Admin مدير المنتدى
عدد المساهمات : 18984 التقييم : 35458 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Fundamentals of Electric Machines - A Primer with MATLAB الخميس 25 مارس 2021, 9:48 pm | |
|
أخوانى فى الله أحضرت لكم كتاب Fundamentals of Electric Machines - A Primer with MATLAB Warsame Hassan Ali , Samir Ibrahim Abood , Matthew N. O. Sadiku
و المحتوى كما يلي :
Contents Preface .xv Acknowledgments . xvii Authors . xix 1. Basic Concepts of Magnetism 1 1.1 History of Magnetism 1 1.2 The Cause of Magnetism .2 1.3 Types of Magnets 3 1.4 Applications of Magnet 4 1.5 Magnetic Materials .4 1.6 Lines of Magnetic Forces .6 1.7 Magnetic Force 8 1.8 The Direction of Magnetic Field Lines .8 1.9 Magnetic Field and Its Polarity . 11 1.10 Magnetism of Magnetic Materials 12 1.11 Force Generated in the Field 13 1.12 Hysteresis Loop . 16 Problems 17 2. Magnetic Circuit . 19 2.1 Magnetic Quantities . 19 2.1.1 Flux Density . 19 2.1.2 Permeability . 19 2.1.3 Magnetic Reluctance .20 2.2 Electromagnetic Induction 27 2.3 Induced Electric Motive Force (EMF) .30 2.4 Types of Inductance 32 2.4.1 Self-Inductance 32 2.4.2 Mutual Inductance 33 2.5 Stored Energy 36 Problems 37 3. Alternating Current Power 39 3.1 Sinusoidal Wave Cycle and Frequency 39 3.2 Electric Power Generation . 41 3.3 Terms and Concepts .42 3.4 AC Current Values 43 3.4.1 The Maximum Value of the Alternating Current 44 3.4.2 Average Value of Alternating Current (Mean Value) .44 3.4.3 Actual AC Value 44 3.4.4 The Instantaneous Value of Alternating Current .44viii Contents 3.5 AC Circuits .45 3.5.1 AC Circuit Containing Pure Resistance 45 3.5.2 AC Circuit with Inductive Reactance .46 3.5.3 AC Circuit with Capacitive Reactance .47 3.6 Series Impedance Connection to the AC Circuit 49 3.6.1 R-L Series Circuit .49 3.6.2 R-C Series Circuit 50 3.6.3 R-L-C Series Circuit 52 3.7 Parallel Connection .54 3.7.1 Parallel R-L Circuit 54 3.7.2 Parallel R-C Circuit .55 Problems 62 4. Transformers 65 4.1 Installation of the Transformer .65 4.2 Core Shape . 67 4.3 Principle of Operation 69 4.4 Ideal Transformer 69 4.5 Transformer Rating .72 4.6 Transformer Operation 73 4.6.1 The Transformer Operation at No-Load 73 4.6.2 The Operation Transformer at Load 74 4.7 Non-ideal Transformer Equivalent Circuits 76 4.8 Determination of Equivalent Circuit Parameters .79 4.8.1 No-Load Test (Determine Rc and Xm) .79 4.8.2 Short-Circuit Test (Determine Req.H and Xeq.H) 80 4.9 Transformer Voltage Regulation . 81 4.10 Three-Phase Transformers .85 4.10.1 Three-Phase Transformer Configuration 85 4.10.2 Three-Phase Transformer Connections .85 4.10.2.1 Three-Phase Transformer Star and Delta Configurations .86 4.10.2.2 Transformer Star and Delta Configurations 87 4.10.2.3 Transformer Winding Identification .87 4.10.2.4 Transformer Delta and Delta Connections 88 4.10.2.5 Transformer Star and Star Connections .88 4.10.3 Three-Phase Voltage and Current 89 4.10.3.1 Star-Delta Turns Ratio .89 4.10.3.2 Delta-Star Turns Ratio .90 4.10.4 Three-Phase Transformer Construction 91 Problems 92 5. Transformer Design .93 5.1 The Output Equations 93 5.1.1 Single-Phase Core Type Transformer .94 5.1.2 Single-Phase Shell Type Transformer 95 5.1.3 Three-Phase Shell Type Transformer .96 5.2 Choice of Magnetic Loading (Bm) .97 5.3 Choice of Electric Loading (Δ) .97 5.4 Core Construction .98Contents ix 5.5 Electric Motive Force (EMF) per Turn .99 5.6 Estimation of Core X-Sectional Area Ai 100 5.7 Graphical Method to Calculate Dimensions of the Core . 101 5.8 Estimation of Main Dimensions 102 5.9 Estimation of Core Loss and Core Loss Component of No-Load Current Ic . 103 5.10 Estimation of Magnetizing Current of No-Load Current Im 104 5.11 Estimation of No-Load Current and Phasor Diagram . 105 5.12 Estimation of Number of Turns on LV and HV Windings 105 5.13 Estimation of Sectional Area of Primary and Secondary Windings 105 5.14 Determination of R1, R2, and Copper Losses 106 5.15 Determination of Efficiency 107 5.16 Estimation of Leakage Reactance 107 5.17 Calculation of Voltage Regulation of Transformer 109 5.18 Transformer Tank Design . 110 5.19 Calculation of Temperature Rise . 111 5.20 Calculation Cooling Tubes Numbers 111 5.21 The Weight of Transformer . 112 5.22 MATLAB Programs . 113 5.22.1 Single-Phase Transformer Design Using MATLAB Program . 113 5.22.2 Three-Phase Transformer Design Using MATLAB Program 116 5.22.3 Three-Phase Transformer Design Using MATLAB Program 119 Problems 122 6. Direct Current Machines 125 6.1 DC Machines .125 6.2 DC Machine Parts 125 6.2.1 Stator 125 6.2.2 Rotor . 128 6.2.3 Commutator 128 6.2.4 Armature Coils . 129 6.2.4.1 Lap Winding . 129 6.2.4.2 Wave Winding 129 6.3 DC Generator 130 6.3.1 Calculate the Motive Force Generated by the Generator (E.M.F) . 130 6.3.2 Method of Excitation of DC Machines 131 6.3.2.1 Separately Excited Generator 131 6.3.2.2 Self-Excited Generator . 131 6.3.3 Losses in DC Generator . 144 6.3.4 Efficiency Calculation 146 6.4 DC Motors . 148 6.4.1 Types of DC Motors . 150 6.4.1.1 Series Motor . 150 6.4.1.2 Shunt Motor . 154 6.4.1.3 Compound DC Motor 158 6.4.2 DC Motor Speed Control . 161 6.4.2.1 Speed Control of the Shunt Motor . 161 6.4.2.2 Speed Control of the Series Motor . 162 6.4.3 Starting Methods 163 Problems 163x Contents 7. AC Motors 165 7.1 Single-Phase Motor . 165 7.1.1 Induction Motors . 165 7.1.1.1 Motor Construction 166 7.1.1.2 The Speed 169 7.1.1.3 The Theory of Work . 170 7.1.1.4 Starting Methods of the Motor . 170 7.1.2 Synchronous Motors . 174 7.1.2.1 Synchronous Motor Construction . 175 7.1.2.2 Synchronous Motor Operation Theory . 175 7.1.2.3 Synchronous Motor Features . 175 7.1.3 Universal Motor . 175 7.1.3.1 Universal Motor Construction . 176 7.1.4 Centrifuge Switches . 176 7.2 Three-Phase Induction Motor . 178 7.2.1 Construction of Induction Machines 178 7.2.1.1 Squirrel Cage Motor . 179 7.2.1.2 Slip Ring Motors . 179 7.2.2 Operation 181 7.2.3 Speed-Torque Characteristics of Induction Motor 182 7.2.4 Speed-Torque Characteristics of Induction Motors Using MATLAB Program . 183 7.2.5 Basic Equations and Equivalent Circuit Diagram . 183 7.2.6 No-Load Test and Blocked Rotor Test . 187 7.2.6.1 No-Load Test . 187 7.2.6.2 Blocked Rotor Test 189 Problems 191 8. Power Electronics 193 8.1 Rectifiers (AC-DC Converters) . 193 8.1.1 Rectifier Types 193 8.1.2 Performance Parameters . 194 8.1.3 Uncontrolled Rectifiers . 196 8.1.3.1 Half-Wave Uncontrolled Rectifiers 196 8.1.3.2 Full-Wave Rectifiers .203 8.1.4 Rectifiers with Filter Circuits . 212 8.1.5 Controlled Rectifiers 213 8.1.5.1 Thyristor Firing Circuits . 213 8.1.5.2 The Use of a Thyristor in the Controlled Rectifier Circuits . 214 8.1.5.3 Single-Phase Half-Wave Controlled Rectifier with Resistive Load . 215 8.1.5.4 Single-Phase Half-Wave Control Rectifier with R-L Load . 216 8.1.5.5 Single-Phase Full-Wave Control Rectifier with R-L Load 220 8.1.5.6 Single-Phase Full-Wave Half Control Rectifier with R-L Load 223 8.2 Power Electronics Circuits with MATLAB Program .226 8.2.1 MATLAB Simulation of Single-Phase Half-Wave Uncontrolled Rectifier .226Contents xi 8.2.2 MATLAB Simulation of Single-Phase Half-Wave Controlled Rectifier 228 8.2.3 MATLAB Simulation of Single-Phase Half-Wave Controlled Rectifier with an Inductive Load .230 8.3 DC-DC Converter Basics 237 8.3.1 Step-Down (Buck) Converter . 237 8.3.1.1 Transition between Continuous and Discontinuous 238 8.3.1.2 Voltage Ratio of Buck Converter (Discontinuous Mode) 239 8.3.2 Step-Up (Boost) Converter 240 8.3.3 Buck-Boost Converter 242 8.3.4 Converter Comparison 243 Problems 246 9. Concept of DC Drive 251 9.1 DC Motors Drive . 251 9.1.1 Advantages . 251 9.1.1.1 Easy to Understand the Design 251 9.1.1.2 Easy to Control the Speed . 252 9.1.1.3 Easy to Control Torque 252 9.1.1.4 Simple, Cheap Drive Design . 252 9.1.2 Disadvantages 252 9.2 Torque-Speed Characteristics 257 9.3 DC Motors Parametric Methods .260 9.3.1 Separate Excited and Shunt Motor 260 9.3.1.1 Adding Resistance to the Armature 262 9.3.1.2 Changing the Armature Supply Voltage 265 9.3.1.3 Changing the Field Flux 265 9.3.2 Series Motor 269 9.4 DC Drive Circuits 272 9.4.1 DC Drive Rectifier Circuits 272 9.4.1.1 Single-Phase Half-Wave Converter Drives a Separately Excited DC Motor .272 9.4.1.2 Single-Phase Full-Wave Converter Drives a Separately Excited DC Motor . 276 9.5 DC Chopper Drive 280 9.6 Electrical Braking of Separate Excited DC Motor .284 9.6.1 Generator Braking 284 9.6.2 Supply Reversing Braking 286 9.6.3 Dynamic Braking .289 Problems 296 10. AC Drives .299 10.1 Advantages of AC Drives .299 10.2 Disadvantages of AC Drives 299 10.3 Speed Control of Three-Phase Induction Motor 300 10.4 Methods of Control Techniques 303 10.4.1 Speed Control of Three-Phase Induction Motors .303 10.4.1.1 Stator Voltage Control 305 10.4.1.2 Stator Frequency Control 307xii Contents 10.4.1.3 Stator Voltage and Frequency Control 310 10.4.1.4 V/f Control Theory . 311 10.4.1.5 Static Rotor-Resistance Control 312 10.4.1.6 Slip-Energy Recovery Control 317 Problems 318 11. Special Machines 321 11.1 Stepper Motors 321 11.1.1 Step Angle 322 11.1.2 How Stepper Motors Work 323 11.1.3 DC Motors versus Stepper Motors 326 11.1.4 Advantages of Stepper Motors 327 11.1.5 Disadvantages of Stepper Motors . 327 11.1.6 Specification of Stepping Motor Characteristics . 327 11.1.6.1 Static Characteristics 327 11.1.6.2 Dynamic Characteristics . 329 11.1.7 Steady State Phasor Analysis .330 11.1.7.1 Phasor Expression of Variable Reluctance Stepping Motor 330 11.1.7.2 Phasor Expression of PM and Hybrid Stepping Motors 331 11.1.7.3 Equivalent Circuit in Frequency Domain . 331 11.1.7.4 Pull-Out Torque Expression . 332 11.1.8 Applications .333 11.2 Permanent-Magnet DC Motor .333 11.2.1 Construction .333 11.2.2 Working 334 11.2.3 Performance .335 11.2.4 Speed Control .335 11.2.5 Advantages .335 11.2.6 Disadvantages 335 11.2.7 Applications .335 11.3 Low-Inertia DC Motors 336 11.3.1 Shell-Type Low-Inertia DC Motor . 337 11.3.2 Printed-Circuit (Disc) DC Motor . 337 11.4 Servo Motors 338 11.4.1 Mathematical Model of Servo Motor 340 11.4.2 The Difference between Stepper Motors and Servos Motor .342 11.5 Brushed DC Motors 343 11.5.1 Stator 343 11.5.2 Rotor 344 11.5.3 Brushless Motor Basics .344 11.5.4 Advantage and Disadvantage of the Brushless DC Motor .344 Problems 345Contents xiii Appendix A: Mathematical Formula .347 Appendix B: Complex Numbers 357 Appendix C: Introduction to MATLAB 365 Appendix D: Answer to Odd-Numbered Problems . 379 Selected Bibliography .383 Index . Index Note: Page numbers in italic and bold refer to figures and tables, respectively. AC circuits: capacitive reactance 47–8, 48; inductive reactance 46–7, 47; pure resistance 45–6, 46; series impedance connection 49–54 AC current values 43; actual 44; average 44; instantaneous 44; maximum 44–5 AC-DC converters see rectifiers (AC-DC converters) AC drives: advantages 299; disadvantages 299; three-phase IM, speed control 300–3, 301 AC motors: single-phase motor 165–78; threephase induction motor 178–91 AC power see alternating current (AC) power active load 253 air gap 22 air-gap flux 300, 302, 307, 309–10 alternating current (AC) power: advantages 39; circuits 45–54; definition 39; electric power generation 41, 41–2; parallel connection 54–62; series impedance connection to 49–54; sinusoidal wave 39–40, 40; terms and concepts 42–3; values 43–5 approximations 356 armature 344; adding resistance to 262–5; coils 128–9; supply voltage 265, 266 artificial magnets 3 BDC see brushed DC (BDC) motors BLDC (brushless DC) motor 344, 344–5 blocked rotor test 189–91 block parameters: of AC voltage source 232; of diode 232; mean value 234; pulse generator 234; of RLC branch 233; RMS 234; of SCR 233 breakdown torque 182 brushed DC (BDC) motors: brushless motor basics 344–5, 344; rotor 344; stator 343 brushless DC (BLDC) motor 344, 344–5 buck-boost converter 242, 242–3 buck converter see step-down (buck) converter capacitive reactance 47–8, 48 capacitor run motor 172, 172, 173 capacitor start method 171, 171–2 centrifuge switches 176, 178, 178 coercive force 17 commutation 344 commutator 128, 128, 252 complex numbers: Euler’s formula 360–3; mathematical operations 359; representation of 357–8, 358 compound DC generator 139–44 compound DC motors 158–61 constant loads 254 controlled rectifiers: with resistive load 215–16; SCRs 214, 214; thyristor firing circuits 213–14; thyristors, use of 214 cooling method 76, 97–8 core-shaped transformer 67, 67, 68 core type transformer: single-phase 94, 94–5; three-phase 102, 102–3 Curie temperature 4–5 DC chopper drive 280–4 DC-DC converter: buck-boost 242, 242–3; comparison 243, 243–5; step-down (buck) 237–40; step-up (boost) 240–2, 241 DC drive: advantages 251–2; chopper drive 280–4; circuits 272–80; DC motors parametric methods 260–71; disadvantages 252–7; electrical braking 284–95; torque-speed characteristics 257–60 DC drive rectifier circuits: single-phase fullwave converter drives 276–80; singlephase half-wave converter drives 272, 272–6, 273 DC generator: defined 125; efficiency calculation 146–8; EMF 130–1; Fleming’s hand rule for 149, 149; iron losses 144–5; losses in 144–6; vs. motor 150; self-excited 131–44; separately excited 131, 131 DC machines see direct current (DC) machines386 Index DC motors: advantages 251–2; compound 158–61; defined 125; disadvantages 252–7; Fleming’s hand rule for 149, 149; vs. generator 150; operation 148; parametric methods 260–71; series 150–3; shunt 154–7; speed control 161–3; starting methods 163 definite integrals 352–3 delta and delta connections, transformer 88, 88 delta-star turns ratio 90–1 derivatives 349–50 DF (displacement factor) 196 diamagnetism 5–6 direct current (DC) machines 126; armature coils 129; commutator 128, 128; parts of 126; rotor 128; stator 125–7, 127 displacement factor (DF) 196 dry transformers 76 dynamic braking 289–95, 290, 292 dynamic characteristics 329–30 eddy current 31, 145 effective current 73 electrical braking: dynamic 289–95, 290, 292; generator 284–5, 285; supply reversing 286, 286–9 electrical drive 253; continuous mode 254, 254; interruptive operation 254, 255; quadrants operation of 256; short time operation 255, 255 electrical vs. magnetic circuit 24 electric motive force (EMF) 28; DC generator 130–1; generation in conductor 42; IM 300; per turn 99 electric motor 165, 321 electric power generation 41, 41–2 electromagnetic induction 27–30 EMF see electric motive force (EMF) Euler’s formula 360–3 exponential identities 356 Faraday, M. 27 Faraday experiment 27 Faraday’s theory 130 ferromagnetism 4–5 FF (form factor) 195 field flux 265–7, 266, 267 filter circuits, rectifiers with 212, 213 filtration process 213 Fleming’s hand rule 149, 149 flux density 10, 19 forced cooling method 97 form factor (FF) 195 frequency 39 frequency control 304 frictional load 254 full-wave rectifier 194, 203, 203; bridge rectifier with inductive load 210–12, 211; bridge rectifier with resistive load 206–10, 208; center tapped rectifier with resistive load 204–6; stages in 205 generator braking 284–5, 285 halfstepping 324 half-wave uncontrolled rectifiers 197; circuit diagram 200; with inductive load 200–3, 201; with resistive load 196–200 harmonic factor (HF) 196 holding torque 342 hyperbolic functions 349 hysteresis loop 16–17 ideal transformer 69–71, 70 IM see induction motor (IM) indefinite integrals 350–2 induced EMF 30–2 inductance: mutual 33–6, 34; self 32–3 induction motor (IM) 166, 300; construction 166–9; speed 169–70; starting methods 170–4; theory of work 170 induction motors construction: iron core of 167, 168; outer shape of 167; rotor 167, 168; side cover of 169, 169; stator 166–7, 168; ventilation fan 169 inductive load: single-phase full-wave (bridge) rectifier 210–12, 211; single-phase halfwave rectifier 200–3, 201, 231 inductive reactance 46–7, 47 instantaneous value 42, 44–5 Insulated Gate Bi-polar Transistor (IGBT) 280 internal efficiency, induction machine 187 lap winding coil 129, 129 L’Hopital’s rule 353 linear varying loads 254 lines of magnetic forces 7; closed rings 7; distribution 6, 6; horse’s suit, shape of 6–7, 7; north (N) pole 6; properties 7–8; south (S) pole 6 line-voltage 88 load current 74–6, 75 loads: active 253; constant 254; electrical method 260; frictional 254; linear varying 254; passive 253 locked rotor torque (LRT) 182Index 387 logarithmic identities 355 long compound DC generator 139, 140, 142 low-inertia DC motors: PC 337–8; shell-type 337 LRT (locked rotor torque) 182 magnetic circuits 21, 25; vs. electrical circuit 24; electromagnetic induction 27–30; EMF 30–2; inductance, types of 32–6; magnetic quantities 19–26; stored energy 36 magnetic current 13 magnetic field 1: field-density (B-H) curve 16, 16–17; force generated 13–15, 14; lines, direction of 8–11; and polarity 11–12 magnetic flux 10, 19 magnetic forces: electric field 8; lines of 6–8; magnetic field see magnetic field; principle 8 magnetic loading 97 magnetic loss 144–5 magnetic materials: diamagnetism 5–6; ferromagnetism 4–5; field lines, magnet bar 12–13, 13; paramagnets 5; permeability 4; residual 4 magnetic motive force (MMF) 13, 335 magnetic path 22 magnetic quantities: vs. electrical quantities 24; flux density 19; magnetic resistance/ reluctance 20–2; permeability 19–20 magnetic resistance/reluctance 20–2 magnetic susceptibility 5 magnetism: cause 2; current 73; history of 1–2; magnetic materials 4–6, 12–13 magnetization curves 20 magnets: applications 4, 5; types 3–4 mathematical formula: approximations 356; definite integrals 352–3; derivatives 349–50; exponential identities 356; hyperbolic functions 349; indefinite integrals 350–2; L’Hopital’s rule 353; logarithmic identities 355; power series 354; quadratic formulas 347; sums 355; Taylor/Maclaurin series 354; trigonometric identities 347–8 mathematical operations 359 MATLAB: commands 378, 378; fundamentals 365–9, 366, 367, 368; plot using 369–71, 371, 372; programming hints 377; programming with 372, 372–4, 373; solving equations 374–7 MATLAB program: DC shunt generator 138–9; IM, speed-torque characteristics of 183, 184; power electronics circuits 226–37; series DC generator 135; single-phase transformer design 113–15; threephase transformer design 116–22 MATLAB simulation: single-phase half-wave controlled rectifier 228–30, 229; singlephase half-wave controlled rectifier with inductive load 230–7, 231; singlephase half-wave uncontrolled rectifier 226–8, 227 maximum pull-in torque 330 maximum slewing frequency 330 measurement transformers 75 mechanical loss 145–6, 146 M-file 372 micro-stepping 322 MMF (magnetic motive force) 13, 335 mutual inductance 33–6, 34 natural cooling method 97 natural magnets 3 no-load current 73–4, 103–5 no-load test 79, 80, 187–8, 189 non-ideal transformer equivalent circuit 76–9, 78 open-delta 85 parallel R-C circuit 55–62, 56 parallel R-L circuit 54, 54–5 paramagnets 5 parameter step angle 322 passive loads 253 PC (printed circuit) motor 337–8 period 39 peripheral interface controller (PIC) 311, 343 permanent magnet (PM) 3–4; and hybrid stepping motors 331; in loudspeakers 5 permanent-magnet DC (PMDC) motor 251; advantages/disadvantages 335; construction 333–4, 334; MATLAB program 336; speed control 335; working 334 permeability 4, 19–20 permeance 21 PF (power factor) 49, 196 phase angle control method 306 phase pattern 342 phase voltage 88 PM see permanent magnet (PM) PMDC see permanent-magnet DC (PMDC) motor polar form 357388 Index power electronics: DC-DC converters 237–45; with MATLAB program 226–37; rectifiers 193–226 power factor (PF) 49, 196 power series 354 power transformers 75, 76 primary winding 65 printed circuit (PC) motor 337–8 pull-in torque characteristics 329 pull-out torque characteristic 329 pulse width modulation (PWM) 280 pure resistance 45–6, 46 quadratic formulas 347 R-C series circuit 50–2, 51 rectification efficiency 195 rectifiers (AC-DC converters): controlled 213–26; with filter circuits 212–13; performance parameters 194–6; types 193–4, 194; uncontrolled 196–212 regulation transformers 75 residual magnetism 17 resistance-inductance (R-L) load: single-phase full-wave control rectifier 220, 220–3; single-phase full-wave half control rectifier 223–6; single-phase half-wave control rectifier 216, 216–20 resistive load: full-wave center tapped rectifier 204, 204–6; single-phase full-wave (bridge) rectifier 206–10; single-phase half-wave controlled rectifier 215, 215–16; single-phase half-wave rectifier 196–200 RF (ripple factor) 195 right-hand rule 8, 12, 29, 69 ripple factor (RF) 195 R-L-C series circuit 52–4, 53 R-L load see resistance-inductance (R-L) load R-L series circuit 49, 49–50 root mean square (RMS) 105, 305 rotor; see also armature: capacitor run motor 172; for DC machine 128; single-phase induction motor 167, 168; stepping motor 323; synchronous motors 175, 176; universal motor 176, 177 SCIMs (squirrel-cage induction motors) 303 screwdriver method 9, 10 SCRs (silicon controlled rectifiers) 214, 214 secondary winding 65, 105–6 secondary windings current 74 self-excited generator: compound 139–44; series 131–5; shunt 135–9 self-inductance 32–3 separately excited DC motor: electrical braking 284–95; equivalent circuit for 257; and shunt motor 260–9; Simulink 276; single-phase full-wave converter drives 276–80; single-phase half-wave converter drive 272–6 separately excited generator 131, 131 series DC generator 131–5, 132 series DC motors 150–3 series motor 162–3, 269–71 servo motors 338–40; mathematical model 340–2; vs. stepper motors 342–3 shaded pole motor 172–4, 173 shell-type low-inertia DC motor 337 shell type transformers: single-phase 95, 95–6; three-phase 96, 96–7 short-circuit test: equivalent circuit 80, 80–1; IM 190 short compound DC generator 139, 140, 142 shunt DC generator 135–9 shunt DC motors 154–7 shunt wound DC motor (SWDC) 251 silicon controlled rectifiers (SCRs) 214, 214 single-phase full-wave control rectifier 220, 220–3 single-phase full-wave half control rectifier 223–6 single-phase full-wave (bridge) rectifier: inductive load 210–12, 211; resistive load 206–10 single-phase half-wave control rectifier: circuit 228; with inductive load, MATLAB simulation 230–7, 231; with inductive load Simulink 231; MATLAB simulation 228–30, 229; output and SCR voltages 228; resistive load 215, 215–16; R-L load 216, 216–20 single-phase half-wave uncontrolled rectifier: with inductive load 200–3, 201; MATLAB simulation 226–8, 227; with resistive load 196–200; Simulink 229 single-phase motor 165; centrifuge switches 176, 178, 178; IM 165–74, 166; synchronous motors 174, 174–5; types of 166; universal motor 175–6, 177 single-phase rectifiers 193 single-phase transformer design: core type 94, 94–5; MATLAB programs 113–15 sinusoidal wave 39–40, 40 slewing 323 slewing characteristic 329 slip-energy recovery control 317, 317–18Index 389 slip-ring induction motors (SRIMs) 303 slip ring motors 179 slip speed 181 solid-state fan regulators 306 speed control 304, 306, 335 speed control methods: of series motor 162–3; of shunt motor 161–2 speed-torque characteristics: of IM 182–3; using MATLAB program 183, 184 speed-torque curve 335 squirrel-cage induction motors (SCIMs) 303 squirrel cage motors 167, 179, 180, 190 SRIMs (slip-ring induction motors) 303 star and delta configurations 86–7, 87 star and star connections, transformer 88, 89 star-delta turns ratio 89 starting windings method 170–1 static rotor-resistance control 312–16, 313, 314 stator 125–7, 127, 323, 343; capacitor run motor 172; single-phase induction motor 166–7, 168; synchronous motor 175, 176; universal motor 176, 177 stator frequency control 307–10, 308, 310 stator voltage and frequency (V/f) control 310–11 stator voltage control 305–6, 306 step angle 322 step-down (buck) converter 237, 283; at boundary 239; continuous and discontinuous transition 238–9; MATLAB/Simulink 283; voltage and current changes 238; voltage ratio of 239–40 step-down transformers 76 stepper motors: advantages 327; applications 333; DC motors vs. 326; disadvantages 327; specification 327–30; steady state phasor analysis 330, 330–3, 332, 333; step angle 322–3; working 323–6, 324, 325 step-up (boost) converter 240–2, 241 step-up transformers 66, 76 stored energy 36 supply reversing braking 286, 286–9 SWDC (shunt wound DC motor) 251 synchronous frequency 181 synchronous motors 174, 174–5, 176 synchronous speed 181 synthetic magnets 3 Taylor/Maclaurin series 354 temporary magnets 3–4 three-phase induction motor: blocked rotor test 189–91; construction of 178–9, 180; equations and equivalent circuit diagram 183–7, 188; no-load test 187–8, 189; operation 181, 181; speed-torque characteristics 182, 182–3 three-phase induction motors, speed control: slip-energy recovery control 317, 317–18; static rotor-resistance control 312–16, 313, 314; stator frequency control 307–10, 308, 310; stator V/f control 310–11; stator voltage control 305–6, 306; V/f control theory 311–12 three-phase transformer 85; configuration 85; connections 85–9, 86; construction 91, 91–2; voltage and current 89–91, 90 three-phase transformer connections 85–6, 86; delta and delta 88, 88; star and delta 86–7, 87; star and star 88, 89; winding identification 87 three-phase transformer design: core type transformer 102, 102–3; MATLAB programs 116–22 three-phase voltage and current 89, 90; deltastar turns ratio 90–1; star-delta turns ratio 89 thyristor firing circuits 213–14 thyristors 214, 220 torque 328 torque-speed characteristics 261; adding resistance to armature 262, 263, 264; DC drive 257–60; dynamic braking 291; field flux 266, 267; generator braking 285; series motor 269; supply reversing braking 287 transformation ratio 71 transformer design: cooling tubes 111–12; core construction 98; core loss estimation 103–4; core type transformer, singlephase 94, 94–5; core X-sectional area Ai 100; efficiency of 107; electric loading 97–8; electric motive force 99; graphical method 101; leakage reactance 107, 107–9; magnetic loading 97; magnetizing current estimation 104, 104–5; MATLAB programs 113–22; no-load current 103–5; output equations 93; phasor diagram 105; shell type transformers 95–7; temperature rise 111; voltage regulation of 109; weight of 112; windings 105–6390 Index transformer operation: at load 74–6; at no-load 73–4 transformer(s) 65; to change phase currents 75; core shape 67–8; design see transformer design; equivalent circuit parameters 79–81; ideal transformer 69–71, 70; immersed in oil 76; installation of 65–7; non-ideal transformer equivalent circuit 76–9, 78; operation 73–6; principle of operation 69, 69; ratings 72–3; refrigeration with SF6 76; sizes and shapes 66; tank design 110, 110–11, 111; three-phase 85–92; types of 77; voltage regulation 81–4; windings 65–7, 66 transformer utilization factor (TUF) 195–6 trigonometric identities 347–8 TUF (transformer utilization factor) 195–6 two windings transformer 66 uncontrolled rectifiers 196; full-wave 203, 203–12; half-wave 196–203, 197 universal motor 175–6, 177 variable voltage variable frequency (VVVF) 311 vector 367 vector control 305 V/f control 311–12 voltage control 304 water cooling method 98 wave winding coil 129
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Fundamentals of Electric Machines - A Primer with MATLAB رابط مباشر لتنزيل كتاب Fundamentals of Electric Machines - A Primer with MATLAB
|
|