4.8.5.1 Oven Dwell Time 115
4.8.5.2 Cooling Cycle 117
4.8.5.3 Venting . 117
4.8.5.4 Part Stripping . 117
4.8.5.5 Rotation Rate and Ratio . 118
4.8.6 Rotolining Process 118
4.8.7 Melting of Polymer and Part Formation . 119
4.8.8 Troubleshooting 120
4.8.9 Conclusion . 120
4.9 Foaming of Thermoplastics . 121
4.9.1 Introduction . 121
4.9.2 Background 121
CONTENTS ix4.9.3 Foaming Technology 121
4.9.3.1 Mechanical Foaming . 122
4.9.3.2 Chemical Foaming . 122
4.9.3.3 Physical Foaming . 122
4.9.4 Foam Manufacturing Processes 123
4.10 Thermoforming 124
4.10.1 Process Basics 124
4.10.2 Process Factors . 125
4.10.2.1 Forming Force 126
4.10.2.2 Mold Type . 127
4.10.2.3 Sheet Prestretch 127
4.10.2.4 Material Input 128
4.10.2.5 Process Phase . 128
4.10.2.6 Heating . 128
4.11 Calendering 129
4.12 Secondary Manufacturing Processes 129
4.12.1 Film and Sheet Orientation 129
4.12.1.1 Machine Direction Orientation . 130
4.12.1.2 Transverse Direction Orientation . 131
4.12.1.3 Biaxial Orientation . 131
4.12.1.4 Heat Shrinkable Films and Tubing . 132
4.12.2 Welding . 133
4.12.2.1 Heated Tool Welding . 133
4.12.2.2 Hot Gas Welding 133
4.12.2.3 Ultrasonic Welding . 134
4.12.2.4 Spin Welding . 135
4.12.2.5 Infrared Welding 136
4.12.2.6 High Frequency Welding 136
4.12.2.7 Vibration Welding . 137
4.12.2.8 Induction Welding . 137
4.12.2.9 Microwave Welding 138
4.12.2.10Other Welding Methods . 139
4.12.3 Adhesive Bonding 141
4.12.3.1 Principles of Adhesive Bonding 141
4.12.3.2 Methods of Surface Treatment 142
4.12.3.3 Types of Polymeric Adhesives 145
4.12.3.4 Application of Adhesives 146
4.12.3.5 Formation of an Adhesive Bond . 146
4.12.3.6 Measurement of the Bond Strength . 146
4.12.4 Mechanical Fastening . 147
4.12.5 Decorating . 148
4.12.5.1 Applique´s . 148
4.12.5.2 Painting 148
4.12.5.3 In-Mold Decorating 148
4.12.5.4 Metallization . 148
4.12.5.5 Printing . 149
4.12.5.6 Other Decorating Processes 150
4.12.6 Cross-Linking . 150
4.13 General Processing Technology of TPEs . 150
4.13.1 Compounding of TPEs . 150
4.13.2 Injection Molding . 151
4.13.2.1 Overmolding . 152
4.14 Process Simulation . 153
4.15 Product Development and Testing 153
References . 154
5 Styrenic Block Copolymers 161
5.1 Introduction 161
5.2 Polystyrene–Polydiene Block Copolymers . 162
x CONTENTS5.2.1 Synthesis of Polystyrene–Polydiene Block Copolymers 162
5.2.2 Morphology of Polystyrene–Polydiene Block Copolymers 163
5.2.3 Critical Molecular Weight for Domain Formation . 164
5.2.4 Properties of Polystyrene–Polydiene Block Copolymers . 165
5.2.4.1 Structure–Property Relationships 165
5.2.4.2 Tensile Properties . 166
5.2.4.3 Viscous and Viscoelastic Properties 166
5.2.4.4 Solution Properties 167
5.2.4.5 Swelling 168
5.2.5 Formulating Styrenic TPEs 168
5.2.5.1 Formulating S–B–S Block Copolymers 168
5.2.5.2 Formulating S–EB–S Block Copolymers . 169
5.2.6 Compounding . 170
5.2.6.1 Melt Mixing 170
5.2.6.2 Dry Blending . 170
5.2.6.3 Solution Mixing . 170
5.2.7 Processing of Compounds from SBCs . 171
5.2.7.1 Extrusion . 171
5.2.7.2 Injection Molding 172
5.2.7.3 Blow Molding 173
5.2.7.4 Thermoforming . 173
5.2.7.5 Compression Molding 173
5.2.7.6 Bonding and Sealing . 173
5.3 SBCs Synthesized by Carbocationic Polymerization . 173
5.3.1 The Polymerization Process . 173
5.3.2 Properties of S–IB–S Block Copolymers 174
References . 175
6 Thermoplastic Elastomers Prepared by Dynamic Vulcanization . 179
6.1 Introduction 179
6.2 The Dynamic Vulcanization Process . 180
6.3 Properties of Blends Prepared by Dynamic Vulcanization 181
6.3.1 TPVs Based on Polyolefins . 181
6.3.1.1 TPVs from EPDM–Polyolefin Blends 181
6.3.1.2 TPVs from Diene Rubbers and Polyolefins . 181
6.3.1.3 TPVs from Butyl and Halobutyl Rubber and PP Resins 182
6.3.1.4 TPVs from Butadiene-Acrylonitrile Rubber and Polyamides 182
6.3.1.5 TPVs Based on Polyacrylate Rubber and Polyamides . 185
6.4 Processing and Fabrication of TPVs . 185
6.4.1 Rheology 185
6.4.2 Extrusion 185
6.4.3 Injection Molding . 186
6.4.4 Compression Molding . 186
6.4.5 Blow Molding . 187
6.4.6 Thermoforming 187
6.4.7 Calendering 187
6.4.8 Extrusion Foaming 187
6.4.9 Bonding of TPVs . 188
References . 189
7 Polyolefin-Based Thermoplastic Elastomers 191
7.1 Introduction 191
7.2 Thermoplastic Polyolefin Blends 191
7.2.1 Compounding of TPOs 193
7.3 Morphology 193
7.4 Properties of TPOs . 193
7.4.1 Mechanical Properties of TPOs 193
7.4.1.1 Stress–Strain Properties . 193
7.4.2 Service Temperatures . 194
7.4.3 Weathering . 195
CONTENTS xi7.4.4 Chemical Resistance 195
7.4.5 Adhesion 195
7.4.6 Electrical Properties . 195
7.5 Processing of TPOs 195
7.5.1 Injection Molding . 196
7.5.1.1 Equipment and Process Conditions . 196
7.5.1.2 Mold Design . 196
7.5.2 Extrusion 196
7.5.2.1 Equipment and Process Conditions . 196
7.5.3 Other Processing Methods 197
7.6 Painting of TPOs 198
References . 198
8 Thermoplastic Elastomers Based on Halogen-Containing Polyolefins 201
8.1 Introduction 201
8.2 Blends of PVC with Nitrile Rubber (NBR) . 201
8.2.1 Melt Compounding and Processing 202
8.2.2 Physical and Mechanical Properties . 202
8.2.3 Other Properties . 202
8.3 Blends of PVC with Other Elastomers . 203
8.3.1 Blends of PVC with Copolyester Elastomers . 203
8.3.2 Blends of PVC with Thermoplastic Polyurethane Elastomers 204
8.4 Melt-Processable Rubber . 204
8.4.1 Physical and Mechanical Properties . 205
8.4.2 Chemical Resistance 206
8.4.3 Weather and Flame Resistance 206
8.4.4 Electrical Properties . 207
8.4.5 Grades of MPR 207
8.4.6 Blends with Other Polymers . 208
8.4.7 Processing . 209
8.4.7.1 Injection Molding 209
8.4.7.2 Extrusion . 209
8.4.7.3 Extrusion Blow Molding . 210
8.4.7.4 Calendering . 211
8.4.7.5 Compression Molding 211
8.4.7.6 Bonding and Welding . 212
8.5 Thermoplastic Fluorocarbon Elastomer . 212
References . 213
9 Thermoplastic Polyurethane Elastomers . 215
9.1 Introduction 215
9.2 Synthesis of TPUs . 216
9.2.1 Raw Materials for TPUs 216
9.2.1.1 Raw Materials for Soft Segments 216
9.2.1.2 Raw Materials for Hard Segments . 216
9.2.1.3 Other Raw Materials . 217
9.3 Morphology 218
9.3.1 Morphology of Hard Segments . 218
9.4 Thermal Transitions 218
9.5 Properties . 219
9.5.1 Mechanical Properties . 219
9.5.1.1 Stress–Strain Properties . 221
9.5.1.2 Compression Set 221
9.5.1.3 Hardness . 221
9.5.1.4 Stiffness 221
9.5.1.5 Dynamic Properties 221
9.5.2 Thermal Properties . 222
9.5.3 Hydrolytic Stability 222
9.5.4 Chemical Resistance 223
9.5.5 Abrasion Resistance 223
xii CONTENTS9.5.6 Ultraviolet Stability 223
9.5.7 Electrical Properties . 223
9.6 Processing of TPUs 223
9.6.1 Rheology of TPUs 224
9.6.2 Drying 224
9.6.3 Injection Molding . 224
9.6.3.1 Operating Conditions . 227
9.6.3.2 Insert Molding 228
9.6.3.3 The Use of Regrind 228
9.6.4 Extrusion 228
9.6.4.1 Screw Design 228
9.6.4.2 Die Design 229
9.6.4.3 Extrusion Temperature Profiles 229
9.6.4.4 Extrusion Methods Used 229
9.6.4.5 PostExtrusion Conditioning . 229
9.6.5 Calendering 229
9.6.6 Blowmolding 229
9.6.7 Thermoforming 229
9.7 Blends of TPU with Other Polymers . 230
9.8 Bonding and Welding . 230
9.8.1 Heat Welding and Sealing 230
9.8.2 Solvent and Adhesive Bonding . 230
References . 230
10 Thermoplastic Elastomers Based on Polyamides . 235
10.1 Introduction 235
10.2 Synthesis 235
10.2.1 Synthesis of PEAs, PEEAs, and PCEAs 235
10.2.2 Synthesis of PE-b-As 236
10.2.3 Synthesis of Other Thermoplastic PolyamideElastomers . 236
10.3 Morphology 237
10.4 Structure–Property Relationships . 238
10.5 Physical and Mechanical Properties . 238
10.5.1 Tensile Properties 238
10.5.2 Properties at Elevated Temperatures 239
10.5.3 Tear Strength . 241
10.5.4 Abrasion Resistance 241
10.5.5 Compression Set . 242
10.5.6 Flex Properties 242
10.6 Chemical and Solvent Resistance 242
10.7 Electrical Properties 243
10.8 Other Properties . 243
10.8.1 Weatherability . 243
10.8.2 Adhesion 243
10.9 Compounding . 243
10.10 Processing . 244
10.10.1 Rheology 244
10.10.2 Drying 244
10.10.3 Injection Molding . 244
10.10.4 Extrusion 245
10.10.5 Other Processing Methods 245
10.11 Bonding and Welding . 245
10.11.1 Bonding . 245
10.11.2 Welding . 246
References . 246
11 Thermoplastic Polyether Ester Elastomers 249
11.1 Introduction 249
11.2 Synthesis 249
11.3 Morphology 249
CONTENTS xiii11.4 Properties of Commercial COPEs 250
11.4.1 Stress–Strain Properties . 250
11.4.2 Dynamic Properties . 250
11.4.3 Cut Growth Resistance 251
11.4.4 Impact Resistance 251
11.4.5 Responses to Changes of Temperature 252
11.4.6 Abrasion Resistance 252
11.4.7 Electrical Properties . 253
11.4.8 Chemical Resistance 253
11.4.9 Other Properties . 254
11.5 COPE Blends . 255
11.5.1 Blends of Different Grades of COPE . 255
11.5.2 Blends with Other Polymers . 255
11.6 Processing . 255
11.6.1 General . 255
11.6.2 Melt Rheology . 256
11.6.3 Injection Molding . 257
11.6.3.1 Screw Design 257
11.6.3.2 Clamping Force . 257
11.6.3.3 Molding Conditions 257
11.6.3.4 Molds 257
11.6.3.5 Shrinkage . 258
11.6.3.6 Overmolding (Insert Molding) . 259
11.6.4 Extrusion 259
11.6.4.1 Screw Design 259
11.6.4.2 Processing Conditions 259
11.6.5 Blow Molding . 261
11.6.5.1 Processing Conditions 261
11.6.6 Melt Casting 261
11.6.7 Rotational Molding 262
11.6.8 Welding and Bonding 262
11.6.8.1 Welding 262
11.6.8.2 Bonding and Adhesion 262
11.6.9 Finishing . 262
References . 263
12 Ionomeric Thermoplastic Elastomers 265
12.1 Introduction 265
12.2 Synthesis 265
12.3 Morphology 265
12.4 Properties and Processing 266
References . 267
13 Other Thermoplastic Elastomers 269
13.1 Elastomeric Star Block Copolymers . 269
13.1.1 General Methods for the Synthesis of
Star Copolymers . 269
13.1.2 Physical Properties of Star Block Copolymers 270
13.2 TPEs Based on Interpenetrating Networks 270
13.2.1 Synthesis of Thermoplastic IPNs . 271
13.2.2 Properties and Processing of Thermoplastic IPNs . 271
13.3 TPE Based on Polyacrylates 272
13.3.1 Synthesis of Triblock Copolymers Based on Methyl Methacrylate and Butadiene 272
13.3.2 Properties of M–B–M Triblock Copolymers 272
13.3.3 Synthesis of Poly(MMA-t BA-MMA) Elastomers . 272
13.3.4 Synthesis of Poly(MMA-b-Alkylacrylate-b-MMA) . 272
13.3.5 Mechanical Properties of Fully Acrylic Triblock and Branched Block Copolymers 273
References . 273
xiv CONTENTS14 Thermoplastic Elastomers Based on Recycled Rubber and Plastics . 277
14.1 Introduction 277
14.2 EPDM Scrap . 277
14.3 Butadiene-acrylonitrile Rubber (NBR) Scrap . 277
14.4 Recycled Rubber 277
14.5 Waste Latex 278
14.6 Waste Plastics 278
References . 278
15 Applications of Thermoplastic Elastomers 281
15.1 Introduction 281
15.2 Applications for Styrenic TPEs . 281
15.2.1 SBCs as Replacement of Vulcanized Rubber 282
15.2.2 SBCs in Adhesives, Sealants, and Coatings . 283
15.2.2.1 Solution Behavior of SBCs . 286
15.2.2.2 Examples of Applications 287
15.2.3 Blends of SBC with Other Polymers . 288
15.2.3.1 Blends of SBCs and PS . 288
15.2.3.2 Blends of SBCs and Polyolefins . 288
15.2.3.3 Blends of SBCs with Thermosets 288
15.2.4 Modified Asphalt . 289
15.3 Applications of Thermoplastic Vulcanizates (TPVs) and ETPVs . 289
15.3.1 Introduction . 289
15.3.2 Comparison of TPVs and Thermoset Rubber Materials . 289
15.3.3 Commercial Applications of TPVs . 290
15.3.3.1 Automotive Applications . 290
15.3.3.2 Hose, Tubing, and Sheet 290
15.3.3.3 Mechanical Rubber Goods and Consumer Goods 291
15.3.3.4 Architectural and Construction 292
15.3.3.5 Electrical and Electronics 292
15.3.3.6 Medical and Food Contact . 293
15.4 Applications of Thermoplastic Polyolefin Elastomers (TPOs) 294
15.4.1 Automotive . 294
15.4.2 Wire and Cable 294
15.4.3 Mechanical Goods 294
15.4.4 Other Applications 295
15.5 Applications of Melt-Processable Rubber (MPR) 296
15.5.1 Industrial Hose 296
15.5.2 Automotive . 296
15.5.3 Wire and Cable 297
15.5.4 Elastomeric Sheeting 297
15.5.5 Molded Goods . 297
15.5.6 Fabric Coating . 297
15.5.7 Other Applications 298
15.6 Applications of PVC Blends . 298
15.6.1 PVC–Nitrile Rubber (NBR) Blends 298
15.6.2 PVC–Copolyester Elastomer (COPE) Blends . 299
15.6.3 PVC–TPU Blends 299
15.7 Application of TPUs 300
15.7.1 Introduction . 300
15.7.2 Commercial Applications . 300
15.7.2.1 Automotive 300
15.7.2.2 Hose and Tubing 300
15.7.2.3 Wire and Cable . 300
15.7.2.4 Wheels and Casters . 301
15.7.2.5 Film and Sheet . 302
15.7.2.6 Adhesives, Sealants, and Coatings . 302
15.7.2.7 Mechanical Goods, Consumer, and Sporting Goods . 302
15.7.2.8 Medical Applications . 303
CONTENTS xv15.7.2.9 Blends with Other Polymers 304
15.8 Application of Thermoplastic Polyether Ester Elastomers 304
15.8.1 General Properties and Processing 304
15.8.2 Commercial Applications . 304
15.8.2.1 Automotive Applications . 304
15.8.2.2 Electrical/Electronic Applications . 304
15.8.2.3 Extruded and Molded Mechanical Goods . 305
15.8.2.4 Other Applications . 305
15.9 Applications of Polyamide TPEs 306
15.9.1 Introduction . 306
15.9.2 Commercial Applications . 307
15.9.2.1 Automotive 307
15.9.2.2 Sporting Goods . 307
15.9.2.3 Wire and Cable . 308
15.9.2.4 Technical Goods 308
15.9.2.5 Medical Applications . 309
15.9.2.6 Other Applications . 309
15.10 Applications of Ionomeric TPEs 310
15.10.1 Introduction . 310
15.10.2 Commercial Applications . 311
15.10.2.1Adhesives . 311
15.10.2.2Other Applications . 311
15.11 Applications of Other TPEs . 311
15.11.1 Applications of Star Block Copolymers . 311
15.11.2 Applications of Thermoplastic Interpenetration Networks (IPNs) . 312
15.11.3 Applications of Special Blends and Proprietary Compounds 313
References . 313
16 Recycling of Thermoplastic Elastomers 317
16.1 Introduction 317
16.2 Recycling Methods for Thermoplastic Elastomers (TPEs) 317
References . 318
17 Recent Developments and Trends 319
17.1 Current State . 319
17.2 Drivers for the Growth of TPEs 319
17.3 Trends in Technical Development 319
17.3.1 Trends in Development and Uses of
Individual TPEs 319
17.4 Other New Developments 321
References . 321
Appendix 1: Books, Conferences, Major Review Articles . 323
Appendix 2: Major Suppliers of Thermoplastic Elastomers and Compounds 325
Appendix 3: ISO Nomenclature for Thermoplastic Elastomers . 329
Appendix 4: Processing Data Sheets for Commercial Thermoplastic Elastomers
and Compounds 333
Appendix 5: Technical Data Sheets for Commercial Thermoplastic Elastomers
and Compounds 345
Appendix 6: Recent TPE Patents . 379
Glossary 381
Index 391
Index
3D blow molding, 105
abrasion resistance, 381
of commercial COPEs, 252–253
of polyamides, 241–242
of TPUs, 223
acrylonitrile, 184
additives, 13–25
antiblocking agents, 20
antimicrobials, 23
antioxidants, 13
antistatic agents, 19, see also separate entry
colorants, 17–19
fillers, 20–23, see also separate entry
flame retardants, 15–17
health, hygiene and safety, 25
light stabilizers, 13–14
nucleating agents, 14–15
plasticizers, 23, see also separate entry
processing aids, 20
reinforcements, 20–23
selection of, 24–25
slip agents, 19–20
adhesion/adhesive bonding, 141–147, 381, see also
polymeric adhesives
adherend, 381
adhesive bond formation, 146
adhesive bond strength, 381
application of, 146
bond strength measurement, 146–147
in copolyesters processing, 262
corona discharge treatment, 143
corona treatment, 143
failure, 381
flame treatment, 143
plasma treatment, 143
principles of, 141–142
surface treatment level, evaluation, 144–145
surface treatment methods, 142–145
aging, 13
agitators, 40
Alcryn®, 2, 10
general purpose grades, 362–363, 366–367
injection molding grades, 364–365
alumina trihydrate (ATH), 15
amorphous phase, 381
amorphous polymer, 381
anaerobic adhesives, 145
anionic polymerization, 3
annealing, 381
anthraquinones, 18
antiblocking agents, 20
antimicrobials, 23
antimony trioxide, 16
antioxidants, 13
antistatic agents, 19
electrically conductive materials, 19
external antistats, 19
internal antistats, 19
ionic, 19
nonionic, 19
types of, 19
antithixotropic fluids, 37
apparent viscosity, 29
applications of TPEs, 281–315
of (TPVs) and ETPVs, 289–294
of interpenetrating networks (IPNs), thermoplastic,
312–313
of ionomeric TPEs, 310–311
of melt-processible rubber (MPR), 296–298, see
also under melt-processible rubber (MPR)
of polyamide TPEs, 306–310, see also under
polyamide TPEs
of PVC blends, 298–299
of star block copolymers, 311–313
styrenic TPEs, 281–289, see also under styrenic
TPEs
of thermoplastic polyether ester elastomers,
304–306, see also under thermoplastic polyether
ester elastomers
of thermoplastic polyolefin elastomers (TPOs),
294–296, see also under thermoplastic polyolefin
elastomers
of TPUs, 300–304, see also under thermoplastic
polyurethane elastomers
aramid fibers, 22
arc spraying, 148
arm-first synthesis method, 269–270
ASTM D471, 381
ASTM International, 381
auxiliary-ram molds, 93
azo pigments, 18
balanced runner, 77
Banbury® mixer, 41–42
bar, 381
barium sulfate, 21
barrier screw, 54
batch mixers, 40–42
bed, 136
belt process, 218
biaxial orientation, 131–132, 381
one-step biaxial orientation, 131
two-step biaxial orientation process, 131
Bingham plastic, 37
391blending, in TPEs processing, 35–51
block copolymers
linear block, 3
nomenclature of, 5–6
star block copolymer, 3
synthesis methods, 3
blow molding, 30, 97–108
3D blow molding, 105
blow molding processes, 97–99
blowing and calibrating devices, 106
coextrusion blow molding techniques, 104
continuous extrusion blow molding process, 100
cooling, 107
in copolyesters processing, 261
dip blow molding, 103–104
extrusion blow molding, 99–102
extrusion stretch blow molding, 103
injection blow molding, 102
injection stretch blow molding processes, 103
intermittent accumulator extrusion, 101
molds for, 105–107
multiblock blow molding, 104
of polyolefin-based TPEs, 198
of TPVs, 187
parison head, 98–99
in polystyrene–polydiene block copolymers, 173
reciprocating screw intermittent extrusion, 101
sequential extrusion, 104–105
single-stage extrusion, 100
single-stage injection, 103
stretch blow molding, 102–103
in TPUs processing, 229
venting and surface finish, 106–107
blown film extrusion, 57–59, 260
blown process, 132
blow-up ratio (BUR), 58
bonding and welding
in MPR, 211–212
of polyamides, 245–246
bonding
in copolyesters processing, 262
of TPUs, 230
of TPVs, 188–189
bubble process, 132
butadiene-acrylonitrile rubber (NBR) scrap, 277
calcined limestone (CaO), 21
calcium carbonate, 21
calender/calendering, 129, 381
of MPR, 211
of polyolefin-based TPEs, 197
in TPUs processing, 229
of TPVs, 187
carbocationic polymerization, SBCs synthesized by,
173–175
polymerization process, 173–174
S–IB–S block copolymers, properties of, 174–175
carbon black, 382
carbon fibers, 22
carbonifics, 15
carousel machines, 111–112
Carreau model, 30
cast film process, 55–57, 260, 382
cationic polymerization, 4
centrifugal pelletizers, 49
char forming systems, 15
chemical blowing agents (CBAs), 123
chemical resistance, of TPUs, 223
chill roll process, 56–57
choker bar, 59
clamshell machines, 112
clay, 22
coalescence, 382
coat hanger die, 59
coefficient of thermal expansion, 382
coextrusion, 60, 104, 261
cohesive energy density, 141
cohesive failure, 381–382
cohesive strength, 141
co-injection molding, 152
cold flow, 382
color concentrates, 18
colorants, 17–19
characteristics of, 17
color concentrates, 18
colorant forms, 18–19
dry colorants, 18
dyes, 17
inorganic pigments, 17–18
liquid colorants, 18
optical properties of, 17
pigments, 17, see also separate entry
coloring, in TPEs processing, 34–35
color concentrate or masterbatch, 35
color-compounded polymers, 35
in-process coloring, 34
pre-process coloring, 34
commercial COPEs
abrasion resistance, 252–253
chemical resistance, 253–254
cut growth resistance, 251
dynamic properties, 250–251
electrical properties, 253
flame resistance, 254
impact resistance, 251
melting characteristics of, 254
properties of, 250–255
resistance to fluids, 254
resistance to ionizing radiation, 254
resistance to permeation, 254
responses to changes of temperature, 252
stress–strain properties, 250
392 HANDBOOK OF THERMOPLASTIC ELASTOMERSthermal properties, 254
weathering resistance, 254
compounding, 35
of polystyrene–polydiene block copolymers, 170–171
dry blending, 170
melt mixing, 170
solution mixing, 170–171
of TPEs, 150–151
compression molding, 30, 86–90
components, 86
compression molding press, 89
direct positive mold design, 87
flash mold design, 87
fully automatic, 87
hand molds, 87
landed positive mold design, 88
of MPR, 211
in polystyrene–polydiene block copolymers, 173
semiautomatic, 87
semi-positive horizontal flash mold design, 88
semi-positive vertical flash mold design, 88
stages of, 86
standard designs for closure of cavities in, 87
of TPVs, 186–187
types of, 87–89
compression set properties of TPUs, 221
Compuplast, 153
concentricity, 61
conduction, 382
contact adhesives, 145, 382
contact angle, 141, 382
control systems, in injection molding, 72
controlled/living radical polymerization (CLRP), 4
convection, 382
cooling cycle, in rotational molding, 117
COPEs, see copolyesters
copolyesters (COPEs), 203–204, 249–263
commercial COPEs, 250–255, see also separate entry
COPE blends, 255
metallization of, 262
morphology, 249–250
printing on, 263
processing, 255–263, see also separate entry
synthesis, 249
copolyetherester thermoplastic elastomers, 9
copolymerization, 382
corefirst synthesis method, 269–270
corona treatment, 143, 382
coupling method of polystyrene–polydiene block
copolymers synthesis, 162–163
covalent bond, 382
cover extrusion, 260
creep, 382
critical shear rate, 382
critical surface tension, 141
cross model, 30
cross-linking, 150, 382
crystallinity, 66, 383
crystalline hydrocarbon polymers, 169
crystalline melting point, 383
crystalline multiblock copolymers, 5
crystallization temperature, 383
cyanoacrylates, 146
decompression foaming, 123
decorating, 148–150
applique´ s, 148
cross-linking, 150
in-mold decorating, 148
metallization, 148–149, see also separate entry
painting, 148
printing, 149–150, see also separate entry
deflection temperature under load, 383
deformation under load, 383
degradation, 13, 383
density, 383
Desmopan
Desmopan®445, 368
Desmopan®453, 369
diblock copolymer, 5
dicing, 50–51
die(s), 62, 67
die land, 383
die lips, 59
die-face pelletizers, 49
spider-type tube die, 63
tube and pressure die, 63
dielectric breakdown strength or voltage, 383
dielectric constant, 383
dielectric dissipation factor, 383
differential scanning calorimetry, 383
diisocyanate polyaddition reaction, 9
dip blow molding, 103–104
dipole polarization, 136
dispersive mixing, 36
distributive mixing, 36
DowTM ENR TPO typical properties, 352
drag flow, 38
Dray mixer, 46
dry blending, 170
dry colorants, 18
dry-cut eccentric pelletizers, 49
drying, 34
in polyamides processing, 244
Dulmage section, 46
DuPont, 9
DuPontTM ETPV typical properties, 354
durometer, 383
dyes, 17
dynamic vulcanization, TPEs prepared by, 179–189,
see also thermoplastic vulcanizates (TPVs)
properties of blends prepared by, 181–185
INDEX 393Ecdel®, 9
eddy currents, 138
ejection, 172
in injection molding, 84
ElastamaxTM styrenic block copolymers typical
properties, 345
elasticity/elastomers, 1–2, 36, 383
elastomer adhesives, 145
elastomeric star block copolymers, 269–270, see also
star copolymers
electrical properties, of TPUs, 223
electrically conductive materials, 19
electroless plating, 149
electrolytic plating, 149
electron beam radiation, 383
Ellis model, 30
elongation at break, 383
elongational flow, 36
EngageTM 8100 series typical properties, 353
entanglements, molecular, 1
enthalpy, 31
epoxy resins, 145
Estane® ester-based products typical properties,
369–370
Estane® ether-based products typical properties,
370–371
etching, 144
ethylene propylene diene monomer (EPDM), 151,
277
ethylene-propylene copolymers (EPM), 9
ethylene-vinylacetate copolymer (EVA), 277
exfoliation, 22
expandable foaming, 123
extended mandrel technique, 64
extrusion, 30, 51–66, 171–173
blown film extrusion, 172
coextrusion, 60
control variables, 66
conventional cross-head design, 62
in copolyesters processing, 259–261
extended mandrel technique, 64
extruder, 52–54
extrusion blow molding, 99–102
extrusion coating, 65
extrusion foaming, of TPVs, 187–188
extrusion methods, 54–65
extrusion screw, features, 53
film and sheet extrusion, 55–60, see also separate
entry
fundamentals of, 51–52
of MPR, 210–211
of pipe and tubing, 62–65
in polyamides processing, 245
of polyolefin-based TPEs, 196–197
process control in, 65–66
processing, of MPR, 209–210
of profiles, 65
of S–B–S block copolymers, 171–172
of S–EB–S block copolymers, 171–172
self-centered die cross-head design, 62
single-screw extruder, 52
in TPUs processing, 228–229
die design, 229
extrusion methods used, 229
extrusion temperature profiles, 29
postextrusion conditioning, 229
of TPVs, 185–186
vacuum trough method, 63
wire coating, 60–62
fabric coating, 260
Farrel continuous mixer (FCM®), 42–43
fatigue, 384
fatigue life, 384
fatigue strength, 384
feedback, 74
feeders, 47
feedscrew nomenclature, 45
fibrous fillers, 22
aramid fibers, 22
carbon fibers, 22
glass fibers (chopped strand), 22
fibrous reinforcements, 33
filament, 384
fillers and reinforcements, 20–23, 184
barium sulfate, 21
carbon black, 21
clay, 22
cubic and spheroidal fillers, 21
fibrous fillers, 22, see also separate entry
glass and ceramic beads, 21
Kaolin, 22
mica, 22
nanofillers, 22–23
platy fillers, 22
synthetic silica, 21
talc, 22
film and sheet extrusion, 55–60
blown film extrusion, 57–59
cast film extrusion, 55–57
chill roll cast film process, 55–56
sheet extrusion, 59–60
water quench cast film process, 56
filtration, 47
finishing operations, in TPEs processing, 47–51
dicing, 50–51
filtration, 47
granulation, 51
pelletizing, 48–50, see also separate entry
size reduction, 47–51
flame retardants, 15–17
char forming systems, 15
394 HANDBOOK OF THERMOPLASTIC ELASTOMERSflammability tests, 16–17
intumescent systems, 15
limiting oxygen index (LOI) test, 16–17
polyolefins, 15
flame spraying, 143, 148
flavanthrones, 18
flexural modulus of elasticity, 384
flocking, 150
flood feeding, 45
Flory–Rehner equation, 168
fluorescent pigments, 18
fluorescent whitening agents, 24
fluoropolymer-based processing, 20
foam extrusion, 261
foaming of TPEs, 121–124
accumulating extrusion, 124
cell growth, 121–122
cell initiation, 121
cell stabilization, 121
chemical foaming, 122
cooling extruder, 124
decompression foaming, 123
expandable foaming, 123
flash extrusion, 124
foam extrusion, 124
foam manufacturing processes, 123–124
foaming technology, 121–123
mechanical foaming, 122
physical foaming, 122–123
polymeric foams versus solid polymers, 121
primary extruder, 124
free radical scavengers, 14, 384
free surface energy, 388
friction ratio, 40
fully automatic compression mold, 87
gamma radiation, 384
gamma ray irradiation, 384
gates, 77, 78–80
positions, recommendations in, 79
sprue-gating, 80
types, 79, 172
general-purpose screw, 69
Geniomer®typical properties, 375
GeolastTM TPV, typical properties, 355
glass and ceramic beads, 21
glass fibers (chopped strand), 22
graft copolymer, 5, 191, 384
grafting, 384
granulation, 51
graphite, 384
gravure coating, 384
Grilamid®, 9
halogen-containing polyolefins, TPEs based on,
201–213, see also polyvinyl chloride
blends of PVC with NBR, 201–203, see also under
nitrile rubber
melt-processible rubber, 204–212, see also separate
entry
thermoplastic fluorocarbon elastomer, 212–213
hand compression mold, 87
hard polymer/elastomer graft copolymers, 5
heat activated assembly adhesives, 145
heat deflection temperatures (HDTs), 15, 384
heat distortion temperature (HDT), 384
heated tool welding, 133
high density polyethylene (HDPE), 32
Hookean elastic, 36
hot gas welding, 133–134
hot melt adhesive, 145, 384
hot runners, 80–81, 172
direct hot runner gates, 81
HybrarTM triblock copolymer, properties, 347
hydrolytic stability, of TPUs, 222–223
hysteresis, 138, 384
Hytrel®, 9, 373
immiscible polymers, 39
impact strength, 385
induction welding, 137–138
inert fillers, 169
infrared welding, 136
injection molding, 30, 66–86, 102, 151–153, 385
basic sequence of injection unit, 70
basic technology, 67
clamp unit, 68–69
co-injection molding, 152
cold runners, 77–78
components, 74
control systems, 72–74
cooling feature, 81–83
in copolyesters processing, 257–259
crystallinity, 66
dimensional stability of parts, 84–86
direct hydraulic clamp unit, 68
ejection feature, 84
features, 81–84
gates, 77, 78–80, see also separate entry
general considerations, 66–67
heat, 66
hot runners, 80–81
injection mold feed systems, 76–81
injection molding machinery, 67–74
injection unit, 67, 69–72
insert molding, 153
materials feature, 81
materials of construction, 84
mold types, 74–76
of MPR, 209
operation, 75
overmolding, 152–153
INDEX 395injection molding (continued )
in polyamides processing, 244–245
of polyolefin-based TPEs, 196
in polystyrene–polydiene block copolymers, 172
power systems, 72
process factors, 73
process, 67
processing steps in, 68
runner, 77
single-stage ram or plunger, 69
single-stage screw, 69
sprues, 77–78
stack molds, 76
thermal conductivity, 66
three-plate molds, 75–76
toggle clamp unit, 68
in TPUs processing, 224–228
of TPVs, 186
two-plate molds, 75
two-shot molding, 152
two-stage ram, 69
two-stage screw/ram, 69
venting feature, 83–84
viscosity, 66
injection stretch blow molding processes, 103
inorganic pigments, 17–18
insert molding, 153
in TPUs processing, 228
intercalation, 22
interfacial tension, 39
intermittent extrusion, 101
internal mixers, 41–42
interpenetrating polymer network (IPN), TPEs based
on, 270–272
applications, 312–313
properties and processing of, 271–272
synthesis, 271
intumescent systems, 15
ionizing radiation, 385, 387
ionomeric TPEs, 385
applications, 310–311
IRM 902, 385
IRM 903, 385
ISO nomenclature for TPEs, 329–331
isoindolines, 18
isomers, 5
jacketing (or sheathing), 61
kaolin, 22
Kopel® KP polyester elastomers typical properties,
373
Kraton®, 9
Kraton® D (IR) polymer grades, properties, 347
Kraton® D (SBS) radial polymer grades typical
properties, 347
Kraton® D (SIS) polymer grades, 348
Kraton® D oiled polymer grades, 347
Kraton® G polymer grades typical properties,
349–350
land area, 59
land length, 79
lap joint, 385
lap shear test, 146
laser, 385
laser treatment, 144
laser welding, 140–141
latent heat of fusion, 31
let-down ratio, 35
lettering, 150
lewis base, 385
light stabilizers, 13–14
free radical scavengers, 14
quenchers, 14
UV absorbers, 14
limiting oxygen index (LOI), 16, 385
linear welding, 137
linking, 1
physical, 1
liquid colorants, 18
Lomod®, 9
lubricants, 20
machine direction orientation (MDO), 130–131
machinery for mixing, 43–47
feedscrew nomenclature, 45
single-screw extruders, 43–46
twin-screw extruders, 46–47, see also separate entry
Maddock mixer, 46
magnesium hydroxide, 15
major suppliers of TPEs, 325–327
manual hot gas welding, 134
masterbatch, 35
matched die forming, 385
M–B–M triblock copolymers, 272
mechanical fastening, 147–148
melt bonding techniques, 212
melt casting, in copolyesters processing, 261–262
melt flow index (MFI), 29
melt flow rate (MFR), 29
melt fracture occurs, 382
melt mixing, 170
melt processible polymer, 385
melting, 36
melt-processible rubber (MPR), 2, 29, 204–212
applications of, 296–298
automotive applications, 296–297
blends with other polymers, 208
bonding and welding processing, 211–212
bonding to other materials, 212
calendering, 211
chemical resistance, 206
396 HANDBOOK OF THERMOPLASTIC ELASTOMERScompression molding, 211
compression set and creep of, 207
elastomeric sheeting applications, 297
electrical properties, 207
extrusion blow molding processing, 210–211
extrusion processing, 209–210
extrusion/calendering grades, 207
fabric coating applications, 297–298
grades of MPR, 207–208
industrial hose applications, 296
injection molding grades, 208
injection molding processing, 209
melt bonding techniques, 212
molded goods applications, 297
physical and mechanical properties, 205–206
processing, 209–212
tensile properties, 206
ultrasonic welding, 212
weather and flame resistance, 206–207
wire and cable applications, 297
metallization, 148–149
electroless plating, 149
electrolytic plating, 149
flame and arc spraying, 148
sputtering, 149
vacuum metallization, 148
mica, 22
micron, 385
microwave welding, 138–139
miscellaneous block copolymers, 5
miscible polymers, 39
mixing, in TPEs processing
Banbury® mixer, 41
basic concepts, 36–39
batch mixers, 40–42
blending and, 35–51
continuous mixers, 42–43
continuous mixing, 40
dispersive mixing, 44
distributive mixing, 44
equipment, 40–47
Farrel continuous mixer (FCM®), 42–43
finishing operations, 47–51, see also separate entry
internal mixers, 41–42
material feeding and feeders, 47
melting, 36
mixing machinery, 43–47, see also under machinery
mixing rolls, operation of, 41
polymer blends, 39–40
residence time, 38
rheology and flow pertaining to, 36–38
roll mills, 40–41
specific mechanical energy (SME), 38–39
modular co-rotating twin-screw extruders. modular,
46–47
moisture-cure adhesives, 145
molded part or molding, 67
Moldflow, 153
molding techniques and extrusion for TPEs, 30
blow molding, 30
compression molding, 30
injection molding, 30
rotational molding and rotolining, 30
transfer molding, 30
molecular weight between entanglements (Me), 1
monoazo pigments, 18
monofilaments, 260
multiblock blow molding, 104
multifunctional initiation method of
polystyrene–polydiene block copolymers synthesis,
162
nanofillers, 22–23
nanometer, 385
NBR (butadiene-acrylonitrile rubber), 9
network, polymer, 1
Newtonian fluids, 29, 36, 385
nitrile rubber (NBR)
blends of PVC with, 201–203
melt compounding and processing, 202
physical and mechanical properties, 202
nonazo pigments, 18
non-Newtonian fluids, 29
time-dependent fluids, 38
time-independent fluids, 38
nucleating agents, 14–15
inorganic additives, 15
organic compounds, 15
polymers, 15
offset printing, 386
olefin, 386
one-shot method, 218
orbital welding, 137
organic pigments, 18
orientation, 386
overmolding, 152–153
in copolyesters processing, 259
oxidation, 144
ozone, 386
painting of TPOs, 198
palletizing/pelletizers, 48–50
centrifugal pelletizers, 49
die-face pelletizers, 49
dry-cut eccentric pelletizers, 49
layout for, 51
rotary knife pelletizers, 50
strand pelletizers, 48
underwater pelletizers, 49
water ring pelletizer, 49
paracrystalline, 218
INDEX 397paraffins, 386
parison, 97–99, 386
part stripping, in rotational molding, 117–118
parting line, 105
pascal, 386
pearlescent pigments, 18
Pebax® typical properties, 374
peel strength, 386
peel tests, 146–147
Pellethane® TPU 2355 series typical properties,
371–372
Pelprene®, 9
pendant methyl group, 386
permeability, 386
perylenes, 18
phosphorescent pigments, 18
photodegradation, 13
physical blowing agents (PBAs), 123
Physical linking, 1
pigments, 17
as nucleating agents, 17
azo pigments, 18
black pigments, 17
blue pigments, 18
brown pigments, 18
fluorescent pigments, 18
green pigment, 18
monoazo pigments, 18
nonazo pigments, 18
orange pigments, 18
organic pigments, 18
pearlescent pigments, 18
phosphorescent pigments, 18
red pigments, 18
special effect pigments, 18
white pigments, 17
yellow pigments, 18
pinch-off zones, 105–106
plasma treatment, 143
cold plasma, 143
plasticizers, 23
methods of incorporation, 23
types of, 23
plastics, TPEs based on, 277–279
plastisols, 23
platy fillers, 22
plug assist, 128
plunger molding, 91
Poisson’s ratio, 386
polar molecule, 386
Poly(MMA-tBA-MMA) elastomers, synthesis, 272
Poly(vinyl chloride) (PVC) blends
applications of, 298–299
polyacrylates, TPEs based on, 272–273
synthesis, 272
Polyaddition, 4
polyamide TPEs, 9, 235–246, see also polyesteramides
(PEAs); polyetheresteramides (PEEAs);
polycarbonateesteramides (PCEAs);
polyether-block-amides (PE-b-As)
abrasion resistance, 241–242
adhesion, 243
applications, 306–310
automotive applications, 307
bonding and welding, 245–246
chemical and solvent resistance, 242–243
commercial applications, 307–310
compounding, 243–244
compression set, 242
drying, 244
electrical properties, 243
extrusion, 245
flex properties, 242
glass transition temperatures and melting points of,
236
medical applications, 309
morphology, 237–238
physical and mechanical properties, 238–242
processing, 244–245
properties at elevated temperatures, 239–241
rheology, 244
sporting goods applications, 307–308
structure property relationships, 238
synthesis, 235–237
tear strength, 241
technical goods applications, 308–309
tensile properties, 238–239
weatherability, 243
wire and cable applications, 308
polyazos, 18
polycarbonateesteramides (PCEAs), 235
dry heat aging of, 241
synthesis, 235–236
tensile properties, 239
polyesteramides (PEAs), 235
dry heat aging of, 241
synthesis, 235–236
tensile properties, 239
polyether sulfone (PES), 32
polyether-block-amides (PE-b-As), 235
physical and mechanical properties, 237
synthesis, 236
polyetheresteramides (PEEAs), 235
dry heat aging of, 241
synthesis, 235–236
tensile properties, 239
polyethylene (PE), 386
polymer blends, 39–40
polymeric adhesives
anaerobic adhesives, 145
contact adhesives, 145
cyanoacrylates, 146
398 HANDBOOK OF THERMOPLASTIC ELASTOMERSelastomer, 145
epoxy resins, 145
heat activated assembly adhesives, 145
hot-melt adhesives, 145
moisture-cure adhesives, 145
polyurethane- and isocyanate-based adhesives, 146
silicones, 146
thermoplastic elastomers, 145
two-part adhesives consist, 145
types of, 145–146
polymerization process, 3–4, 173–174
anionic, 3
cationic, 4
with core-shell morphologies, 5
with Ziegler-Natta catalysts, 4
polyolefin-based TPEs, 15, 191–198, 386
adhesion, 195
chemical resistance, 195
compounding of, 192–193
electrical properties, 195
mechanical properties, 193–194
morphology, 193
painting of, 198
processing of, 195–198, see also under processing
properties of, 193–195
service temperatures, 194
stress–strain properties, 193–194
weathering, 194–195
polypropylene (PP), 31, 169, 386
polypropylene oxide (PPO), 32
polystyrene–polydiene block copolymers, 162–173
blow molding, 173
bonding, 173
compounding, 170–171, see also separate entry
compression molding, 173
coupling method of synthesis, 162
critical molecular weight for domain formation,
164–165
effect of elastomer type, 165
effect of hard segment type, 165–166
effect of polystyrene content, 165
effects of molecular weight, 165
injection molding, 172
morphology of, 163–164
multifunctional initiation method of synthesis, 162
processing of compounds from SBCs, 171–172, see
also under extrusion
properties of, 165–168
sealing, 173
sequential method of synthesis, 162
solution properties, 167–168
structure property relationships, 165–166
styrenic TPEs, formulating, 168–170, see also
separate entry
swelling, 168
synthesis of, 162–163
tensile properties, 166
thermoforming, 173
viscous and viscoelastic properties, 166–167
polytetrafluoroethylene (PTFE) , 386
polyurethane-and isocyanate-based adhesives, 146
polyvinyl chloride (PVC) blends, 201, 387
PVC–COPE blends, applications, 299
PVC–NBR blends, applications, 298–299
PVC–TPU blends, applications, 299
with copolyester elastomers, 203–204
with NBR, 201–203, see also under nitrile rubber
with thermoplastic polyurethane elastomers, 204
polyvinylidene fluoride (PVDF), 387
positive displacement, 38
Power Law Model, 30
power systems, in injection molding, 72
preform, 102
prepolymer method, 218
pre-processing methods for TPEs, 33–35
press, 67
pressure sensitive adhesive, 387
primers, 144, 387
printing, 149–150
decorating processes, 150
diffusion process, 149
fill and wipe processes, 150
laser printing, 150
pad transfer, 149
screen printing, 149
processing, see also individual entries
of copolyesters, 255–263
adhesion, 262
blow molding, 261
bonding, 262
extrusion, 259–261
finishing, 262–263
injection molding, 257–259
melt casting, 261–262
melt rheology, 256–257
overmolding (insert molding), 259
rotational molding, 262
welding, 262
of melt-processible rubber (MPR), 209–212
of polyolefin-based TPEs, 195–198
blow molding, 198
calendering, 197
extrusion, 196–197
general injection molding parameters for, 197
injection molding, 196
thermoforming, 197
process control in extrusion, 65–66
processing aids, 20
of TPUs, 223–230
blowmolding, 229
calendering, 229
drying, 224
INDEX 399processing (continued )
extrusion, 228–229
injection molding, 224–228
insert molding, 228
operating conditions, for injection molding,
227–228
regrind use in, 228
rheology, 224
thermoforming 229–230
processing data sheets for commercial TPEs and
compounds, 333–343
of copolyester thermoplastic elastomers, 342
of melt processible rubber, 340
of polyamide thermoplastic elastomers, 342–343
polyolefin-based TPE (TPO), 336–337
styrenic block copolymers, 333–336
of thermoplastic polyurethanes, 340–341
of thermoplastic vulcanizates, 337–339
processing methods of TPEs, 29–160
blow molding, 97–108, see also separate entry
calendering, 129
coloring, 34–35, see also separate entry
compounding of TPEs, 150–151
compression molding, 86–90, see also separate entry
drying, 34
extrusion, 51–66, see also separate entry
flow properties influencing, 29–31
foaming, 121–124, see also foaming
general processing technology, 150–153
injection molding, 66–86, see also separate entry
melt-processing methods, 29
mixing and blending, 35–51, see also mixing
molding techniques and extrusion, 30
pre-processing, 33–35
process heat requirements, 31
process simulation, 153
product development and testing, 153–154
properties influencing, 29–33
rotational molding, 108–121, see also separate entry
secondary manufacturing processes, 129–150, see
also separate entry
shrinkage, 32–33
thermal properties influencing, 31–32
thermoforming, 124–129, see also separate entry
transfer molding, 90–97, see also separate entry
warping, 32–33
quenchers, 14
quinacridones, 18
radiation dose, 387
random block copolymers that, 191
reaction extruder process, 218
reactor thermoplastic polyolefins (RTPO), 192
recent developments and trends, of TPEs, 319–322
current state, 319
in development and uses of individual TPEs, 319–321
drivers for the growth of TPEs, 319
organosilane technology, 321
in technical development, 319–321
TPV developments, 320
TPVs based on natural rubber (NRTPVs), 320
reciprocating screw injection unit, 69–70
reciprocating screw intermittent extrusion, 101
recycled rubber, TPEs based on, 277–279
butadiene-acrylonitrile rubber (NBR) scrap, 277
recycling of TPEs, 317–318
energy recovery, 317
to generic plastic, 317
to mixed plastic, 317
recycling methods, 317–318
regeneration of raw materials, 317
Reference Fuel A, 387
Reference Fuel B, 387
Reference Fuel C, 387
Reference Fuel D, 387
regrind, use in TPUs processing, 228
reinforcements, 20–23
residence time concept, 71
residence time, 38
resistant welding, 139
restrictor bar, 59
rheology, 387
in copolyesters processing, 256–257
and flow pertaining to mixing, 36–38
in polyamides processing, 244
of TPUs, 224
of TPVs, 185
rheometers, 30
rheopectic fluids, 37
roll mills, 40–41
rotary knife pelletizers, 50
rotational molding, 108–121
and rotolining, 30
background, 108–109
basic process technology, 109–110
batch systems, 111
benefits, 111
build-up time, 115
carousel machines, 111–112
clamshell machines, 112
cooling cycle, 117
in copolyesters processing, 262
design consideration for, 113
equipment and process design, 112–114
equipment for, 110–112
fusion time, 115
limitations, 111
melting of polymer and part formation, 119–120
mold surface preparation, 114
operation of, 114–118
oven dwell time, 115–117
400 HANDBOOK OF THERMOPLASTIC ELASTOMERSpart stripping, 117–118
rotation rate and ratio, 118
rotolining process, 118–119
shuttle machines, 112
spin-casting or centrifugal casting, 110
troubleshooting, 120
variables influencing oven dwell time, 116
venting, 117
rotors, 40
runner, 77
Santoprene®, 9
SantopreneTM TPV, typical properties, 356–358
Sarlink® 3139 D typical properties, 359
S–B–S block copolymers, 168–169
screws, 43–46, 172, see also feedscrew nomenclature;
single-screw extruders
barrier or melt extraction screw, 54
geometrical attributes of, 46
intermeshing screw, 47
left-handed screw, 46
mixing performance of, 54
modifications, 46
right-handed screw, 46
screw transfer molding, 91
tangential screw, 47
vented screw, 54
S–EB–S block copolymers, 169–170
secondary manufacturing processes, 129–150
adhesive bonding, 141–147, see also separate entry
biaxial orientation, 131–132
bubble process, 132
decorating, 148–150, see also separate entry
film and sheet orientation, 129–133
heat shrinkable films and tubing, 132–133
machine direction orientation (MDO), 130–131
mechanical fastening, 147–148
transverse direction orientation (TDO), 131
welding, 133–141, see also separate entry
semiautomatic compression mold, 87
Semi-Crystalline Polymer, 387
sequential extrusion, 104–105
sequential method of polystyrene–polydiene block
copolymers synthesis, 162
shear displacement of a plane of solid body parallel, 387
shear forces, 36
shear tests, 146
sheet extrusion, 59–60
shelf life, 387
shore hardness, 387
shrinkage, 32–33, 172
shuttle machines, 112
S–iB–S Styrene–isobutylene–styrene block copolymer,
388
with polystyrene, 388
silicone oils, 169
silicones, 146
single press method, 211
single-phase melt-processable rubber (MPR), 10
single-screw extruders, 43–46, 52
components of, 44
S–I–S Styrene–isoprene–styrene block copolymer, 388
slip agents, 19–20
slush molding process, 108
softening point, 388
solubility, 388
parameter, 388
solution mixing, 170–171
solution properties, of polystyrene–polydiene block
copolymers, 167–168
special effect pigments, 18
specific mechanical energy (SME), 38–39
spherulites, 14, 388
spin welding, 135–136
spiral flow method, 31
sprues, 77–78, 172
sputtering, 149
stalk height, 58
star block (radial) copolymers, 269–270, 388
applications of, 311–313
arm-first synthesis method, 269
corefirst synthesis method, 269
physical properties, 270
synthesis of, 269–270
stereoblock copolymers, 191
strain, 388
strand pelletizers, 48
stress relaxation, 388
stretch blow molding, 102–103
stripper plates, 172
styrene-diene block copolymers, 9
styrenic block copolymer (SBC), 5, 151, 161–177
polystyrene–polydiene block copolymers, 162–173,
see also separate entry
styrene–butadiene–styrene block copolymer, 162
synthesized by carbocationic polymerization, 173–175,
see also under carbocationic polymerization
thermoplastic elastomers based on, 163
styrenic TPEs
applications of, 281–289
as replacement of vulcanized rubber, 282–283
blends of SBCs and polyolefins, 288
blends of SBCs and PS, 288
blends of SBCs with thermosets, 288–289
effect of the addition of resins and oils, 286–287
in adhesives, sealants, and coatings, 283–288
in pressure sensitive adhesives, 287
solution behavior of SBCs, 286
solvents for SBCs, 286
formulating, 168–170
compounding styrenic thermoplastic elastomers,
169
INDEX 401styrenic TPEs (continued )
S–B–S block copolymers, 168–169
S–EB–S block copolymers, 169–170
surface energy, 141
surface grafting, 144
surface tension, 40, 141, 388
swelling, of polystyrene–polydiene block copolymers,
168
synergistic effect, 16
taber abrasion resistance, 388
talc, 22
tan delta or dissipation factor, 383
tear strength, of polyamides, 241
technical data sheets for commercial TPEs and
compounds, 345–378
COPA data sheets, 374–375
COPE data sheets, 373
MPR data sheets, 362–368
SBC data sheets, 345–352
silicone TPE data sheets, 375–378
TPO data sheets, 352–353
TPU data sheets, 368–372
TPV data sheets, 354–362
tensile properties
of polystyrene–polydiene block copolymers, 166
tensile strength, 388
tensile stress, 388
tenter frame, 131
Texin® TPU 200 series typical properties, 372
texturing, 150
thermal conductivity, 66
thermal properties, of TPUs, 222
thermal transitions, in TPUs, 218–219
thermal treatment, 144
thermoforming, 124–129
forming force, 126–127
heating, 128
matched mold (die) forming, 126
material input, 128
melt phase forming, 128
mold type, 127
of polyolefin-based TPEs, 197
in polystyrene–polydiene block copolymers, 173
pressure forming, 126
principal options available in, 125
process basics, 124–125
process factors, 125–129
process phase, 128
sheet prestretch, 127–128
solid phase forming, 128
in TPUs processing, 229–230
of TPVs, 187
vacuum forming, 126
Thermolast® typical properties, 360
thermoplastic elastomers (TPEs), 2–7
advantages and disadvantages of, 6–7
applications of, 281–315, see also under applications
classification, 5–6
demand for, 7
flexural modulus, regions, 2
glass transition and crystalline melt temperatures
of, 3
history of, 9–11
macrophase separation, 5
microphase separation, 5
phase separation, 4–5
phase structure, 2–3
processing methods applicable to, 29–160, see also
under processing methods
property ranges, 6
stiffness of, 2
synthesis methods, 3
thermoplastic fluorocarbon elastomer, 212–213
properties of, 212
structure of, 212
thermoplastic olefins (TPOs), 320
thermoplastic polyether ester elastomers, 249–263, see
also copolyesters (COPEs)
applications, 304–306
automotive applications, 304
commercial applications, 304
electrical/electronic applications, 304–305
extruded and molded mechanical goods
applications, 305
thermoplastic polyolefin blends (TPOs), 9, 191–198,
see also polyolefin-based TPEs, 191–198
applications of, 294–296
automotive applications, 294
mechanical goods applications, 294
wire and cable applications, 294
thermoplastic polyurethane elastomers (TPUs), 9,
191, 201, 204, 215–230
abrasion resistance, 223
adhesives applications, 302
antidegradants for TPUs synthesis, 217
applications, 300–304
automotive applications, 300
blends with other polymers, 230
bonding, 230
chemical resistance, 223
coatings applications, 302
commercial applications, 300
compression set, 221
dynamic properties, 221–222
electrical properties, 223–224
film and sheet applications, 302
hard segment, 215–216
hardness, 221
hose and tubing applications, 300
hydrolytic stability, 222–223
ineral fillers for TPUs synthesis, 217
402 HANDBOOK OF THERMOPLASTIC ELASTOMERSlubricants for TPUs synthesis, 217
mechanical goods, consumer, and sporting goods
applications, 302–303
mechanical properties, 219–222
medical applications, 303–304
mold release agents for TPUs synthesis, 217
morphology of hard segments, 218
morphology, 218
plasticizers for TPUs synthesis, 217
processing of TPUs, 223–230, see also separate entry
properties, 219–223
raw materials for hard segments, 216–217
raw materials for soft segments, 216
raw materials for TPUs synthesis, 216–218
reinforcing fillers for TPUs synthesis, 217
sealants applications, 302
soft segment, 215–216
solvent and adhesive bonding, 230
stiffness, 221
stress–strain properties, 221
synthesis, 216–218
thermal properties, 222
thermal transitions, 218–219
ultraviolet stability, 223
UV absorbers for TPUs synthesis, 217
welding, 230
wheels and casters applications, 301
wire and cable applications, 300–301
thermoplastic vulcanizates (TPVs), 9
applications, 289–294
architectural and construction application, 292
automotive applications, 290
based on polyacrylate rubber and polyamides, 185
based on polyolefins, 181–185
blow molding, 187
bonding of, 188–189
calendering, 187
commercial applications, 290
compression molding, 186–187
electrical and electronics application, 292–293
extrusion foaming, 187–188
extrusion, 185–186
from butadiene-acrylonitrile rubber and
polyamides, 182–185
from butyl and halobutyl rubber and PP resins, 182
from diene rubbers and polyolefins, 181–182
from EPDM–polyolefin blends, 181
hose, 290–291
hot air aging of NR/PP-based TPVs, 183
in mechanical rubber goods and consumer goods
application, 291–292
injection molding, 186
mechanical properties of NR/PP-based TPVs, 183
medical and food contact application, 293–294
morphology, 181
processing and fabrication of, 185–189
rheology, 185
sheet application, 290–291
thermoforming, 187
tubing application, 290–291
thermoset rubber, 212
Thixotropic fluids, 37, 388
three-plate molds, 75–76
time-independent non-Newtonian fluids, 36–37
tool, 67
TPSiVTM series typical properties, 376–378
transfer molding, 30, 90–97
auxiliary-ram mold, 96
auxiliary-ram molds, 93
background, 90
cycle transfer molding, 92
integral transfer mold, 95
manual loose-plate transfer mold, 94
mold design, 93–96
operation of, 96
plunger molding, 91
plunger-type transfer mold, 92–93
process variables, 96–97
screw transfer molding, 91
screw transfer process, 94
semiautomatic floating plate mold, 95
transfer-in compression molding, 90–91
types of, 91–93
transverse direction orientation (TDO), 131
triblock copolymers, 272
tubing, 260
tubular process, 132
twin-screw extruders, 46–47
modular co-rotating twin-screw extruders, 46–47
modular counter-rotating twin-screw extruders,
47
two-part adhesives, 145
two-plate molds, 75
two-press method, 211
two-shot molding, 152
ultrasonic welding, 134–135, 212
ultraviolet (UV)
UV absorbers, 14
UV stability, 13
evaluation, 14
of TPUs, 223
underwater pelletizers, 49
vacuum trough method, 63
van der Waals forces, 389
Vector® styrenic block copolymers typical properties,
351
venting, 172
in injection molding, 83–84
in rotational molding, 117
vibration welding, 137
INDEX 403viscosity, 66, 389
viscous and viscoelastic properties of
polystyrene–polydiene block copolymers, 166–167
warping, 32–33
waste latex, TPEs based on, 278
waste plastics, TPEs based on, 278
water quench cast film process, 56–57
water-quench blown-film process, 58–59
water ring pelletizer, 49
weathering, 194–195
Weber number, 40
welding, 133–141
in copolyesters processing, 262
extrusion welding, 139
heated tool welding, 133
high frequency welding, 136
hot gas welding, 133–134
induction welding, 137–138
infrared welding, 136
laser welding, 140
linear welding, 137
manual hot gas welding, 134
microwave welding, 138–139
of TPUs, 230
orbital welding, 137
resistant welding, 139
spin welding, 135–136
ultrasonic welding, 134–135
vibration welding, 137
wetting, 141, 389
wheel machines, 101
Williams Landel Flory (WLF) equation, 167
wire coating, 60–62
yield deformation, 389
yield stress, 37
young’s modulus, 389
Zeotherm® typical properties, 361
Ziegler-Natta catalysts, 4
zinc borate, 1


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Handbook of Thermoplastic Elastomers
رابط مباشر لتنزيل كتاب Handbook of Thermoplastic Elastomers
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Handbook of Thermoplastic Elastomers
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Handbook of Thermoplastic Elastomers 2nd Ed
» كتاب Thermoplastics and Thermoplastic Composites
» كتاب Thermoplastic Material Selection - A Practical Guide
» كتاب Material Selection for Thermoplastic Parts - Practical and Advanced Information for Plastics Engineers
» كتاب Permeability Properties of Plastics and Elastomers

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: