كتاب Energy and Resource Efficiency in Aluminium Die Casting
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Energy and Resource Efficiency in Aluminium Die Casting

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18745
التقييم : 34763
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Energy and Resource Efficiency in Aluminium Die Casting  Empty
مُساهمةموضوع: كتاب Energy and Resource Efficiency in Aluminium Die Casting    كتاب Energy and Resource Efficiency in Aluminium Die Casting  Emptyالسبت 31 ديسمبر 2022, 6:37 am

أخواني في الله
أحضرت لكم كتاب
Energy and Resource Efficiency in Aluminium Die Casting
Sustainable Production, Life Cycle Engineering and Management
Series editors
Christoph Herrmann, Braunschweig, Germany
Sami Kara, Sydney, Australia

كتاب Energy and Resource Efficiency in Aluminium Die Casting  E_a_r_10
و المحتوى كما يلي :


Contents
1 Introduction 1
1.1 Motivation 1
1.2 Research Objective and Approach 3
2 Aluminium Die Casting and Its Environmental Aspects 7
2.1 Industrial Value Chains and Aluminium Die Casting . 7
2.1.1 Industrial Process, Process- and Value Chains 7
2.1.2 Aluminium Die Casting . 15
2.2 Environmental Aspects of Aluminium Die Casting . 36
2.2.1 Energy and Resource Efficiency 36
2.2.2 Methods and Tools for Increasing Energy
and Resource Efficiency . 39
2.2.3 Environmental Impacts of Aluminium Die Casting 48
3 Existing Approaches . 65
3.1 Background for Selection and Evaluation
of Existing Approaches 65
3.1.1 Procedure and Limitations of Analysis . 66
3.1.2 Definition of Criteria . 68
3.2 Review on Relevant Research Approaches . 73
3.2.1 Generic Approaches 73
3.2.2 Specific Approaches for Metal Casting . 78
3.3 Comparative Overview . 83
3.4 Derivation of Further Research Demand . 87
4 Multi-level Multi-scale Framework for Enhancing Energy
and Resource Efficiency in Production 91
4.1 Research Methodology . 91
4.2 Requirements and Surrounding Conditions . 92x Contents
4.3 Framework Development . 96
4.3.1 Module 1—System Definition 97
4.3.2 Module 2—Procedural Approach . 109
4.3.3 Module 3—Methodological Toolbox . 113
5 Multi-level Multi-scale Framework for Enhancing Energy
and Resource Efficiency in Aluminium Die Casting . 125
5.1 Course of Discussion 125
5.2 Specific Framework for Aluminium Die Casting . 127
5.2.1 Actors and System Levels . 127
5.2.2 Assignment of Selected Methods and Tools
to System Elements 129
5.2.3 Specific Procedure for Aluminium Die Casting
Production . 137
5.3 Objects of Investigation 138
5.3.1 Actors . 139
5.3.2 Products . 140
5.4 Definition of System Boundaries . 142
5.5 Structural Analysis of Energy and Resource Flows . 143
5.5.1 System Elements 143
5.5.2 Considered Energy and Material Flows . 148
5.5.3 Synthesis of a Generic Structural Model 152
5.6 Hot Spot Analysis of Energy Demands 161
5.6.1 Foundry 1 (Products 1 and 2) . 162
5.6.2 Foundry 2 (Products 3, 4 and 5) . 163
5.6.3 Foundry 3 (Product Families 6–12) 164
5.6.4 Conclusion of Hot Spot Analysis 164
5.7 Data Acquisition 165
5.7.1 Alloy Supplier 165
5.7.2 Foundry . 169
5.7.3 Upstream Process Chains 181
5.8 Modelling, Simulation and Visualisation . 183
5.8.1 Input and Output Modelling of System Elements . 184
5.8.2 Simulation of the Generic Quantitative Model . 195
5.8.3 Visualisation of Energy and Resource Flows . 197
5.9 Analysis and Evaluation of the Generic Model 201
5.9.1 Actor Specific Energy Demand Evaluation 202
5.9.2 Environmental Assessment 203
5.9.3 Sensitivity Analyses 204
5.10 Improvement Scenarios 209
5.10.1 Description of Improvement Measures . 211
5.10.2 Comparative Evaluation of Improvement Measures . 218Contents xi
6 Summary and Outlook . 223
6.1 Summary . 223
6.2 Concept Evaluation . 224
6.3 Outlook . 227
References 229xiii
Symbols and Abbreviations
Symbols
Symbol Description
E Energy (J, kWh, kg
m2 s2)
F Force (N, kg
m s2)
m Mass (kg, t)
i, j, m, n Counting indices (–)
T Temperature (°C, K)
t Time (s, min, d)
Abbreviations
ABS Agent-based simulation
Al Aluminium
BAT Best available technology
BOF Basic oxygen furnace
ca. Circa
CO Carbon monoxide
CO2 Carbon dioxide
CO2eq. Carbon dioxide equivalent
CO
x Carbonic oxides
Cu Copper
DIN Deutsches Institut für Normung/German Institute for Standardization
DSD Duales System Deutschland (German waste separation system)
EAF Electric arc furnace
EDRP Energy Demand Research Projectxiv Symbols and Abbreviations
e.g. Exempli gratia, for example
eq. Equivalent
EoL End-of-life
ESO Energy systems optimisation
EU European Union
GDM Generic design model
HCl Hydrogen chloride
HF Hydrogen fluoride
HLA High-level architecture
IT Information technology
KaCl Potassium chloride
LCA Life cycle assessment
LCI Life cycle inventory
max. Maximum, maximal
MFCA Material flow cost accounting
MIKADO Model of the environmental impact of an aluminium die casting plant
and options to reduce this impact
min. Minimum, minimal
min Minute
Mg Magnesium
Mn Manganese
MP Manufacturing process
NaCl Sodium chloride
NADCA North American Die Casting Association
Ni Nickel
NMVOC Non-methane volatile organic compound
no. Number
NO2 Nitrogen dioxide
NO
x Nitrogen oxides
OEE Overall equipment effectiveness
PC Process chain
pc Piece
prim. Primary
ProGRess Gestaltung ressourceneffizienter Prozessketten am Beispiel Aluminiumdruckguss (research project)
ren. Renewable
RTD Real-time display
SD System dynamics
sec Secondary
Si Silicon
SME Small and medium enterprise
SO
x Sulphur oxidesSymbols and Abbreviations xv
THD Total harmonic distortion
Ti Titanium
UK United Kingdom of Great Britain and Northern Ireland
U.S. United States of America
VOC Volatile organic compound
Zn Zincxvii
List of Figures
Figure 1.1 Sources of global CO2 emissions (Allwood and Cullen 2012) . 2
Figure 1.2 Decoupling of resource use and environmental impact from
human well-being and economic activity (UNEP 2011a;
Bringezu 2006) 2
Figure 1.3 Objectives and related structure of the research approach . 4
Figure 2.1 The manufacturing process as a transformation process
(according to Schenk et al. 2014) . 8
Figure 2.2 Simplified manufacturing process chain with auxiliary
and peripheral processes 9
Figure 2.3 Production as value adding process (Westkämper
and Warnecke 2010) 9
Figure 2.4 Industrial cross-company value chain from a production
engineering perspective . 10
Figure 2.5 Different (vertical) hierarchical levels of industrial value
chains (Herrmann et al. 2010a; Wiendahl 2009;
see also Heinemann et al. 2014) 11
Figure 2.6 Hierarchical order of processes, process chain elements
and process chains (Denkena and Tönshoff 2011) 12
Figure 2.7 Energy control loops in hierarchically structured value
chains (Verl et al. 2011) . 13
Figure 2.8 Peripheral order of manufacturing’s subsystems
(Schenk et al. 2014) 14
Figure 2.9 Holistic definition of a factory (Thiede 2012) 15
Figure 2.10 Basic structure of the hierarchical aluminium die casting
value chain (process sequence and alloy mass flow)
(see also Heinemann et al. 2012) 16
Figure 2.11 Classification of manufacturing processes (main groups)
(DIN 8580 2003) 16
Figure 2.12 Sub groups of the manufacturing process primary shaping
(DIN 8580 2003; de Ciurana 2008) 17xviii List of Figures
Figure 2.13 Material efficiency and energy intensity of selected
manufacturing processes (Fritz and Schulze 2010) 17
Figure 2.14 Division of the main group primary shaping
(DIN 8580 2003) 18
Figure 2.15 Sankey diagram, tracing the global flow of aluminium
and localising the aluminium die casting value chain
(adapted from Cullen and Allwood 2013) . 20
Figure 2.16 Production output of the German aluminium industry
(primary and secondary aluminium production)
(Trimet Aluminium AG 2013, 2014) . 22
Figure 2.17 Production volume changes of the German aluminium
industry (increase/decrease of the primary and secondary
aluminium production compared to the respective month
of the previous year) (Trimet Aluminium AG 2013, 2014) 22
Figure 2.18 Distribution of aluminium products over application areas
in Germany in 2012 (statista.com 2014) 22
Figure 2.19 Aluminium die casting production volumes in Germany
(aluminium-recycling.com 2014) . 23
Figure 2.20 Raw and secondary material input flows (in dark grey)
of the aluminium die casting value chain 23
Figure 2.21 Input flows and process sequence for electrolytic primary
aluminium production (Kammer 2012a) 24
Figure 2.22 The process chain of an alloy supplier within the
aluminium die casting value chain . 27
Figure 2.23 Secondary aluminium alloy production process chain
inside an aluminium supplier (production line, possible
sub-processes and alloy mass flow) 27
Figure 2.24 Alloy transportation as linking element between
alloy supplier and foundry . 28
Figure 2.25 Possible Transportation variants for the supply
of aluminium alloys from alloy supplier to foundry
(adapted from Heinemann and Kleine 2013) . 29
Figure 2.26 The internal process chain of a foundry within
the aluminium die casting value chain 31
Figure 2.27 Aluminium die casting process chain inside a foundry
(production line, possible sub-processes and alloy
mass flow) (Neto et al. 2008) . 31
Figure 2.28 The die casting process within the aluminium
die casting value chain 33
Figure 2.29 Phases of the die casting process (Aluminium
Laufen AG 2014) 34
Figure 2.30 Die casting machine (double plate clamping unit)
(Hoffmann and Jordi 2013b) . 35
Figure 2.31 Aluminium die casting cell (Kerber 2013;
foundry-planet.com 2014) . 36List of Figures xix
Figure 2.32 Efficient, best- and actual-practice production functions
(according to Cantner et al. 2007) . 38
Figure 2.33 Hierarchical levels of electricity consuming entities
in a factory (Kara et al. 2011) 40
Figure 2.34 Visualized heat flows in the aluminium die casting cell
(Röders et al. 2006) 43
Figure 2.35 Visualisation of material and energy flow in a gravity
die casting foundry (Krause et al. 2012) 44
Figure 2.36 Sample DES based model of an aluminium die casting
process chain, modelled in an energy oriented material
flow simulation (Thiede 2012) 45
Figure 2.37 Phases of a life cycle assessment (DIN EN ISO 14040 2006) . 47
Figure 2.38 Integrated process model of physical input
and output flows of the aluminium die casting cell 49
Figure 2.39 Die casted product with gating system and remainder
(Heinemann and Herrmann 2013) . 50
Figure 2.40 Energy/heat flows in the aluminium die casting cell
(Röders et al. 2006) 51
Figure 2.41 Energy demand shares within a die casting cell during
one process cycle (Hoffmann and Jordi 2013a; Jordi 2012) . 52
Figure 2.42 Total energy demand (electricity, natural gas and fuel oil)
of 19 foundries compared to their yearly production output
(Jordi 2010; Hoffmann and Jordi 2013c) 53
Figure 2.43 Alloy mass flows, material efficiency and related energy
flows in the aluminium die casting process chain inside
a foundry (Herrmann et al. 2013b; Dilger et al. 2011) . 55
Figure 2.44 Alloy mass flows and energy flows, material efficiency
and related CO2eq.-emissions along the aluminium
die casting value chain (Herrmann et al. 2013b) 58
Figure 2.45 Main environmental impacts from primary aluminium
and secondary aluminium production (per t of ingot)
(EAA 2013) 59
Figure 2.46 Comparison of energy inputs for various metals:
primary versus secondary production (Chapman
and Roberts 1983; Wernick and Themelis 1998) 60
Figure 2.47 Aluminium cascade recycling chain (Paraskevas et al. 2013) 62
Figure 2.48 Aluminium recycling options (Paraskevas et al. 2013) . 63
Figure 3.1 Limitations for the review of the state of research . 67
Figure 3.2 Methodological approach for multi-level co-simulation
of coupled simulation environments for industrial
production (Bleicher et al. 2014) 74
Figure 3.3 Hierarchical energy assessment framework for a machining
workshop according to Wang et al. (2013) 75xx List of Figures
Figure 3.4 Hierarchical decomposition of production processes
and connected sub-processes in system diagram
for energy benchmarking (Ke et al. 2013) . 77
Figure 3.5 SD supply chain model and procedural approach
of Jain et al. (2013) 79
Figure 3.6 TEAM concept and resulting absorbing state Markov
chain model for one die casting process chain
(Brevick et al. 2004) 82
Figure 3.7 Degree of compliance of selected research approaches
with identified evaluation criteria 85
Figure 4.1 Pursued research methodology . 92
Figure 4.2 Requirement clusters for a hierarchical framework
for production . 93
Figure 4.3 Surrounding conditions for hierarchical evaluation schemes
for industrial value chains regarding energy
and resource intensities . 95
Figure 4.4 Multi-level multi-scale framework for enhancing energy
and resource efficiency in production 97
Figure 4.5 Hierarchical system levels and input/output entities
of industrial value chains (according to Schenk et al. 2014) 98
Figure 4.6 System level 3: manufacturing processes . 99
Figure 4.7 System level 2: process chains 100
Figure 4.8 System level 1: cross company, industrial value chains . 102
Figure 4.9 Time resolution of relevant events versus planning
time horizons and lengths of evaluation period
on different hierarchical system levels 107
Figure 4.10 Procedural steps and individual outcomes for enhancing
the energy and resource efficiency of industrial production 110
Figure 4.11 Qualitative assignment of selected methods regarding
dynamics (resp. time scales) and hierarchical
application level . 114
Figure 4.12 Synergetic sequential application of methods for energy
and resource intensity analysis and evaluation . 117
Figure 4.13 Example for methodological synergies through bidirectional
information flows and iterative application 118
Figure 4.14 Exemplary clusters and hierarchical interdependencies
of level specific performance indicators 122
Figure 5.1 Course of discussion of aluminium die casting case . 126
Figure 5.2 Hierarchical structure and actors of the aluminium
die casting value chain (see also Heinemann et al. 2012) . 128
Figure 5.3 Visual characterisation of system elements of aluminium
die casting regarding their degree of dynamics
and system level . 132
Figure 5.4 Assignment of specific methods and tools for the evaluation
of aluminium die casting 133List of Figures xxi
Figure 5.5 Synthesis of a procedure for the analysis and evaluation
of aluminium die casting 138
Figure 5.6 Overview over investigated aluminium die
casting value chains 139
Figure 5.7 Masses and material efficiencies of investigated products,
ordered by product mass 141
Figure 5.8 Considered system boundary of the aluminium
die casting value chain 142
Figure 5.9 Structure of the observed alloy supplier 144
Figure 5.10 General structure of the melting section within
the observed foundries 145
Figure 5.11 General structure of the casting section (die casting cell)
within the observed foundries 145
Figure 5.12 General structure of the finishing section within
the observed foundries 146
Figure 5.13 General structure of a heat treatment section within
aluminium die casting foundries 146
Figure 5.14 General structure of aluminium die casting value chain 147
Figure 5.15 Graphical petri net based notation of system elements
and energy as well as material flows within the software
Umberto™ (Dyckhoff and Souren 2008) . 153
Figure 5.16 Generic structural model of energy and material flows
in aluminium die casting (modelled in Umberto™,
see also Heinemann et al. 2013b) . 154
Figure 5.17 Structural model of transportation, preparation and melting
of secondary metal and auxiliary material inputs . 155
Figure 5.18 Structural model of preparation of alloying elements
and alloying in converter 156
Figure 5.19 Structural model of ingot casting and transportation . 156
Figure 5.20 Structural model of the smelter . 157
Figure 5.21 Structural model of the die casting cell . 158
Figure 5.22 Structural model of the heat treatment section . 159
Figure 5.23 Structural model of the finishing section 160
Figure 5.24 Calculatory yearly energy demands of production
equipment in foundry 1 . 162
Figure 5.25 Calculatory energy demands of production equipment
in foundry 2, extrapolated for one year . 163
Figure 5.26 Calculatory yearly energy demands of production
equipment in foundry 3 . 164
Figure 5.27 Mass fractions of secondary metal inputs at the
alloy supplier; documented from accounting records,
observation period: four months 166
Figure 5.28 Sample natural gas demand of a drum melting furnace
per tonne of molten aluminium output, metered with a gas
flow meter, resolution: 1 month . 167xxii List of Figures
Figure 5.29 Mass fractions of secondary metal inputs and alloying
elements at the alloy supplier, documented from
accounting records, observation period: four months 168
Figure 5.30 Demand of the main alloying elements as share
of total alloying element input, documented from accounting
records, observation period: four months . 168
Figure 5.31 Sample natural gas demand of a converter per tonne
of molten aluminium output, metered with a gas flow meter,
resolution: 1 month 169
Figure 5.32 Sample load profile (electrical power) of a holding furnace,
measured with a ChauvinArnaux 8335, resolution: 4s . 171
Figure 5.33 Sample load profile (electrical power) of a die
casting machine, metered with a ChauvinArnaux 8335,
resolution: 4s . 172
Figure 5.34 Sample load profile (electrical power) of a die cutter,
metered with a ChauvinArnaux 8335, resolution: 1s . 173
Figure 5.35 Sample load profile (electrical power) of an exhaust
air system, metered with a ChauvinArnaux 8335,
resolution: 1s . 174
Figure 5.36 Sample load profile (electrical power) of a spraying robot,
metered with a ChauvinArnaux 8335, resolution: 1s . 175
Figure 5.37 Sample load profile (electrical power) of eight tempering
units, metered with a ChauvinArnaux 8335, resolution: 1s 175
Figure 5.38 Sample load profile (electrical power) of a CNC
machining centre, metered with a ChauvinArnaux 8335,
resolution: 8s . 177
Figure 5.39 Sample load profile (electrical power) of an abrasive
blasting machine, metered with a ChauvinArnaux 8335,
resolution: 1s . 178
Figure 5.40 Sample load profile (electrical power) of a washing machine,
metered with a ChauvinArnaux 8335, resolution: 1s . 178
Figure 5.41 Sample load profile (electrical power) of a leakage
test machine, metered with a ChauvinArnaux 8335,
resolution: 1s . 179
Figure 5.42 Sample load profile (electrical power) of a palletizing
machine, metered with a ChauvinArnaux 8335,
resolution: 1s . 180
Figure 5.43 Sample load profile (electrical power) of a cooling
lubricant filter, metered with a ChauvinArnaux 8335,
resolution: 2s . 180
Figure 5.44 Sample load profile (electrical power) of a cooling system,
metered with a ChauvinArnaux 8335, resolution: 2s . 181
Figure 5.45 The procedure for input and output modelling
of system elements and their synthesis into a generic model 184List of Figures xxiii
Figure 5.46 Screenshot of transition composition of alloying elements
(modelled in Umberto™) 186
Figure 5.47 Screenshot of transition converter (modelled in Umberto™) 186
Figure 5.48 Screenshot of transition die casting machine
(modelled in Umberto™) 187
Figure 5.49 Screenshot of transition cutting (modelled in Umberto™) 187
Figure 5.50 Composition of a generic value chain based
on reference process chains and clusters 194
Figure 5.51 Sankey diagram of energy carrier and aluminium flows
along the aluminium die casting value chain . 198
Figure 5.52 Visualisation of aluminium and cycle material flows
along the aluminium die casting value chain . 198
Figure 5.53 Sankey diagram of energy carrier and aluminium flows
in the foundry’s smelter . 199
Figure 5.54 Sankey diagram of energy carrier and aluminium flows
in the foundry’s die casting cell . 200
Figure 5.55 Sankey diagram of energy carrier and aluminium flows
in the foundry’s finishing section 201
Figure 5.56 Energy demand of the generic aluminium die casting value
chain and its actors per tonne of finished aluminium products . 202
Figure 5.57 Global warming potential of the aluminium die casting’s
value chain and its actors 203
Figure 5.58 Deviation of overall energy demand of the alloy supplier
and foundry depending on incremental changes of selected
transitions’ electricity demand 205
Figure 5.59 Deviation of the global warming potential of the aluminium
die casting’s value chain after incremental changes
of selected transitions’ electricity demand . 205
Figure 5.60 Deviation of overall energy demand of the alloy supplier
and foundry depending on incremental changes
of selected transitions’ natural gas demand 206
Figure 5.61 Deviation of the global warming potential of the aluminium
die casting’s value chain after incremental changes
of selected transitions’ natural gas demand 206
Figure 5.62 Deviation of overall energy demand of the alloy supplier
and foundry depending on incremental changes
of selected transitions’ cycle material output . 207
Figure 5.63 Deviation of the global warming potential of the aluminium
die casting’s value chain after incremental changes
of selected transitions’ cycle material output . 208
Figure 5.64 Deviation of the global warming potential of the aluminium
die casting’s value chain after incremental changes
of the alloy composition regarding its shares
of added silicon and copper 209xxiv List of Figures
Figure 5.65 Points of application of selected improvement measures
(according to Heinemann et al. 2013b) . 211
Figure 5.66 Original design of gating system and improved geometry
after application of software MAGMASOFT™
(according to Hartmann 2013) 212
Figure 5.67 Structural adaption of the generic model to enable liquid
aluminium supplies from the alloy supplier to the foundry 213
Figure 5.68 Structural adaption of the generic model’s subnet
transportation and preparation of secondary aluminium
fractions to enable salt free smelting of secondary
aluminium fractions
in shaft melting furnace . 214
Figure 5.69 Impact of improvement measures on actor specific energy
demands along the aluminium die casting value chain . 219
Figure 5.70 Distribution of energy carrier demands
per improvement scenario . 219
Figure 5.71 Resulting global warming potential of the aluminium
die casting value chain after the implementation
of improvement measures . 220
Figure 6.1 Evaluation of proposed framework against
the state of research 225xxv
List of Tables
Table 2.1 Selected advantages of the (aluminium) high pressure
die casting process (Rockenschaub 2014; Pithan 2013a;
Kalweit et al. 2012; Westkämper and Warnecke 2010) 18
Table 2.2 Selected disadvantages of the (aluminium) high pressure
die casting process (Rockenschaub 2014; Pithan 2013a;
Westkämper and Warnecke 2010) 19
Table 2.3 Specific energy intensity of 19 selected aluminium
die casting foundries (displayed separately for electricity
and natural gas) (Hoffmann and Jordi 2013c; Jordi 2012) . 54
Table 2.4 Specific energy intensities from North American sample
foundries (displayed for the individual foundries with
the biggest and the lowest energy intensity)
(Brevick et al. 2004) 54
Table 2.5 Typical energy intensities and metal yields of secondary
aluminium production processes (Boin et al. 2000) 56
Table 2.6 Waste from secondary aluminium production (Boin et al. 2000) . 57
Table 2.7 Typical levels of emissions to air from selected processes
in the secondary aluminium production (Boin et al. 2000) . 57
Table 2.8 Recycled content of global metal production . 61
Table 3.1 Criteria and characteristic attributes of the main area scope 70
Table 3.2 Criteria and characteristic attributes of the main
area data and model quality . 71
Table 3.3 Criteria and characteristic attributes of the main area application . 72
Table 3.4 Comparison of evaluated research approaches 84
Table 4.1 Exemplary performance indicators for manufacturing
processes regarding their energy and resource intensity . 99
Table 4.2 Exemplary performance indicators for manufacturing process
chains regarding their energy and resource intensity 101
Table 4.3 Exemplary performance indicators for industrial value chains
also regarding their energy and resource intensity . 103xxvi List of Tables
Table 4.4 Relevant events, monitoring and planning items as
manifestations of different relevant time scales
per hierarchical system level 109
Table 5.1 Characterisation of system elements within aluminium
die casting regarding dynamic behaviour and system level . 130
Table 5.2 Assignment of methods and tools to system elements
of the aluminium die casting value chain 135
Table 5.3 Classification of investigated actors (see also: Heinemann
and Herrmann 2013) 139
Table 5.4 Selected characteristics of investigated products . 140
Table 5.5 Configuration of the internal process chains of the observed
alloy supplier 143
Table 5.6 Configuration of the internal process chains
of the observed foundries . 144
Table 5.7 Main input flows into aluminium die casting value chain 148
Table 5.8 Main output flows from aluminium die casting value chain 148
Table 5.9 Main energy and material flows per system element
and available data sources at actor alloy supplier 149
Table 5.10 Main energy and material flows per system element
and available data sources at actor foundry . 150
Table 5.11 Average input and output flows of the drum melting furnace
per tonne of molten aluminium output 167
Table 5.12 Average input and output flows of the shaft melting furnace
per tonne of molten aluminium output 170
Table 5.13 Calculated input and output flows of an industrial heat
treatment transfer line per tonne of treated aluminium products . 176
Table 5.14 Life cycle inventory data sets of upstream processes
from the ecoinvent 2.2 data base . 182
Table 5.15 Aggregated energy and resource flows (selection)
for the value adding process chains/sections (system level 2)
in aluminium die casting . 188
Table 5.16 Average and focussed energy and resource flows (selection)
for value adding process chains/sections (system level 2) 190
Table 5.17 Selected reference process chains and resulting flows 192
Table 5.18 Electrical energy demands in the finishing section
and reference values (kWh) . 193
Table 5.19 Main energy and resource flows through the value adding
system elements after static simulation with Umberto™
to produce 1000 kg of finished aluminium die casted products . 196
Table 5.20 Additional transitions per secondary aluminium fraction
in subnet transportation and preparation of secondary
aluminium fractions . 214
Table 5.21 Best variation of process parameters of a T7 heat treatment
process regarding the resulting energy saving potential
(see also Kleine and Heinemann 2013) 217
Table 5.22 Comparison of energy and CO2eq. saving potentials . 221


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Energy and Resource Efficiency in Aluminium Die Casting
رابط مباشر لتنزيل كتاب Energy and Resource Efficiency in Aluminium Die Casting
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Energy and Resource Efficiency in Aluminium Die Casting
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Metal Casting - a Sand Casting Manual for the Small Foundry Vol 2
» كتاب Metal Casting - a Sand Casting Manual for the Small Foundry Vol 1
» كتاب Basic Safety Training Resource Guide
» كتاب Continuous Casting - Proceedings of the International Conference on Continuous Casting of Non-Ferrous Metals
» كتاب Effective Resource Management in Manufacturing Systems - Optimization Algorithms for Production Planning

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: