كتاب Product and Process Design Principles
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Product and Process Design Principles

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18726
التقييم : 34712
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Product and Process Design Principles  Empty
مُساهمةموضوع: كتاب Product and Process Design Principles    كتاب Product and Process Design Principles  Emptyالسبت 15 مايو 2021, 2:15 am

أخوانى فى الله
أحضرت لكم كتاب
Product and Process Design Principles
Synthesis, Analysis, and Evaluation
Second Edition
Warren D. Seider
Department of Chemical and Biomolecular Engineering
University of Pennsylvania
J. D. Seader
Department of Chemical and Fuels Engineering
University of Utah
Daniel R. Lewin
Department of Chemical Engineering

كتاب Product and Process Design Principles  P_a_p_10
و المحتوى كما يلي :


Contents
2.1 Introduction 43
Pharmaceutical Product Design 44
2.2 Property Estimation Methods 45
Computer Data Banks 45
Property Estimation 46
Polymer Property Estimation 47
Microsimulation 48
2.3 Optimization to Locate Molecular Structure 49
Polymer Design 50
Refrigerant Design 52
Solvent Design 56
Solutes for Hand Warmers 60
2.4 Summary 60
References 60 Exercises 61
Part One
PRODUCT AND PROCESS INVENTIONHEURISTICS AND ANALYSIS
1. The Design Process 3
1.0 Objectives 3
1.1 Design Opportunities 3
Design Team 5
1.2 Steps in Product and Process Design 5
Create and Assess Primitive Problem 8
Find Chemicals or Chemical Mixtures Having
Desired Properties and Performance 15
Process Creation 16
Development of Base Case Process 16
Detailed Process Synthesis Using Algorithmic
Methods 18
Plantwide Controllability Assessment 18
Detailed Design, Equipment Sizing,
and Optimization—Configured Product
Design 19
Written Design Report and Oral
Presentation 20
Plant Design, Construction, Startup,
and Operation 20
Summary 21
1.3 Environmental Protection 21
Environmental Issues 21
Environmental Factors in Process Design 23
Environmental Design Problems 26
1.4 Safety Considerations 27
Safety Issues 28
Design Approaches Toward Safe Chemical
Plants 30
1.5 Engineering Ethics 31
1.6 Role of Computers 37
Spreadsheets 39
Mathematical Packages 39
Process Simulators 39
Computational Guidelines 40
1.7 Summary 40
References 41
3. Process Creation 62
3.0 Objectives 62
3.1 Introduction 62
3.2 Preliminary Database Creation 62
Thermophysical Property Data 63
Environmental and Safety Data 67
Chemical Prices 67
Summary 68
3.3 Experiments 68
3.4 Preliminary Process Synthesis 68
Chemical State 69
Process Operations 70
Synthesis Steps 72
Continuous or Batch Processing 73
Example of Process Synthesis: Manufacture
of Vinyl Chloride 73
Synthesis Tree 84
Heuristics 85
Example of Process Synthesis: Manufacture
of Tissue Plasminogen Activator (tPA) 85
Synthesis Tree 95
Algorithmic Methods 96
3.5 Development of the Base-Case Design 96
Flow Diagrams 96
Process Integration 102
Detailed Database 102
Pilot-Plant Testing 103
Process Simulation 104
3.6 Summary 104
References 104 Exercises 105
2. Molecular Structure Design 42
2.0 Objectives 42
XllContents xiii
4. Simulation to Assist in Process Creation 106
4.0 Objectives 106
4.1 Introduction 107
4.2 Principles of Steady-State Flowsheet
Simulation 108
Process and Simulation Flowsheets 108
Unit Subroutines 119
Calculation Order 123
Recycle 125
Recycle Convergence Methods 133
Flash with Recycle Problem 135
Flash Vessel Control 136
Equation-Oriented Architectures 136
4.3 Synthesis of the Toluene Hydrodealkylation
Process 136
Process Simulation 140
4.4 Steady-State Simulation of the
Monochlorobenzene Separation Process 142
Use of Process Simulators 144
4.5 Principles of Batch Flowsheet Simulation 145
Process and Simulation Flowsheets 145
Equipment Models 145
4.6 Summary 154
References 154 Exercises 155
5.8 Changing the Particle Size of Solids
and Size Separation of Particles 191
5.9 Removal of Particles from Gases
and Liquids 193
5.10 Summary 193
References 198 Exercises 198
Part Two
DETAILED PROCESS SYNTHESISALGORITHMIC METHODS
6. Reactor Design and Reactor Network
Synthesis 205
6.0 Objectives 205
6.1 Reactor Models 205
Reaction Stoichiometry 206
Extent of Reaction 206
Equilibrium 207
Kinetics 210
Ideal Kinetic Reaction Models—CSTRs
and PFRs 211
6.2 Reactor Design for Complex Configurations 214
6.3 Reactor Network Design Using the Attainable
Region 220
Construction of the Attainable Region 222
The Principle of Reaction Invariants 226
6.4 Summary 229
References 229 Exercises 230
5. Heuristics for Process Synthesis 161
5.0 Objectives 161
5.1 Introduction 162
5.2 Raw Materials and Chemical Reactions 163
5.3 Distribution of Chemicals 165
Inert Species 166
Purge Streams 168
Recycle to Extinction 171
Selectivity 172
Reactive Separations 173
Optimal Conversion 175
5.4 Separations 175
Separations Involving Liquid and Vapor
Mixtures 175
Separations Involving Solid Particles 177
5.5 Heat Removal from and Addition
to Reactors 179
Heat Removal from Exothermic Reactors 179
Heat Addition to Endothermic Reactors 182
5.6 Heat Exchangers and Furnaces 183
5.7 Pumping, Compression, Pressure Reduction,
Vacuum, and Conveying of Solids 185
Increasing the Pressure 186
Decreasing the Pressure 188
Pumping a Liquid or Compressing a Gas 189
Vacuum 190
Conveying Granular Solids 190
Changing the Pressure of Granular Solids 191
7. Synthesis of Separation Trains 231
7.0 Objectives 231
7.1 Introduction 231
Feed Separation System 232
Phase Separation of Reactor Effluent 232
Industrial Separation Operations 238
7.2 Criteria for Selection of Separation Methods 241
Phase Condition of the Feed as a Criterion 242
Separation Factor as a Criterion 242
Reason for the Separation as a Criterion 246
7.3 Selection of Equipment 246
Absorption, Stripping, and Distillation 246
Liquid-Liquid Extraction 247
Membrane Separation 247
Adsorption 247
Leaching 247
Crystallization 247
Drying 248
7.4 Sequencing of Ordinary Distillation Columns for
the Separation of Nearly Ideal Fluid Mixtures 248
Column Pressure and Type of Condenser 248
Number of Sequences of Ordinary Distillation
Columns 249xiv Contents
Heuristics for Determining Favorable
Sequences 251
Marginal Vapor Rate Method 253
Complex and Thermally Coupled Distillation
Columns 255
7.5 Sequencing of Operations for the Separation
of Nonideal Fluid Mixtures 258
Azeotropy 259
Residue Curves 263
Simple Distillation Boundaries 266
Distillation Towers 266
Distillation Lines 267
Computing Azeotropes for Multicomponent
Mixtures 269
Distillation-Line Boundaries and Feasible Product
Compositions 269
Heterogeneous Distillation 271
Multiple Steady States 275
Pressure-Swing Distillation 277
Membranes, Adsorbers, and Auxiliary
Separators 279
Reactive Distillation 279
Separation Train Synthesis 282
7.6 Separation Systems for Gas Mixtures 288
Membrane Separation by Gas Permeation 289
Adsorption 290
Absorption 291
Partial Condensation and Cryogenic
Distillation 291
7.7 Separation Sequencing for Solid-Fluid
Systems 291
7.8 Summary 294
References 294 Exercises 295
9.3 Energy Transfer CD-9-7
9.4 Thermodynamic Properties CD-9-9
Typical Entropy Changes CD-9-11
Thermodynamic Availability CD-9-13
Typical Availability Changes CD-9-15
9.5 Equations for Second-Law Analysis CD-9-20
9.6 Examples of Lost-Work Calculations CD-9-25
9.7 Thermodynamic Efficiency CD-9-30
9.8 Causes of Lost Work CD-9-33
9.9 Three Examples of Second-Law
Analysis CD-9-34
9.10 Summary CD-9-52
References CD-9-52 Exercises CD-9-53
10. Heat and Power Integration 302
10.0 Objectives 302
10.1 Introduction 303
10.2 Minimum Utility Targets 306
Temperature-Interval (TI) Method 307
Composite Curve Method 310
Linear Programming Method 312
10.3 Networks for Maximum Energy
Recovery 316
Stream Matching at the Pinch 316
Mixed-Integer Linear Programming 320
10.4 Minimum Number of Heat Exchangers 326
Reducing the Number of Heat Exchangers—
Breaking Heat Loops 326
Reducing the Number of Heat Exchangers—
Stream Splitting 330
10.5 Threshold Approach Temperature 333
10.6 Optimum Approach Temperature 335
10.7 Superstructures for Minimization of Annual
Costs 338
8. Reactor-Separator-Recycle Networks
(CD-ROM) 300, CD-8-1
8.0 Objectives 300, CD-8-1
8.1 Introduction CD-8-2
8.2 Locating the Separation Section with Respect
to the Reactor Section CD-8-3
8.3 Tradeoffs in Processes Involving
Recycle CD-8-11
8.4 Optimal Reactor Conversion CD-8-13
8.5 Recycle to Extinction CD-8-17
8.6 Snowball Effects in the Control of Processes
Involving Recycle CD-8-23
8.7 Summary CD-8-23
References CD-8-24 Exercises CD-8-24
10.8 Multiple Utilities 341
Designing HENs Assisted by the Grand
Composite Curve 342
10.9 Heat-Integrated Distillation Trains 346
Impact of Operating Pressure 346
Multiple-Effect Distillation 349
Heat Pumping, Vapor Recompression,
and Reboiler Flashing 350
10.10 Heat Engines and Heat Pumps 352
Positioning Heat Engines and Heat Pumps 355
Optimal Design 357
10.11 Summary 360
Heat Integration Software 361
References 361 Exercises 361
9. Second-Law Analysis (CD-ROM) 301
9.0 Objectives 301, CD-9-1
9.1 Introduction CD-9-3
9.2 The System and the Surroundings CD-9-5
11. Mass Integration 367
11.0 Objectives 367
11.1 Introduction 367Contents xv
11.2 Minimum Mass-Separating Agent 369
Approach to Phase Equilibrium 370
Concentration-Interval (Cl ) Method 370
Composite-Curve Method 374
11.3 Mass Exchange Networks for Minimum
External MSA 377
Stream Matching at the Pinch 377
Stream Splitting at the Pinch 378
11.4 Minimum Number of Mass Exchangers 380
Reducing the Number of Mass Exchangers—
Breaking Mass Loops 380
11.5 Advanced Topics 381
11.6 Summary 381
References 382 Exercises 382
12. Optimal Design and Scheduling of Batch
Processes 384
12.0 Objectives 384
12.1 Introduction 384
12.2 Design of Batch Process Units 386
Batch Processing 386
Fed-Batch Processing 387
Batch-Product Removal 389
12.3 Design of Reactor-Separator Processes 391
12.4 Design of Single Product Processing
Sequences 395
Batch Cycle Times 395
Intermediate Storage 398
Batch Size 398
12.5 Design of Multiproduct Processing
Sequences 399
Scheduling and Designing Multiproduct
Plants 399
12.6 Summary 401
References 401 Exercises 401
Furnaces 424
Temperature-Driving Forces in Shell-and-Tube
Heat Exchangers 424
13.3 Heat Transfer Coefficients and Pressure
Drop 428
Estimation of Overall Heat Transfer
Coefficients 430
Estimation of Individual Heat Transfer
Coefficients and Frictional Pressure Drop 430
Turbulent Flow in Straight, Smooth Ducts, Pipes,
and Tubes of Circular Cross Section 432
Turbulent Flow in the Annular Region between
Straight, Smooth, Concentric Pipes of Circular
Cross Section 433
Turbulent Flow on the Shell Side of Shell-andTube Heat Exchangers 434
Heat Transfer Coefficients for Laminar-Flow,
Condensation, Boiling, and Compact Heat
Exchangers 436
13.4 Design of Shell-and-Tube Heat Exchangers 436
13.5 Summary 439
References 441 Exercises 441
14. Separation Tower Design 443
14.0 Objectives 443
14.1 Operating Conditions 443
14.2 Fenske-Underwood-Gilliland (FUG) Shortcut
Method for Ordinary Distillation 445
14.3 Kemser Shortcut Method for Absorption
and Stripping 446
14.4 Rigorous Multicomponent, Multi-EquilibriumStage Methods with a Simulator 449
14.5 Plate Efficiency and HETP 451
14.6 Tower Diameter 453
Tray Towers 453
Packed Towers 454
14.7 Pressure Drop and Weeping 455
14.8 Summary 458
References 458 Exercises 459
Part Three
DETAILED DESIGN, EQUIPMENT SIZING,
AND OPTIMIZATION—CONFIGURED
PRODUCT DESIGN 15. Pumps, Compressors, and Expanders 460
15.0 Objectives 460
13. Heat Exchanger Design 405 15.1 Pumps 460
13.0 Objectives 405
13.1 Introduction 405
Heat Duty 406
Heat Transfer Media 407
Temperature-Driving Force for Heat Transfer 410
Pressure Drop 413
13.2 Equipment for Heat Exchange 414
Double-Pipe Heat Exchangers 414
Shell-and-Tube Heat Exchangers 415
Air-Cooled Heat Exchangers 421
Compact Heat Exchangers 422
Centrifugal Pumps 461
Positive-Displacement Pumps 464
Pump Models in Simulators 466
15.2 Compressors and Expanders 467
Centrifugal Compressors 467
Positive-Displacement Compressors 468
Expanders 469
Compressor and Expander Models
in Simulators 470
15.3 Summary 471
References 471 Exercises 471xvi Contents
16. Cost Accounting and Capital Cost
Estimation 472
16.0 Objectives 472
16.1 Accounting 473
Debits and Credits 473
The Annual Report 474
The Balance Sheet 474
The Income Statement 477
The Cash Flow Statement 478
Financial Ratio Analysis 479
Cost Accounting 481
16.2 Cost Indexes and Capital Investment
for Commodity Chemicals 483
Cost Indexes 483
Commodity Chemicals 485
Economy of Scale and the Six-Tenths Factor 486
Typical Plant Capacities and Capital Investments
for Commodity Chemicals 487
16.3 Capital Investment Costs 488
Direct Materials and Labor (M&L) 490
Indirect Costs 491
Other Investment Costs 493
Example of an Estimate of Capital
Investment 496
16.4 Estimation of the Total Capital Investment 497
Method 1. Order-of-Magnitude Estimate (Based
on the Method of Hill, 1956) 498
Method 2. Study Estimate (Based on the
Overall Factor Method of Lang,
1947a,b, 1948) 500
Method 3. Preliminary Estimate (Based
on the Individual Factors Method
of Guthrie, 1969, 1974) 503
16.5 Purchase Costs of the Most Widely Used
Process Equipment 505
Pumps and Electric Motors 506
Pump and Motor Purchase Costs 508
Fans, Blowers, and Compressors 514
Heat Exchangers 522
Fired Heaters 525
Pressure Vessels and Towers for Distillation,
Absorption, and Stripping 527
16.6 Purchase Costs of Other Chemical Processing
Equipment 536
Adsorption Equipment 536
Agitators (Propellers and Turbines) 537
Autoclaves 537
Crystallizers 538
Drivers Other than Electric Motors 538
Dryers 538
Dust Collectors 539
Evaporators 540
Fired Heaters for Specific Purposes 540
Liquid-Liquid Extractors 541
Membrane Separations 542
Mixers for Powders, Pastes, and Doughs 542
Power Recovery 542
Screens 542
Size Enlargement 543
Size Reduction Equipment 543
Solid-Liquid Separation Equipment
(Thickeners, Clarifiers, Filters, Centrifuges,
and Expression) 544
Solids Handling Systems 547
Storage Tanks and Vessels 549
Vacuum Systems 550
Wastewater Treatment 557
16.7 Equipment Cost Estimation Using the
Aspen Icarus Process Evaluator (IPE)
(CD-ROM) 557, CD-16.7-1
16.8 Summary 557
References 558 Exercises 558
17. Annual Costs, Earnings, and Profitability
Analysis 563
17.0 Objectives 563
17.1 Introduction 564
17.2 Annual Sales Revenues, Production Costs,
and the Cost Sheet 565
Sales Revenue 565
Feedstocks 565
Utilities 567
Labor-Related Operations, O 574
Maintenance, M 575
Operating Overhead 576
Property Taxes and Insurance 576
Depreciation, D 577
Cost of Manufacture, COM 577
Total Production Cost, C 577
Pretax (Gross) Earnings and After-Tax (Net)
Earnings (Profit) 579
17.3 Working Capital and Total Capital
Investment 580
17.4 Approximate Profitability Measures 581
Return on Investment (ROI) 581
Payback Period (PBP) 582
Venture Profit (VP) 583
Annualized Cost (CA) 584
Product Selling Price for Profitability 585
17.5 Time Value of Money 585
Compound Interest 586
Nominal and Effective Interest Rates 588
Continuous Compounding of Interest 589
Annuities 590
Present Worth of an Annuity 594
Comparing Alternative Equipment
Purchases 595Contents xvii
19.4 Hand Warmer 659
GRABBER MYCOAL Hand Warmer 660
Zap Pak Heat Pack 660
19.5 Multilayer Polymer Mirrors 662
19.6 CVD of Polysilicon in IC Manufacture 663
Initial Dissociation 663
19.7 Germ-Killing Surfaces 667
19.8 Insect Repelling Wristband 667
19.9 Automotive Fuel Cell 668
19.10 Environmentally Safe Refrigerants 671
19.11 Summary 672
References 673
17.6 Cash Flow and Depreciation 597
Depreciation 598
Depletion 604
17.7 Rigorous Profitability Measures 606
Net Present Value (NPV) 606
Investor’s Rate of Return (IRR or DCFRR) 607
Inflation 609
17.8 Profitability Analysis Spreadsheet
(CD-ROM) 611, CD-17.8-1
General Instructions For Use of Profitability
Analysis- l .O.xls, CD-17.8-1
17.9 Summary 611
References 611 Exercises 611
Exercises 674
18. Optimization of Process Flowsheets 616
18.0 Objectives 616
18.1 Introduction 616
18.2 General Formulation of the Optimization
Problem 617
Objective Function and Decision Variables 618
Equality Constraints 618
Inequality Constraints 619
Lower and Upper Bounds 619
18.3 Classification of Optimization Problems 619
18.4 Linear Programming (LP) 623
18.5 Nonlinear Programming (NLP) with a Single
Variable 626
Golden-Section Search 626
18.6 Conditions for Nonlinear Programming (NLP)
by Gradient Methods with Two or More
Decision Variables 630
General Formulation 630
Stationary Conditions 631
Solution of the Stationary Equations 631
18.7 Optimization Algorithm 632
Repeated Simulation 634
Infeasible Path Approach 634
Compromise Approach 635
Practical Aspects of Flowsheet
Optimization 635
18.8 Flowsheet Optimization—Case Studies 636
18.9 Summary 640
References 640
Part Four
PLANTWIDE CONTROLLABILITY
ASSESSMENT
20. The Interaction of Process Design and Process
Control 679
20.0 Objectives 679
20.1 Introduction 679
20.2 Control System Configuration 684
Classification of Process Variables 684
Selection of Controlled (Output) Variables 685
Selection of Manipulated Variables 685
Selection of Measured Variables 685
Degree-of-Freedom Analysis 686
20.3 Qualitative Plantwide Control System
Synthesis 692
20.4 Summary 702
References 702 Exercises 702
21. Flowsheet Controllability Analysis 705
21.0 Objectives 705
21.1 Generation of Linear Models in Standard
Forms 706
21.2 Quantitative Measures for Controllability
and Resiliency 710
Steady-State RGA (Bristol, 1966) 710
Properties of the Steady-State RGA 712
Dynamic RGA (McAvoy, 1983) 712
The RGA as a Measure of Process Sensitivity
to Uncertainty 718
Using the Disturbance Cost to Assess Resiliency
to Disturbances 719
21.3 Toward Automated Flowsheet C&R
Diagnosis 723
Shortcut C&R Diagnosis 723
Generating Low-Order Dynamic Models 724
Steady-State Gain Matrix, t? 724
Dynamics Matrix, vjjc{5 } 724
Exercises 640
19. Product Design 644
19.0 Objectives 644
19.1 Steps in Designing Industrial and Consumer
Products 644
Six Sigma in Product Design
and Manufacturing 646
19.2 Hemodialysis Device 650
19.3 Solar Desalination Unit 656xviii Contents
21.4 Controller Loop Definition and Tuning 732
Definition of PID Control Loop 732
Controller Tuning 733
Model-Based Pi-Controller Tuning 734
21.5 Case Studies 736
Written Handout 776
Evaluation of the Oral Presentation 776
Videotapes and DVDs 778
22.3 Award Competition 778
22.4 Summary 779
Case Study 21.1 Exothermic Reactor Design References 779
for the Production of Propylene Glycol
(Example 21.1 Revisited) 736
Case Study 21.2 Two Alternative
Heat-Exchanger Networks (Examples 20.1
and 20.5 Revisited) 741
Case Study 21.3 Interaction of Design
and Control in the MCB Separation Process 747
21.6 MATLAB for C&R Analysis 755
21.7 Summary 757
References 759
APPENDIXES
I. Residue Curves for Heterogeneous Systems 781
II. Design Problem Statements
(CD-ROM) 782, CD-A-II-1
Exercises 759 A-II.O
A-II.l
A-II.2
A-H.3
A-H.4
A-H.5
A-II.6 Polymers CD-A-II-41
A-II.7 Environmental-Air Quality CD-A-II-48
A-II.8 Environmental-Water
Treatment CD-A-II-63
A-II.9 Environmental-Soil
Treatment CD-A-II-67
A-II.10 Environmental-Miscellaneous CD-A-II-71
Contents and Introduction CD-A-II-1
Petrochemicals CD-A-II-6
Petroleum Products CD-A-II-26
Gas Manufacture CD-A-II-27
Foods CD-A-II-35
Pharmaceuticals CD-A-II-38
Part Five
DESIGN REPORT
22. Written Reports and Oral Presentations 765
22.0 Objectives 765
22.1 Contents of the Written Report 766
Opening Sections of the Report 766
Remaining Sections of the Process Design
Report 767
Remaining Sections of the Product Design
Report 767
Preparation of the Written Report 772
Sample Design Reports 775
22.2 Oral Design Presentation 776
Typical Presentation 776
Media for the Presentation 776
Rehearsing the Presentation 776
III. Materials of Construction 785
NAME INDEX 787
SUBJECT INDEX 791
CONTENTS
INTRODUCTION 1
PREPARING AN ASPEN PLUS SIMULATION FOR ASPEN IPE 2
Additional Mixture Properties 3
INVESTMENT ANALYSIS USING ASPEN IPE 3
DEPROPANIZER 3
Initial Setup 3
Mapping Process Simulation Units into Aspen IPE 8
Standard Basis 17
Equipment Costing 19
Total Permanent Investment 25
Adding Equipment 25
Applying Alternative Utilities 34
MONOCHLOROBENZENE SEPARATION PROCESS 37
Initial Setup 37
Mapping Process Simulation Units to Aspen IPE 39
Standard Basis 45
Equipment Costing 45
Total Permanent Investment 50
ASPEN IPE FOLDERS AND FILES 51
REFERENCES 51
APPENDIX I - DEPROPANIZER – ASPEN PLUS REPORT 52
APPENDIX II - DESIGN CRITERIA SPECIFICATIONS 58
APPENDIX III - ASPEN IPE CAPITAL ESTIMATE REPORT FOR THE 61
DEPROPANIZER
APPENDIX IV - ASPEN IPE CAPITAL ESTIMATE REPORT FOR THE 70
MONOCHLOROBENZENE SEPARATION PROCESS
Subject Index
Page Number Definitions
Page numbers in textbook
Page numbers in Chapter 8.pdf on CD-ROM
Page numbers in Chapter 9.pdf on CD-ROM
Page numbers in Section 16-7.pdf on CD-ROM
Page numbers in Section 17.8.pdf on CD-ROM
Page numbers in Design Problem Statements.pdf on CD-ROM
Page numbers in GAMS.pdf on CD-ROM
Page numbers in Aspen 1PE Course Notes.pdf on CD-ROM
Refers to the multimeda ASPEN menu on the CD-ROM
Refers to the multimeda HYSYS menu on the CD-ROM
1
, 2, . . .
CD-8-1, 2, ...
CD-9-1, 2, ...
CD-16.7-1, 2, .. .
CD-17.8-1, 2, .. .
CD-A.11-1, 2, ...
CD-G-1, 2, . ..
CD-IPE-1, 2, .. .
CD-ASPEN
CD-HYSYS
Refers to the Aspen Eng. Suite folder on the CD-ROM
Refers to the HYSYS folder on the CD-ROM
Refers to the MATLAB folder on the CD-ROM
CD-AES
CD-HYSYS folder
CD-MATLAB folder
results forms
flash vessel simulation, CD-ASPEN
sensitivity analysis
propylene-glycol CSTR, CD-ASPEN
simulation flowsheet
MCB separation process,
CD-ASPEN
tear streams, 128-132, CD-ASPEN
unit subroutines, 119-123
Aspen Technology, Inc., 38, 106
Assets, 474-477
Attainable region, 220-229
maleic anhydride mfg., 224-226
methane reforming, 227-229
AUT097, 38
AUTOCAD, 97
Auxiliary facilities, 489
Auxiliary studies, 12
Award competition, 778-779
Azeotrope
binary
maximum boiling, 260, 262
minimum boiling, 259-261
fixed point, 262, 264
heterogeneous, 263, 271-272
multicomponent, 269
pinch point, 262
reactive, 281-282
Azeotropic distillation
heterogeneous, 271-276
multiple steady states, 275-276
ABACUS, 136 Aspen IPE, 557, CD-16.7, CD-IPE-1
Accounting, 473-482
Acetaldehyde from acetic acid
design problem, CD-A-II-10 to 11
Activity coefficients
DECHEMA database, 64
NRTL, 64
UNIFAC, CD-ASPEN
UNIQUAC, 64
Wilson, 64
Adiabatic reaction temperature, 179
AEROTRAN, 437
Alitame sweetener mfg.
design problem, CD-A-II-37 to 38
Allyl chloride reactions, 172-173
Ammonia process, 156-157, 168-170, 198
Synthesis reactor network, 218-220,
CD-ASPEN, CD-HYSYS
TVA reactor, 181-182
Ammonia separation process
simulation, CD-ASPEN, CD-HYSYS
Amortization, 477
Annual report, 474
Annuities (see Time value of money)
Argon recovery process
costing exercise, 560-561
Aromatics separation
sequence exercise, 296
Artificial kidney, 650
ASPEN DYNAMICS, 38, 680 (see also
Aspen Engineering Suite)
Aspen IPE, 557, CD-16.7, CD-IPE (see also
Aspen Engineering Suite)
Aspen Engineering Suite, 38
AEROTRAN, 437
ASPEN DYNAMICS, 38, 680
to 78
ASPEN PINCH, 38, 361
ASPEN PLUS (see ASPEN PLUS)
ASPEN SPLIT, 38, 284
BATCH PLUS (see BATCH PLUS)
B-JAC, 437-438
HETRAN, 437-438
TEAMS, 437
ASPEN PLUS, 38, 106, CD-ASPEN
backup files (.bkp), CD-AES
batch distillation
BATCHFRAC, 390-391, CD-ASPEN
calculation sequence, 123-132
calculator, CD-ASPEN
design specifications, 122-123, CD-ASPEN
equation-oriented simulation, 136
flowsheet, 110, 117, 127
drawing, CD-ASPEN
heat streams, CD-ASPEN
inline FORTRAN, CD-ASPEN
input forms, CD-ASPEN
flash vessel simulation, CD-ASPEN
input summary, CD-ASPEN (see also
program)
intro, case study—flash simul., 135-136,
155
main window, CD-ASPEN
nested recycle loops, 128-132, CD-ASPEN
optimization (see Flowsheet optimization)
paragraphs, 120, CD-ASPEN
PFD, CD-ASPEN
program, 121, CD-ASPEN
output
history file, CD-ASPEN
report file, CD-ASPEN
Balance sheet, 474-477
Bare-module costs, 488-490
Base case design, 16-18, 96-104
detailed database, 102-103
791792 Subject Index
Base case design (Continued )
flow diagrams
block flow diagram, 96-97
P&ID, 101
process flow diagram (PFD), 97-101
pilot plant testing, 103-104
process integration, 102 (see also Heat int.
& mass int.)
process simulation, 104 (see also Process
simulation)
Basic chemicals, 1-2, 17
BATCH PLUS, 38, 145-154, CD-ASPEN
equipment models, 145-149
Gantt chart, 154
recipe, 152
tPA process simulation, 150-154
Batch process units
batch product removal, 389-391 (see also
Batch product-removal proc.)
batch size, 145, 386, 396, 398
batch time, 145, 386, 396
exothermic batch reactor, 386-387
fed batch, 387-389
size factor, 386
Batch processing (see scheduling batch
processes)
favorable conditions, 385-386
multiproduct sequences, 399-401
reactor-separator processes, 391-395
single product sequences, 395-398
Batch size, 145, 386, 396, 398
Batch time, 145, 386, 396
minimum, 387
BATCHFRAC, 390-391, CD-ASPEN
Batch product-removal process, 385
batch distillation, 389-391
BATCHFRAC, 390-391, CD-ASPEN
Battery limits, 489
Bidirectional information flow, 121-122
Bioconcentration factor (BCF), 58
B-JAC, 437^438
Blowers, 467, 518-519
Boiling heat transfer (see Heat exchangers)
film boiling, 411
nucleate boiling, 411
Book value, 476-477
Bottleneck, 150, 154, 396
Butadiene to n-butyraldehyde and n-butanol
design problem, CD-A-II-12 to 13
Butenes recovery system
example separation sequence, 238-241
Marshall and Swift, 483^185
Nelson-Farrar, 484-485
direct permanent investment, 483, 488, 493
economy of scale, 486^187
equations, 505-506
blowers, 518-519
compressors, 520-522
electric motors, 509-511
fans, 515-517
fired heaters (furnaces), 525-526
heat exchangers, 522-525
other equipment (Table 16.32), 553-556
packings, 533-534
plates (trays), 532
pressure vessels and towers, 527-531
pumps, 508, 511-512
estimating methods, 497
definitive estimate, Aspen IPE, 497^198,
557, CD-16.7-1 to 13
order-of-magnitude estimate, 497-500
preliminary estimate, Guthrie, 497,
503-505
study estimate, Lang, 497, 500-502
installation costs
table of components, 488
total bare-module investment, 488, 493
total capital investment, 483, 493, 580
total depreciable capital, 487^188, 493
total permanent investment, 483, 488, 493
Aspen IPE, CD-16.7-7, 12
Guthrie method, 503-505
Lang factor method, 500-502
working capital, 483, 488, 493, 496, 580-581
Capitalized cost, 596-597
Carbon dioxide fixation by microalgae
design problem, CD-A-II-60 to 61
Cash flow, 478, 564, 597-598
investment costs, 597-598
MACRS tax basis for depreciation (see
depreciation)
production schedule, 598
table of cash flows, 608
Cash flow statement, 478^179
Catalytic converter, 171, CD-A-II-53 to 55
Cavett process, simulation exercise, 155-156
Center for Chemical Process Safety, 19, 27
CEP Software Directory, 37
Cheese whey to lactic acid
design problem, CD-A-II-79 to 80
CHEMCAD, 38, 106
unit subroutines, 115
Chemical equilibrium (see Chemical reactors)
Chemical Marketing Reporter, 67, 76, 567
Chemical reactors
batch reactor optimization, 386-387
chemical equilibrium calculations
equilibrium constant method, 207-209,
CD-ASPEN, CD-HYSYS
free-energy minimization method,
207-210, CD-ASPEN, CD-HYSYS
complex configurations
external heat exchange reactor, 181-182,
214-216
heat-exchanger reactor, 214-215
hot/cold shot reactor, 180-181, 214, 216
use of a diluent, 180-181, 214-215
control. & resil. (C&R) analysis, 736-741
CSTR control configuration, 688-689
CSTR model
ASPEN RCSTR, 211, CD-ASPEN
HYSYS CSTR, 211, 740-741,
CD-HYSYS
linear model formulation, 708-709
model formulation, 211
dynamic simulation, 740-741
equilibrium model
ASPEN REQUIL, CD-ASPEN
ASPEN RGIBBS, CD-ASPEN
HYSYS Equilibrium Reactor,
CD-HYSYS
HYSYS Gibbs Reactor
, CD-HYSYS
extent of reaction, 206-207
fed-batch reactor optimization, 387-389
fractional conversion, 206-207
heuristics for reactor design, 172-175,
179-183
Aspen IPE, CD-16.7-5 to 6, CD-IPE-19
to 25
bare-module cost, 488^190
bare-module factors, 492
direct labor, 490^191
direct materials, 490^191
indirect costs, 491-492
materials factor, misc. equipment, 536
other investment costs
allocated costs for utilities, 488, 493-494
catalyst, 488, 493
contingencies, 488, 493^194
contractor’s fee, 493^194
land, 488, 495
royalties, 488, 495
service facilities, 488, 493^194
site factors, 495^196
site preparation, 488, 493
spares, 488, 493
startup, 488, 495
storage tanks, 488, 493
surge vessels, 488, 493
working capital, 483, 488, 493, 496,
580-581
pressure factor, 524
purchase-cost charts
blowers, 519
compressors, 521
double-pipe heat exchangers, 524
electric motors, 510
external gear pumps, 512
fans, 516
indirect-fired heaters (furnaces), 526
pressure vessels and towers, 528
radial centrifugal pumps, 509
reciprocating plunger pumps, 513
shell-and-tube heat exchangers, 523
six-tenths factor, 486^4-87
C4 byproduct upgrade
design problem, CD-A-II-16 to 17
Calculation order, 123-124
Campaign time—batch, 394-395
Capital cost, 483
Aspen IPE—Icarus method, 497^198, 557,
CD-16.7, CD-IPE
cost indices
Chemical Engineering, 483—485
Engineering News-Record, 484^185Subject Index 793
CVD of polysilicon in IC mfg., 663-667
Cycle time—batch processes, 150, 396-398
Cyclohexane from benzene, CD-9-45 to 51
key reactant, 206
kinetic models, 210
models, 205-206
multiple reactions, 206
multiple steady states, 217
networks
attainable region, 220-229
bypass fractions, 218-220
reaction invariants, 226-229
optimal reaction rate trajectory, 216-220,
CD-ASPEN, CD-HYSYS
PFR model
ASPEN RPLUG, CD-ASPEN
HYSYS PFR, CD-HYSYS
model formulation, 211-213
reaction kinetics
Langmuir-Hinshelwood model, 210
power-law model, 210
reaction stoichiometry, 206
stoichiometric model
ASPEN RSTOIC subroutine, CD-ASPEN
HYSYS Conversion Reactor,
CD-HYSYS
Chemical state, 69-70
Chemicals, 485
bulk, 3-4, 485
commodity fine, 485 , 3—4, 485—486
CHEMSEP specialty, 3—4, 56, 485
separations software, 39
ChemStations, 38, 106
Chlorinated hydrocarbon sepn.
sequencing exercise, 296
Combined cycle power generation
design problem, CD-A-II-72 to 74
Combined feed, CD-8-2
Compact Commodity heat chemicals exchangers , 3,,4422 , 485—486
Compressors, 467, 514-515, 520 —424 -521,
CD-ASPEN, CD-HYSYS
brake horsepower, 470
centrifugal heuristics for , 467 equipment —468 selection,
185-187, 189, 514-515
isentropic efficiency, 470
isentropic horsepower, 470
purchase positive-displacement cost, 520-522 , 468—469
Computers
guidelines for design, 40
mathematical packages, 39
process simulators, 38, 39—40
programs used in design, 38-39
spreadsheets, 39
table of useful software, 38-39
Condensing heat transfer, 436
Construction, 20
Consumer configured products , 20 , 3—4, 16-17, 20
Contingency, 483
Continuous processing, 150, 384-386
Control action
direct acting, 732-733
reverse acting, 732-733
Control blocks, 122-123, CD-ASPEN (see
also design specifications)
Control variables
selection of (see manipulated variables)
Control, and resil. (C&R) analysis
CSTRs in series, 736-741
heat exchanger networks, 741-747
heat-integrated distillation, 725-732
MCB separation process, 747-755
shortcut, 723-724
Controllability
definition, 679
Controlled variables
selection of, 685
Controller tuning
definitions, 732-733
model-based tuning, 733-735
examples, 735-736,CD-HYSYS
Cost Coolants accounting , 407—409 , 481
Cost charts (see Capital —482 cost)
Cost equations (see Capital cost)
Cost estimation (see Cap. cost & profit, anal.)
Cost indices (see Capital cost)
Cost of manufacturing, 477
Cost of sales, 477
Cost sheet, 564, 566
cost of manufacture (COM), 566, 574, 577
cost of sales (total production cost), 577
depreciation (see Depreciation)
feedstocks, 565-567
Chemical Market Reporter, 567
transfer price, 567
fixed costs, 577, CD-17.8-7 to 8
general expenses, 577
maintenance
materials and services, 575
overhead, 575
salaries and benefits, 575
wages and benefits, 575
operating factor, 565, 567, 598
operating overhead, 576
operations
control laboratory, 575
operators, number of, 574
salaries and benefits, supervisory, 575
supplies and services, 575
technical assistance, 575
wages and benefits, labor, 574
property insurance, 576-577
property taxes, 576-577
total production cost (C), 577
utilities (see utilities)
variable costs, CD-17.8-7
Cracking products separation
sequencing exercise, 296
Credits Cumene , 473 mfg—.,474 CD-8-4 to 10
exercise, CD-8-24 to 26
Database
chemical prices, 67
DECHEMA, 64
detailed, 102-103
environmental data, 67
preliminary, 62-68
safety data, 67
thermophysical properties, 63-67 (see also
Physical properties)
toxic chemical data, 67
vapor-liquid equilibria, 63-67 (see also
Physical properties)
DDT, 23, 33
Debits, 473-474
Decanter
control loop pairings
exercise, 760
DECHEMA database, 64
Degrees of freedom, 119-120, 686
analysis, 686-691
Delay times, 725
Depletion, 478, 604-605
Depreciation, 477, 577
book depreciation, 599
book value, 599
market value, 599
replacement value, 599
Depreciation methods
declining balance, 599-600
double-declining balance, 599-600
MACRS, 602-604
straight-line, 598
sum-of-the-years-digits, 601-602
Depropanizer distillation
ASPEN DISTL simulation, CD-ASPEN
ASPEN DSTWU design calc., CD-ASPEN
ASPEN RADFRAC simulation, CD-IPE-52
to 57, CD-ASPEN
HYSYS Column simulation, CD-HYSYS
Desalination (see Solar desalination unit)
Design problem statements, 782-783, CD-A-II
environmental, CD-A-II-48 to 80
environmental
—air quality, CD-A-II-48 to
63
carbon dioxide fixation by microalgae,
CD-A-II-60 to 61
desulfuriz. of diesel oil—biocatalytic,
CD-A-II-50 to 51
HFC recovery and purification, CD-A-II-
58 to 60
hydrogen mfg., CD-A-II-61 to 63
R134a refrigerant mfg., CD-A-II-48 to 50
smog control, CD-A-II-53 to 55
sulfur recovery from natural gas,
CD-A-II-51 to 52
vol. org. compound (VOC) abatement,
CD-A-II-57
zero emissions, CD-A-II-56 to 57794 Subject Index
Design problem statements (Continued )
environmental
—miscellaneous
cheese whey to lactic acid, CD-A-II-79 to
petroleum products, CD-A-II-26 to 27
methyl-tert-butyl-ether mfg., CD-A-II-26
Distillation boundaries, 266
Distillation lines, 267-268
distillation line boundaries, 269-271
Distillation towers
azeotropic (see Azeotropic distillation)
batch (see BATCH FRAC and
MULTIBATCHDS)
condenser, 248-249
control configurations, 690-691, 713-715
diameter
packed towers, 454-455
tray towers, 453^154
dividing-wall columns, 257-258
ease of separation index (ESI), 255-256
equipment sizing
ASPEN PLUS RADFRAC, CD-ASPEN
HYSYS.Plant, CD-HYSYS
feasible product compositions, 269-270
Fenske-Underwood-Gilliland (FUG)
method, 445^146
flooding velocity of Fair, 453^454
flooding velocity of Leva, 454-455
Gilliland correlation, 446
heat pumping, 350-352
HETP, 451-452
heuristics for equipment design, 175
material balance lines, 269-270
minimum equilibrium stages, Fenske, 445
minimum reflux, Underwood, 445
multipass trays, 456
number of stages, 446
plate efficiency, 451-452
pressure drop, tray, 455-456
pressure, operating, 248-249, 443-444
purchase cost, 527-536
residue-curve maps, 263-266
residue curves, 263-266 (see also Residue
curves)
rigorous models, 449-450
side streams, 255-257
video
lab tower and industrial complex,
CD-ASPEN, CD-HYSYS
weeping, sieve trays, 456
Distillation trains
direct sequence, 252
heat integrated (see Heat-integrated distillation
and Multiple-effect distillation)
indirect sequence, 252
number of sequences, 250-251
ordinary distillation, 249-255
Petlyuk towers, 255-258
prefractionator, 255-257
reboiler liquid flashing, 350-352, CD-9-43
to 45
side stream rectifier, 255-256
side stream stripper, 255-256
vapor recompression, 350-352
Distribution of chemicals, 73, 78-79, 165-175
excess reactant, 165-166
heat addition, 182-183
heat removal, 179-181
to 27
80 pharmaceuticals, CD-A-II-39 to 42
novobiocin mfg., CD-A-II-40 to 41
penicillin mfg., CD-A-II-39 to 40
tissue plasminogen activator (tPA) mfg.,
CD-A-II-38 to 39
polymers, CD-A-II-41 to 48
PHBV-copolymer mfg., CD-A-II-44
polyvinyl acetate mfg., CD-A-II-41 to 43
rapamycin-coated stents mfg.,
CD-A-II-46 to 47
styrene from butadiene, CD-A-II-43
xantham biopolymer mfg.,
CD-A-II-44 to 46
primitive, 8
Design report—oral, 776-778
DVDs, 778
evaluation of presentation, 777-778
media for presentation
computer projection software, 776
overhead projector, 776
preparation of exhibits, 777
rehearsing the presentation, 777
typical presentation, 776
video tapes, 778
written handout, 777
Design report—written, 766-775
page format, 774-775
preparation, 772-775
preparation
coordination of design team, 772
editing, 774
milestones, 773
project notebook, 772-773
word processing, 774
sample design reports, 775
sections—template
process design, 766-771
product design, 771-772
specification sheets, 769
Design specifications, 122-123, CD-ASPEN
(see also Control blocks)
Design stages, 680
Design steps, 6, 7, 202, 402, 676, 764
Design team, 5, 772
Desulfurization of diesel oil
—biocatalytic
design problem, CD-A-II-50 to 51
Di (3-pentyl) malate—batch process
design problem, CD-A-II-6 to 9
Dialysis device, 8, 9-10 (also see
Hemodialysis device)
Diesel fuel production—low sulfur
design problem, CD-A-II-74 to 76
Di-tertiary-butyl-peroxide mfg., 284-288,
CD-A-II-18 to 19
Direct costs, 481
Disprop. of toluene to benzene, CD-9-2 to 5
DISTIL, 284
Distillation
near-isothermal process, 155-156
combined cycle power generation,
CD-A-II-72 to 74
diesel fuel production—low sulfur,
CD-A-II-74 to 76
ethanol manufacture, CD-A-II-80
fuel cell—fuel processor, CD-A-II-71 to 72
waste fuel upgrading, CD-A-II-76 to 78
environmental
—soil treatment, CD-A-H-67
to 71
phytoremediation of lead-contam. sites,
CD-A-II-67 to 69
soil remediation and reclamation,
CD-A-II-69 to 71
environmental
—water treatment,
CD-A-II-63 to 67
effluent remediation from wafer mfg.,
CD-A-II-63 to 64
germanium from opt. fiber mfg. effluents,
CD-A-II-64 to 65
solvent waste recovery, CD-A-II-66 to 67
foods, CD-A-II-35 to 38
alitame sweetener mfg., CD-A-II-37 to 38
monosodium glutamate mfg.,
CD-A-II-35 to 37
polysaccharides from microalgae,
CD-A-II-37
industrial gases, CD-A-II-27 to 35
krypton and xenon from air, CD-A-II-32
to 33
nitrogen production, CD-A-II-30 to 32
nitrogen production—ultra-pure,
CD-A-II-29 to 30
nitrogen rejection from natural gas,
CD-A-II-27 to 28
oxygen mfg.—ultra-pure, CD-A-II-33 to 35
origin, 783-784, CD-A-II-4 to 5
petrochemicals, CD-A-II-6 to 25
acetaldehyde from acetic acid,
CD-A-II-10 to 11
butadiene to n-butyrald., n-butanol,
CD-A-II-12 to 13
C4 byproduct upgrade, CD-A-II-16 to 17
di (3-pentyl) malate—batch process,
CD-A-II-6 to 9
di-tertiary-butyl-peroxide mfg., 284-288,
CD-A-n-18 to 19
ethylene and acetic acid from ethane,
CD-A-II-14 to 15
ethylene from ethane, CD-A-II-11 to 12
hydrogen peroxide mfg., CD-A-II-17 to 18
methylmethacryl. from methacrylic acid,
CD-A-II-14
methylmethacrylate from propyne,
CD-A-II-15 to 16
PM acetate manufacture, CD-A-D-23 to 25
propoxylated ethylenediamine mfg.,
CD-A-II-25
vinyl acetate mfg., CD-A-II-20 to 23Subject Index 795
inert species, 166-168
purge streams, 168-171
reactive distillation, 173-175
recycle to extinction, 171-172
selectivity, 172-173
Disturbance cost (DC)
CSTRs in series, 738
definition, 719-720
heat exchanger networks, 741-745
heat integrated distillation, 730
interpretation, 720
MATLAB script, 756-757
MCB separation process, 751-753
Mystery process, 722-723
Shell process, 720-722
Di-tertiary-butyl-peroxide mfg.
design problem, CD-A-II-18 to 19
pressure swing distillation, 284-288, 299
Dominant-eigenvalue method, 135
Dowtherm, 407^409
Dynamic simulation
ASPEN DYNAMICS (see Aspen
Engineering Suite)
HYSYS.Plant, CD-HYSYS
CSTRs in series, 740-741
heat exchanger network, 745-747
heat-integrated distillation, 730-732
MCB separation process, 753-755
toxic metals and minerals, 23
toxic wastes, 22
mass integration, 367-383
ozone, 53-55, 671
refrigerant design, 52-56, 671-672,
CD-A-II-48 to 50
toxic chem. release inventory (TRI), 56, 67
toxicity measure, 58
Equation of state
Peng-Robinson (PR), 64
Soave-Redlich-Kwong (SRK), 64-67
Equation-oriented simulation, 136
Equipment design heuristics and methods
absorbers, 291, 444
shortcut (Kremser) method, 446-448
adsorption, 245, 290
azeotropic distillation, 258-276, 451
compressors, 186, 187, 470—471
conveyors, 190
crystallization, 245, 292-293
distillation, 243, 248-249, 443^146, 451-458
rigorous shortcut (method FUG) method , 449—451 , 445
distillation sequences, 249-258—446
evaporators, 177-178, 292
extraction expanders,, liquid 188, 470 -liquid —471 , 243-244
extractive distillation, 244
furnaces, 183, 185, 424
membranes heat exchangers , 245 ,-184 246 , 185 , 289 , 407 -290—414, 424-439
phase separation, 232-238
pipe lines, 187
pressure-recovery turbines, 188
pressure-swing distillation, 277-279
reactive pumps, 460 distillation —461, 466 , 279-282, 451
reactor networks, 220-229
reactors, 165, 166, 172, 180, 182, 205-220
strippers, 444
supercritical shortcut (Kremser extraction ) method , 246 , 446—448
vacuum systems, 190, 444
Equipment purchase costs
absorbers (see Pressure vessels)
adsorbents, 553
adsorbers, 536-537
agitators (propellers and turbines), 537, 553
autoclaves (agitated reactor), 537, 553
bins (for solid particles), 547, 555
blowers, 518-519
centrifuges, 555
clarifiers, 555
classifiers, 555
compressors, 520-522
conveyors (for solid particles), 547-548, 555
crushers, grinders, mills, 543-544, 555
crystallizers, 538, 553
cyclone separators, 539-540, 553
distillation (see Pressure vessels)
drives (other than electric motors), 538, 553
dryers, 538-539, 553
dust collectors, 539-540, 553
elevators (for solid particles), 548, 555
evaporators, 540, 553
expanders, gas (power recovery), 542, 554
expression, 555
extractors, liquid-liquid, 541, 554
fans, 515-517
filters, 555
fired heaters, 525-527, 540, 554
flash drums (see Pressure vessels)
heat exchangers
air-cooled fin-fan, 554
compact units, 554
double-pipe, 524-525
packings, 533-536
plates, 532-533
shell-and-tube, 522-524
hydroclones, 555
liquid-liquid extraction, 541, 554
membrane separations, 542, 554
mixers for liquids (see Pressure vessels)
mixers for powders, pastes, doughs, 542, 554
motors, electric, 509-511
power-recovery turbine (liquid), 542, 554
pressure vessels and towers, 527-532
pumps, liquid
centrifugal, 508-509
gear, 511-512
reciprocating, 511-513
reactors (see Pressure vessels)
reflux drums (see Pressure vessels)
screens (for particle-size separation),
542-543, 554
settlers and decanters (see Pressure vessels)
size enlargement of solids, 543, 554
size reduction of solids, 543-544, 555
solid-liquid separators, 544-546, 555
solids-handling systems, 547-549, 555
storage tanks, 549-550, 556
strippers (see Pressure vessels)
tanks (see Storage tanks)
thickeners, 555
vacuum systems, 550-552, 556
wastewater treatment, 556, 557
Equipment selection heuristics
absorbers, 246-247
adsorbers, 247, 279
blowers, 186, 514-515
compressors, 186, 189, 467^169, 514-515
conveyors, 190
crushers and grinders, 192, 543-544
crystallizers, 177, 247-248
distillation, 246-247
dryers, 178, 179, 248
expanders, 188, 469
extraction, Liquid-liquid, 247
fans, 186, 514-515
filters, 178
furnaces, 183, 424
heat exchangers, 183, 185, 414-424
leaching, 247
membranes, 247, 279
Earnings
after-tax (net), 579
depreciation (see Depreciation)
income tax, 579
pretax, 579
sales revenue, 565
total production cost (C), 566, 577
Effluent remediation from wafer mfg.
design problem, CD-A-II-63 to 64
Encyclopedias, 11
Environment
aqueous waste removal, 369
bioconcentration factor (BCF), 58
data, 67
design problems, 26-27, CD-A-II-48 to 80
air quality, 26-27, CD-A-II-48 to 63
soil treatment, 26-27, CD-A-II-67 to 71
water treatment, 26-27, CD-A-II-63 to 67
factors in design
avoiding nonroutine events, 24
dilute streams, 25
electrolytes, 25-26
intangible costs, 25
materials characterization, 24
reaction pathways, 23-24
reducing and reusing wastes, 24
regulations, 25
global warming potential (GWP), 671
H2S from tail gas, 371-374, 378-381
hazardous air pollutants (HAP) list, 56
issues
bioaccumulated chemicals, 23
burning fossil fuels, 22796 Subject Index
Fuel cell
automotive, 669-670
fuel processor
design problem, CD-A-II-71 to 72
Future worth, F, 587
FEMLAB, 20, 38, 644
Fifo-Lifo, 482
Fifteen percent rule, 13
Financial ratio analysis
acid-test ratio, 480
current ratio, 479
equity ratio, 480
operating margin, 480
profit margin, 481
return on equity (ROE), 480
return on total assets (ROA), 480
Fin-fan heat exchanger, 422
video, CD-ASPEN, CD-HYSYS
Fixed costs, 577, CD-17.8-7 to 8
Flammability limits, 28-29, CD-A-II-32 to 33
Flash point, 58
Flash vessels, CD-ASPEN, CD-HYSYS
ASPEN PLUS
FLASH2 subroutine, CD-ASPEN
introductory case study, CD-ASPEN
control configurations, 689-690
equipment sizing, 750
HYSYS
Separator model, CD-HYSYS
video, CD-ASPEN, CD-HYSYS
Flash with recycle process, 135-136, 155
Flooding velocity, 453-455
Flow diagrams
block flow diagram (BFD), 96-97
piping and instrumentation diagram
(P&ID), 101
process flow diagram (PFD), 97-101
process flowsheet, 109
simulation flowsheet, 109-113
Flowsheet (see Flow diagrams)
Flowsheet optimization
ASPEN PLUS, CD-ASPEN
discrete changes, 636
distil, tower with sidedraws, 637-639
ASPEN PLUS, CD-ASPEN
HYSYS.Plant, CD-HYSYS
ethyl chloride manufacture
HYSYS.Plant, 636-637, CD-HYSYS
heat exch. min. temp. app.
exercise, 641
HYSYS.Plant, CD-HYSYS
Petlyuk distillation
exercise, 641-642
propylene-propane dist.
exercise, 641-642
simulation design specs.
convert to equalities, 636
successive quadratic prog, (see
Optimization)
with recycle loops
compromise algorithm, 635
infeasible path algorithms, 633-635
NLP with tear equations, 633
repeated simulation, 632
sensitivity analysis, 632
FLOWTRAN, 508
FLUENT, 20
Equipment selection heuristics (Continued )
particle removal from fluids, 193
particle-size enlargement, 192
particle-size separation, 192
pressure-recovery turbines, 188
pumps, 187, 189, 461^166, 506-507,
512-514
separation of liquid mixtures, 175, 242
separation of slurries, 242
separation of vapor mixtures, 175, 242
solids-handling systems, 547-549
strippers, 246-247
vacuum systems, 190, 550-552
Equipment sizing
Aspen IPE—Icarus method, CD-16.7-4 to 5
(see also Capital cost)
chemical reactors (see Chemical reactors)
compressors (see Compressors)
distillation towers
ASPEN PLUS RADFRAC, CD-ASPEN
HYSYS.Plant, CD-HYSYS
heat exchangers (see Heat exchangers)
other equipment, 536-557
pumps (see Pumps)
turbines (see Turbines)
Estimation of capital cost (see Capital cost)
Ethanol dehydration process, 271-275
Ethanol manufacture
design problem, CD-A-II-80
Ethics
ABET, 31-32
AIChE Code, 32
case studies
Ethics Center, 33
Engineers’ Creed, 31
Global ethics, 33, 36-37
NSPE Code, 31-36
Ethyl chloride manufacture
maximizing venture profit, 636-637,
CD-ASPEN, CD-HYSYS
simulation, CD-ASPEN, CD-HYSYS
Ethylene and acetic acid from ethane
design problem, CD-A-II-14 to 15
Ethylene carbonate manufact., 164-165
Ethylene from ethane
design problem, CD-A-II-11 to 12
Ethylene glycol manufacture, 163-165, 198
Ethylene separation process, 353-354,
359-360
Ethyl-tertiary-butyl-ether mfg.
exercise, 198
Exergy, CD-9-15
Expanders (see Turbines)
Experiments, 68
Extent of reaction, 206-207
Externally defined variables
disturbances, 686
GAMS
batch reactor-separator optimization, 395
compilation, CD-G-2 to 3
debugging, CD-G-17 to 19
debugging
compilation errors, CD-G-17 to 18
execution errors, CD-G-18 to 19
documentation, CD-G-7
execution, CD-G-3
initialization, CD-G-9
input file, CD-G-3 to 7,10,11,14
format, CD-G-16
linear program (LP)
HEN minimum utilities, CD-G-3 to 4,10
mixed-integer lin. prog. (MIP)
HEN stream matching, CD-G-13 to 14
nonlinear program (NLP)
HEN superstructure opt., CD-G-10 to 11
polymer design, 51-52
statements
bounds and initial conditions, CD-G-9
data (scalars, params, tables), CD-G-15
equation declaration, CD-G-5
equation definition, CD-G-5 to 6
model declaration, CD-G-6
set declarations, CD-G-12 to 15
solve, CD-G-6
variable declaration, CD-G-5
variable display, CD-G-8
variable redeclaration, CD-G-8
Gantt chart, 154, 396-397, 399, 400
Germ killing surfaces, 667
Germanium from optical fiber mfg. effluents
design problem, CD-A-II-64 to 65
Golden section search, 626-630
gPROMS, 136
Grass-roots plant, 489, CD-IPE-18
Group contribution methods
polymers, 47, 50-52
refrigerants, 54-55
solvents, 57-59
Handbooks, 11-12
Handwarmer
Grabber Mycoal handwarmer, 660
solutes for handwarmers, 60, 660-662
Zap Pak heat pack, 660-661
HAZOP analysis, 19, 31
Heat and power integration
ethylene separation process, 353-355,
359-360
heat engine positioning, 355-356
heat pump positioning, 355-357
optimization methods, 357-358
typical process (ABCDE), 352-353, 358-35'
Heat engines, 356, CD-9-62
Fabricated process equipment, 489
Fans, 186, 467, 515-517
Fed-batch processing, 384-385, 387-389
Feedstock costs, 565-567Subject Index 797
Heat exchangers
B-JAC, 437-439 (see also HETRAN,
TEAMS, and AEROTRAN)
boiling, 411
cocurrent flow, 410
cooling curves, 406^109, 412^413 (see also
Max. energy recovery (MER))
countercurrent flow, 410
crossflow, 410
equipment
air-cooled, 421^122
compact, 422^424
double-pipe, 414^415
fin-fan, 421-422
kettle reboiler, 421
shell-and-tube, 415^421
heat transfer coefficients
estimation, 430-436
typical, 431
heat transfer media, 409
heating curves, 406-409, 412^413 (see also
Max. energy recovery (MER))
heuristics for equipment design, 183-185,
416, 421-422, 424
minimum temperature approach, 410
crossover, 412^113
one-sided, 406
purchase pressure drop cost,, 522 413-^525 414, 430—435
simulator models, CD-ASPEN, CD-HYSYS
steel pipe data, 416
temperature driving force, 410, 424-429
tube data, 419
video, CD-ASPEN, CD-HYSYS
Heat exchanger networks (HENs) (see Heat
integration)
control configurations, 681, 686-687
control. & resil. (C&R) analysis, 741-747
Heat-integrated distillation trains, 346-352
(see also Multiple-effect distillation)
control. & resil. (C&R) analysis, 725-732
dynamic simulation—HYSYS.Plant,
730-732
heat pumping, 350-352
pressure effect, 346-349
reboiler flashing, 350-352, CD-9-43 to 45
(see also Distillation trains)
T-Q diagram, 346-349
vapor recompression, 350-352
Heat integration
annualized cost minimum
Chen approximation, CD-G-10
nonlinear program (NLP), 339-341
superstructures, 339
auxiliary heat exchangers, 303
composite curve (see Maximum energy
recovery (MER))
controllability of HENs
control structure, 686-687, 741-745
control. & resil. (C&R) analysis, 741-747
controller tuning, 745-747
dynamic simulation, 746-747
distillation trains (see Heat integ. dist. trains)
grand composite curve
design for multiple utilities, 342-346
interior heat exchangers, 303
lost work, 305
minimum heat exchangers
breaking heat loops, 327-330
definition, 326-327
minimum utilities (see Maximum energy
recovery (MER))
multiple utilities, 341-346
optim. temperature approach, 335-338
software, 361
stream splitting, 330-333
styrene process
exercise, 364-366, CD-HYSYS
Heat pump, 350-352, 357
Heat streams, CD-ASPEN
Heat transfer media, 409
HEATX, 437, CD-ASPEN
Hemodialysis device
C-DAK 4000 artificial kidney, 650
design basis, 651
design model, 654-655
mass-transfer coefficients, 652-653
pressure drop, 653-654
primitive design problem, 8, 9-10
Heterogeneous azeotropic distillation, 271-276
HETRAN, 437-438 (see also Aspen
Engineering Suite)
HFC recovery and purification
design problem, CD-A-II-58 to 60
HX-NET, 361
Hydrogen mfg.
automobile power train, 669
design problem, CD-A-II-61 to 63
Hydrogen peroxide mfg.
design problem, CD-A-II-17 to 18
Hyprotech, 106, 284
HYSYS.Plant
bidirectional information flow, 121-122
case study (see also dynamic simulation),
CD-HYSYS
data recorder, CD-HYSYS
databook, CD-HYSYS
dynamic simulation
binary distillation tower, CD-HYSYS
CSTRs in series, 739-741
heat exchanger networks, 746-747
heat integ. distillation towers, 730-732
MCB separation process, 753-755
steps, CD-HYSYS
HYSYS case files, CD-HYSYS folder
object palette, CD-HYSYS
optimization (see Flowsheet optimization)
PFD view, CD-HYSYS
physical properties
define property prediction pkg.,
CD-HYSYS
PID controller model
installation, CD-HYSYS
loop definition, CD-HYSYS
property view, CD-HYSYS
reaction package, CD-HYSYS
recycle convergence
Recycle procedure, CD-HYSYS
reverse information flow, 121-122
spreadsheet, CD-HYSYS
subflowsheets, CD-HYSYS
unit subroutines, CD-HYSYS
workbook view,CD-HYSYS
Heuristics
compression, 185-187
conveying of solids, 190-191
crushing and grinding, 191-192
cyclones, 193
distribution of chemicals, 165-175
enlargement of particles, 192
equipment design (see Equipment design
heuristics)
expanders and turbines, 188
heat addition to reactors
diabatic operation, 182-183
excess reactant, 182-183
hotshots, 182-183
inert diluent, 182-183
interheaters, 182-183
heat exchangers and furnaces, 183-185
heat removal from reactors
cold shots, 180-181
diabatic operation, 181-182
excess reactant, 180
inert diluent, 180
intercoolers, 182
pumping, 187-188,189
raw materials, 163-165
screening, 192
separations involving solids, 177-179
separation of liquid and vapor mixtures,
175-176
table of, 193-197
vacuum systems, 190
HEXTRAN, 361
Idea generation, 8, 645
Income statement, 477^178
Indexes, 12
Indirect costs (overhead), 481
Industrial chemicals, 4, 16-17, 18, 20
Industrial consultants, 783-784
Inflation, 609-610
Insect repelling wrist band, 667-668
Installation costs (see Capital cost)
Intelligen, Inc., 39, 145
Interest
compound interest, 586-587
cost of capital, 564
interest rate, 564
simple interest, 587
Intermediate storage, 398
Inventory, 482
Investment costs (see Capital cost)
Ionic liquids, 43-44
Isentropic efficiency, 470798 Subject Index
Kirk-Othmer Encyclopedia, 11
Krypton and xenon from air
design problem, CD-A-II-32 to 33
pinch decomposition, 309
transshipment model, 320-323
targets, 306-316
temperature-interval method, 307-310,
314-316
interval heat balances, 307-310
threshold approach temp., 312, 333-335
MAYFLOWER, 284
Measured variables
selection of, 685-686
Methane reforming
attainable region, 227-229
recycle to extinction, CD-8-20 to 23
Methanol dehydration (distil.)
dynamic simulation
HYSYS.Plant, 730-731, CD-HYSYS
multiple-effect distillation
energy requirements, 681-682
Methylmethacrylate from methacrylic acid
design problem, CD-A-II-14
Methylmethacrylate from propyne
design problem, CD-A-II-15 to 16
Methyl-tert-butyl-ether mfg., 167-168
design problem, CD-A-II-26 to 27
Microsimulation Minimum mass separating , 48—49 agents, 369-376
approach to phase equilibrium, 370
composite-curve method, 374-376
mass exchange curves, 375
rich and lean curves, 375
composite-interval method, 370-374
interval mass balances, 372-374
pinch, 373-374
pinch compositions, 373-374
stream matching, 377-380
at pinch, 377-378
pinch decomposition, 374
stream splitting, 378-380
stream splitting at pinch, 378-380
threshold approach to phase equil., 381
Minnesota Mining & Manufacturing
(3M), 1
fifteen percent rule, 13
process innovation tech, centers, 13
stretch goals, 13
tech forum, 13
Mixed-integer nonlinear prog., 55, 59, 163,
339, 623
Mixers, 114-115
Molecular dynamics, 48-49
Molecular structure design, 15-16, 42-61
ionic liquids, 43-44
microsimulation, 48-49
molecular dynamics, 48-49
Monte-Carlo methods, 49
optimization (see also optimization),
49-60
polymer design, 50-52
refrigerant design, 52-56, 671-672,
CD-A-II-48 to 50, 58 to 60
solvent design, 56-60
pharmaceutical product design, 44-45
polymer property estimation, 47-48, 50-52
(see also physical properties)
solutes for handwarmers, 60, 660-662
Monochlorobenzene separation process
Aspen IPE equip, sizes and costs,
CD-16.7-10 to 13
ASPEN PLUS history file, CD-ASPEN
ASPEN PLUS program, CD-ASPEN
ASPEN PLUS report file, CD-ASPEN
ASPEN PLUS sim. flowsheet, 144
control. & resil. (C&R) analysis, 747-755
dynamic simulation
HYSYS.Plant, 753-755
process flowsheet, 143
profitability analysis, CD-17.8-9 to 25
simulation, 142-144
Monosodium glutamate mfg.
design problem, CD-A-II-35 to 37
Monte-Carlo methods, 49
MSDS (Material Safety Data Sheet), 31, 63, 163
MULTIBATCHDS
multicomponent batch dist., 39
Multilayer polymer mirrors, 662-663
Multiple-effect distillation, 349-350,
681-682, 725-732
control. & resil. (C&R) analysis, 725-730
exercise, 761
feed splitting (FS), 349-350, 681-682,
725-732
HYSYS.Plant dynamic simulation,
730-731
light split/forward (LSF), 349-350,
681-682, 725-732
light split/reverse (LSR), 349-350,
681-682, 725-732
HYSYS.Plant dynamic simulation,
730-731
PRO/II simulation results, 726
SIMULINK flowsheets, 728
Multiproduct batch plants, 399-401
Multipurpose batch plants, 399
Lang factors, 500-502
Lennard-Jones pair potential, 48-49
Liabilities, 474-477
Linear process model
state-space representation, 706
transfer function representation, 707
variable scaling, 709
Linearization method
analytical, 707, 708-709
Linear programming (LP) (see Optimization)
Lost work (see second-law analyis)
Low-order dynamic models
steady-state gains, 724
time constants and delays, 724-725
Maleic anhydride mfg.
attainable region, 224-225
Manipulated variables
selection of, 685
Manufacturing process, 16, 644-645
Marketing studies, 12
Mass exchangers, 367-369, 377
Mass integration, 367-383
annualized cost minimum, 369
energy separating agent (ESA), 367, 368
H2S from tail gas, 371-374, 378-381
mass separating agent (MSA) (see
Minimum mass separating agent)
mass separating agent (MSA), 367, 368
external, 368
process, 368
minimum mass exchangers, 369, 380-381
breaking mass loops, 380-381
multiple solutes, 381
exercise, 383
optim. approach to phase equilibrium, 381
Material safety data sheets (MSDS), 31, 63, 163
Materials factor, misc. equipment, 536
Materials of construction, 509, 524, 531,
785-786
Nested recycle loops, 128-132, CD-ASPEN
Net worth, 474-477
Newton-Raphson method, 133-134, 631-632
Nitrogen production
design problem, CD-A-II-30 to 32
Nitrogen production—ultra-pure
design problem, CD-A-II-29 to 30
Nitrogen rejection from natural gas
design problem, CD-A-II-27 to 28
Nonlinear programming (NLP) (see
Optimization)
Novobiocin mfg.
design problem, CD-A-II-40 to 41
MATLAB
finite-element toolbox, 20, 644
for control. & resil. (C&R) anal.,
755-757,CD MATLAB folder
Maximum energy recovery (MER)
graphical displays
composite curves, 310-312
cooling curves, 312, 314-315
heating curves, 311, 314-315
linear programming, 312-314
min. temperature approach, 307 (see also
Heat exchangers)
pinch
distillation analogy, 310
pinch temperatures, 309
stream matching
at pinch, 316-320
mixed-integer linear program, 320-325
Off-site facilities, 489
On-site facilities, 489
Operating factor, 565, 567, 598
Operation, 20
Operational constraints
examples, 684Subject Index 799
PFD (see Process flow diagram)
P&ID diagram, 101
Par value, 477
Patents, 5, 8, 12-14, 20, 74, 86, 258, 645,
Optimal control problem, 385, 386
minimum batch time, 387
penicillin mfg.
fed-batch process, 388-389
Pontryagin maximum principle, 389
reactor-separator processes, 391-395
Optimization
classification, 619-623
constrained, 619
constraints, 618-619
decision variables, 618
distillation towers (see Flowsheet
optimization)
flowsheet (see Flowsheet optimization)
formulation, 617-619
GAMS (see GAMS)
Golden-Section search, 626-630
heat exchanger design, 628-629
Himmelblau’s function, 621-622
Karush-Kuhn-Tucker (KKT) conditions, 631
Lagrangian, 631
linear program (LP)
minimum utilities, 312-314
linear programming, 623-626
mixed-integer lin. prog. (MILP)
stream matching, 320-326
molecular structure design, 49-60
nonlinear programming (NLP), 626-632
decision variables, 618
degrees of freedom, 617
equality constraints, 618
general formulation, 617-619, 630
gradient methods, 630-632
HEN superstructure opt., 338-341
inequality constraints, 619
Karesh-Kuhn-Tucker conds., 631
Lagrangian, 631
objective function, 618
stationarity conditions, 631
objective function, 618
optimal batch time, 384, 388-389
optimal multiproduct batch plant, 399^101
optimal solution
local, 619
global, 619
process flowsheets (see also Flowsheet
optim. )
quadratic programming (QP), 632
reactor conversion, 391-395, CD-8-13 to 17
simplex method, 625
stationarity conditions, 631-632
successive linear programming (SLP), 623
successive quad. prog. (SQP)
quadratic program (QP), 632
solution of stationarity conds., 631-632
unidirectional search, 632
unconstrained, 619
Overhead (indirect costs), 481
Oxygen mfg.—ultra-pure
design problem, CD-A-II-33 to 35
Ozone, 53, 671, CD-A-II-48 to 50, 58 to 60
Ozone deletion potential (ODP), 55, 671
water absorption, 47^18, 50-52
refrigerants, 54-55
ozone depletion potential, 55, 671
residue-curve maps, CD-ASPEN (see also
Residue curves)
solvents, 57-59
solubility parameters, 57-58
thermophysical prop, diags., CD-ASPEN
Phytoremediation of lead-contam. sites
design problem, CD-A-II-67 to 69
PID Controller Tuning (see controller tuning)
Pilot plant, 103-104
Pipe (steel) data, 416
Pipeline models, 114-115
Plantwide control synthesis
acyclic process, 693-695
qualitative
examples, 693-702
qualitative steps, 692-693
reactor-flash-recycle process, 695-698
vinyl chloride process, 699-702
PM Acetate manufacture
design problem, CD-A-II-23 to 25
Polymer design, 50-52
Polysaccharides from microalgae
design problem, CD-A-II-37
Polysilicon CVD
CVD, 663-664
mass balances, 665
momentum balances, 664
silane reactions and rates, 663-664
Polyvinyl acetate mfg.
design problem, CD-A-II-41 to 43
Present worth, P, 587
Pressure-swing distillation, 277-279,
284-288, 299, CD-A-II-18 to 19
PRO/II, 38,106, 726
unit subroutines, 115
Process creation, 16, 62-105
Process flow diagram (PFD), 97-101
AUTOCAD, 97
equipment summary table, 99, 101
processing units, 97, 99
stream information, 97, 100
utilities, 99, 100
VISIO, 97
Process flowsheet, 109
Process integration, 102
Process machinery, 489
Process simulation, 104
Process simulation—batch
BATCH PLUS sim.—tPA cultivators,
150-154
exercise, 159-160
bottleneck, 150, 154
distillation
BATCHFRAC, 390-391
equipment models, 145, 147-149
BATCH PLUS, 147-148
SUPERPRO DESIGNER—procedures,
148-149
Gantt chart, 154
660
Peng-Robinson equation of state, 64
Penicillin mfg.
design problem, CD-A-II-39 to 40
fed-batch process
optimal control problem, 388-389
Perpetuities, 596
Pharmaceutical products, 14-15
clinical trials, 14
design
genetically-engineered drugs, 45
synthetic chemical drugs, 44
design problem
novobiocin mfg., CD-A-II-40 to 41
penicillin mfg., CD-A-II-39 to 40
tissue plasminogen activator (tPA) mfg.,
CD-A-II-38 to 39
discovery, 14
FDA approval, 15
penicillin mfg.
fed-batch process, 388-389
preclinical development, 14
process simulation
tPA process, 150-154,159-160
process synthesis, 85-96 (see also Tissue
plasmin. activ. proc.)
Phase envelope, 64-67, CD-ASPEN
Phase equilibria
bin. phase diags.-Txy, xy, etc., 64-65,
260-263, CD-ASPEN
Phase equilibria
calculation, CD-ASPEN
PHBV-copolymer mfg.
design problem, CD-A-I1-44
Physical properties
ASPEN data regression
equilibrium data, 64-65, CD-ASPEN
ASPEN PLUS option sets, CD-ASPEN
ASPEN PLUS property meth., CD-ASPEN
bin. phase diags.-Txy, xy, etc., 64-65,
260-263, CD-ASPEN
data banks, 45^16, CD-ASPEN
estimation methods, 45^17, CD-ASPEN
group contribution methods, 47-59 (see
also group Contribution methods)
microsimulation
molecular dynamics, 48^19
Monte Carlo methods, 49
param. estim.-pure species
ASPEN PLUS, CD-ASPEN
phase envelopes
ASPEN PLUS, 64-67, CD-ASPEN
phase equilibria, CD-ASPEN
calculations, CD-ASPEN
polymers
density


كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Product and Process Design Principles
رابط مباشر لتنزيل كتاب Product and Process Design Principles
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Product and Process Design Principles
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Plastics - Product Design and Process Engineering
» كتاب Plastics Engineered Product Design
» كتاب Advances in Product Family and Product Platform Design - Methods & Applications
» كتاب Semantic Modeling and Interoperability in Product and Process Engineering
» كتاب Plastic Product Material and Process Selection Handbook

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: