كتاب Concrete Buildings in Seismic Regions
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Concrete Buildings in Seismic Regions

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18726
التقييم : 34712
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Concrete Buildings in Seismic Regions  Empty
مُساهمةموضوع: كتاب Concrete Buildings in Seismic Regions    كتاب Concrete Buildings in Seismic Regions  Emptyالسبت 06 مارس 2021, 12:35 am

أخوانى فى الله
أحضرت لكم كتاب
Concrete Buildings in Seismic Regions
Second Edition
George G. Penelis  

كتاب Concrete Buildings in Seismic Regions  C_b_i_10
و المحتوى كما يلي :


Contents
Preface to the second edition xxiii
Preface to the first edition xxv
List of abbreviations xxvii
Authors xxix
1 Introduction 1
1.1 Historical notes 1
1.2 Structure of the book 4
2 An overview of structural dynamics 5
2.1 General 5
2.2 Dynamic analysis of elastic single-degree-of-freedom systems 6
2.2.1 Equations of motion 6
2.2.2 Free vibration 7
2.2.3 Forced vibration 10
2.2.4 Elastic response spectra 13
2.2.4.1 Definition: generation 13
2.2.4.2 Acceleration response spectra 15
2.2.4.3 Displacement response spectra 19
2.2.4.4 Velocity response spectra 20
2.2.4.5 Acceleration–displacement response spectra 21
2.3 Dynamic analysis of inelastic SDOF systems 21
2.3.1 Introduction 21
2.3.2 Viscous damping 22
2.3.3 Hysteretic damping 24
2.3.3.1 Case study 25
2.3.4 Energy dissipation and ductility 28
2.3.5 Physical meaning of the ability for energy absorption (damping) 33
2.3.6 Inelastic response spectra 35
2.3.6.1 Inelastic acceleration response spectra 35
2.3.6.2 Inelastic displacement response spectra 36
2.4 Dynamic analysis of MDOF elastic systems 36
2.4.1 Introduction 36
2.4.2 Equations of motion of plane systems 37vi Contents
2.4.3 Modal response spectrum analysis 40
2.4.4 Pseudospatial structural single-storey system 44
2.4.4.1 General 44
2.4.4.2 Static response of the single-storey 3D system 45
2.4.4.3 Dynamic response of a single-storey 3D system 52
2.4.4.4 Concluding remarks on the response
of single-storey system 56
2.4.4.5 Static response of a pseudospatial multi-storey
structural system 60
2.5 Application example 66
2.5.1 Building description 66
2.5.2 Design specifications 67
2.5.3 Modelling assumptions 68
2.5.4 Static response 68
2.5.5 Hand calculation for the centre of stiffness 69
2.5.6 Mass calculation 69
2.5.7 Base shear calculation 69
2.5.8 Computer-aided calculation for the centre of stiffness 73
2.5.9 Dynamic response 76
2.5.10 Estimation of poles of rotation for building B 77
3 Design principles, seismic actions, performance requirements,
compliance criteria 79
3.1 Introduction 79
3.2 Conceptual framework of seismic design: energy balance 80
3.2.1 General 80
3.2.2 Displacement-based design 84
3.2.2.1 Inelastic dynamic analysis and design 84
3.2.2.2 Inelastic static analysis and design 85
3.2.3 Force-based design 86
3.2.4 Concluding remarks 89
3.3 Earthquake input 89
3.3.1 Definitions 89
3.3.2 Seismicity and seismic hazard 94
3.3.2.1 Seismicity 94
3.3.2.2 Seismic hazard 97
3.3.3 Concluding remarks 100
3.4 Ground conditions and design seismic actions 100
3.4.1 General 100
3.4.2 Ground conditions 101
3.4.2.1 Introduction 101
3.4.2.2 Identification of ground types 102
3.4.3 Seismic action in the form of response spectra 103
3.4.3.1 Seismic zones 103
3.4.3.2 Importance factor 103Contents vii
3.4.3.3 Basic representation of seismic action
in the form of a response spectrum 105
3.4.3.4 Horizontal elastic response spectrum 108
3.4.3.5 Vertical elastic response spectrum 109
3.4.3.6 Elastic displacement response spectrum 110
3.4.3.7 Design spectrum for elastic analysis 111
3.4.4 Alternative representation of the seismic action 113
3.4.4.1 General 113
3.4.4.2 Artificial accelerograms 113
3.4.4.3 Recorded or simulated accelerograms 114
3.4.5 Combination of seismic action with other actions 115
3.5 Performance requirements and compliance criteria 116
3.5.1 Introduction 116
3.5.2 Performance requirements according to EC 8-1/2004 118
3.5.3 Compliance criteria 120
3.5.3.1 General 120
3.5.3.2 Ultimate limit state 120
3.5.3.3 Damage limitation state 122
3.5.3.4 Specific measures 122
4 Configuration of earthquake-resistant R/C structural systems:
structural behavior 125
4.1 General 125
4.2 Basic principles of conceptual design 126
4.2.1 Structural simplicity 126
4.2.2 Structural regularity in plan and elevation 126
4.2.3 Form of structural walls 127
4.2.4 Structural redundancy 129
4.2.5 Avoidance of short columns 129
4.2.6 Avoidance of using flat slab frames as main structural systems 129
4.2.7 Avoidance of a soft storey 131
4.2.8 Diaphragmatic behaviour 131
4.2.9 Bi-directional resistance and stiffness 134
4.2.10 Strong columns–weak beams 134
4.2.11 Provision of a second line of defense 135
4.2.12 Adequate foundation system 135
4.3 Primary and secondary seismic members 137
4.4 Structural R/C types covered by seismic codes 137
4.5 Structural configuration of multi-storey R/C buildings
and their behaviour to earthquake 140
4.5.1 General 140
4.5.2 Historical overview of the development of R/C
multi-storey buildings 141
4.5.3 Structural systems and their response to earthquakes 144
4.5.3.1 General 144
4.5.3.2 Buildings with moment-resisting frames 146viii Contents
4.5.3.3 Buildings with wall systems 147
4.5.3.4 Buildings with dual systems 151
4.5.3.5 Buildings with flat slab frames, shear walls
and moment-resisting frames 153
4.5.3.6 Buildings with tube systems 153
5 Analysis of the structural system 155
5.1 General 155
5.2 Structural regularity 155
5.2.1 Introduction 155
5.2.2 Criteria for regularity in plan 156
5.2.3 Criteria for regularity in elevation 158
5.2.4 Conclusions 159
5.3 Torsional flexibility 160
5.4 Ductility classes and behaviour factors 163
5.4.1 General 163
5.4.2 Ductility classes 164
5.4.3 Behaviour factors for horizontal seismic actions 165
5.4.4 Quantitative relations between the q-factor and ductility 169
5.4.4.1 General 169
5.4.4.2 M–φ relation for R/C members under plain bending 170
5.4.4.3 Moment–curvature–displacement diagrams
of R/C cantilever beams 173
5.4.4.4 Moment–curvature–displacement diagrams
of R/C frames 175
5.4.4.5 Conclusions 177
5.4.5 Critical regions 178
5.5 Analysis methods 179
5.5.1 Available methods of analysis for R/C buildings 179
5.6 Elastic analysis methods 181
5.6.1 General 181
5.6.2 Modelling of buildings for elastic analysis and BIM concepts 181
5.6.3 Specific modelling issues 182
5.6.3.1 Walls and cores modelling 182
5.6.3.2 T- and Γ-shaped beams 182
5.6.3.3 Diaphragm constraint 183
5.6.3.4 Eccentricity 184
5.6.3.5 Stiffness 184
5.6.4 Lateral force method of analysis 185
5.6.4.1 Base shear forces 185
5.6.4.2 Distribution along the height 185
5.6.4.3 Estimation of the fundamental period 187
5.6.4.4 Torsional effects 188
5.6.5 Modal response spectrum analysis 189
5.6.5.1 Modal participation 190
5.6.5.2 Storey and wall shears 191Contents ix
5.6.5.3 Ritz vector analysis 191
5.6.6 Time–history elastic analysis 191
5.7 Inelastic analysis methods 192
5.7.1 General 192
5.7.2 Modelling in nonlinear analysis 192
5.7.2.1 Slab modelling and transfer of loads 193
5.7.2.2 Diaphragm constraint 193
5.7.2.3 R/C walls and cores 193
5.7.2.4 Foundation 195
5.7.2.5 Point hinge versus fibre modelling 195
5.7.2.6 Safety factors 197
5.7.3 Pushover analysis 200
5.7.4 Pros and cons of pushover analysis 201
5.7.5 Equivalent SDOF systems 203
5.7.5.1 Equivalent SDOF for torsionally restrained buildings 203
5.7.5.2 Equivalent SDOF for torsionally unrestrained buildings 208
5.7.6 Time–history nonlinear analysis 216
5.7.6.1 Input motion scaling of accelerograms 216
5.7.6.2 Incremental dynamic analysis 218
5.8 Combination of the components of gravity loads and seismic action 218
5.8.1 General 218
5.8.2 Theoretical background 221
5.8.3 Code provisions 224
5.8.3.1 Suggested procedure for the analysis 224
5.8.3.2 Implementation of the reference method adopted by EC8-1
in case of horizontal seismic actions 225
5.8.3.3 Implementation of the alternative method adopted by EC8-1
in the case of horizontal seismic actions 226
5.8.3.4 Implementation of the alternative method for horizontal
and vertical seismic action 230
5.9 Example: modelling and elastic analysis of an eight-storey RC building 231
5.9.1 Building description 231
5.9.2 Material properties 231
5.9.3 Design specifications 231
5.9.4 Definition of the design spectrum 231
5.9.4.1 Elastic response spectrum (5% damping) 231
5.9.4.2 Design response spectrum 231
5.9.5 Estimation of mass and mass moment of inertia 233
5.9.6 Structural regularity in plan and elevation 234
5.9.6.1 Criteria for regularity in plan 234
5.9.6.2 Criteria for regularity in elevation 236
5.9.7 Determination of the behaviour factor q 237
5.9.8 Description of the structural model 237
5.9.9 Modal response spectrum analysis 239
5.9.9.1 Accidental torsional effects 239
5.9.9.2 Periods, effective masses and modes of vibration 240x Contents
5.9.9.3 Shear forces per storey 242
5.9.9.4 Displacements of the centres of masses 242
5.9.9.5 Damage limitations 243
5.9.9.6 Second-order effects 244
5.9.9.7 Internal forces 244
5.10 Examples: inelastic analysis of a 16 storey building 248
5.10.1 Modelling approaches 248
5.10.2 Nonlinear dynamic analysis 252
5.10.3 Nonlinear static analysis 252
5.10.4 Results: global response 254
5.10.5 Results: local response 257
6 Capacity design – design action effects – safety verifications 259
6.1 Impact of capacity design on design action effects 259
6.1.1 General 259
6.1.2 Design criteria influencing the design action effects 260
6.1.3 Capacity design procedure for beams 261
6.1.4 Capacity design of columns 263
6.1.4.1 General 263
6.1.4.2 Bending 264
6.1.4.3 Shear 267
6.1.5 Capacity design procedure for slender ductile walls 269
6.1.5.1 General 269
6.1.5.2 Bending 269
6.1.5.3 Shear 271
6.1.6 Capacity design procedure for squat walls 273
6.1.6.1 DCH buildings 273
6.1.6.2 DCM buildings 273
6.1.7 Capacity design of large lightly reinforced walls 273
6.1.8 Capacity design of foundation 274
6.2 Safety verifications 276
6.2.1 General 276
6.2.2 Ultimate limit state 277
6.2.2.1 Resistance condition 277
6.2.2.2 Second-order effects 278
6.2.2.3 Global and local ductility condition 280
6.2.2.4 Equilibrium condition 280
6.2.2.5 Resistance of horizontal diaphragms 281
6.2.2.6 Resistance of foundations 281
6.2.2.7 Seismic joint condition 281
6.2.3 Damage limitation 282
6.2.4 Specific measures 284
6.2.4.1 Design 285
6.2.4.2 Foundations 285
6.2.4.3 Quality system plan 285Contents xi
6.2.4.4 Resistance uncertainties 285
6.2.4.5 Ductility uncertainties 286
6.2.5 Concluding remarks 286
7 Reinforced concrete materials under seismic actions 287
7.1 Introduction 287
7.2 Plain (unconfined) concrete 289
7.2.1 General 289
7.2.2 Monotonic compressive stress–strain diagrams 289
7.2.3 Cyclic compressive stress–strain diagram 290
7.2.4 Provisions of Eurocodes for plain (not confined) concrete 292
7.3 Steel 295
7.3.1 General 295
7.3.2 Monotonic stress–strain diagrams 295
7.3.3 Stress–strain diagram for repeated tensile loading 297
7.3.4 Stress–strain diagram for reversed cyclic loading 298
7.3.5 Provisions of codes for reinforcement steel 299
7.3.6 Concluding remarks 300
7.4 Confined concrete 302
7.4.1 General 302
7.4.2 Factors influencing confinement 303
7.4.3 Provisions of Eurocodes for confined concrete 304
7.4.3.1 Form of the diagram σc–ɛc 304
7.4.3.2 Influence of confinement 306
7.5 Bonding between steel and concrete 310
7.5.1 General 310
7.5.2 Bond–slip diagram under monotonic loading 313
7.5.3 Bond–slip diagram under cyclic loading 315
7.5.4 Provisions of Eurocodes for bond of steel to concrete 317
7.5.4.1 Static loading 317
7.5.4.2 Seismic loading 319
7.6 Basic conclusions for materials and their synergy 319
8 Seismic-resistant R/C frames 321
8.1 General 321
8.2 Design of beams 325
8.2.1 General 325
8.2.2 Beams under bending 326
8.2.2.1 Main assumptions 326
8.2.2.2 Characteristic levels of loading to failure (limit states) 326
8.2.2.3 Determination of the characteristic points of M–φ diagram
and ductility in terms of curvature for orthogonal
cross section 330
8.2.2.4 Determination of the characteristic points of M–φ diagram
and ductility in terms of curvature for a generalised
cross section 337xii Contents
8.2.3 Load–deformation diagrams for bending under cyclic loading 341
8.2.3.1 General 341
8.2.3.2 Flexural behaviour of beams under cyclic loading 342
8.2.4 Strength and deformation of beams under prevailing shear 344
8.2.4.1 Static loading 344
8.2.4.2 Cyclic loading 352
8.2.4.3 Concluding remarks on shear resistance 354
8.2.5 Code provisions for beams under prevailing seismic action 355
8.2.5.1 General 355
8.2.5.2 Design of beams for DCM buildings 355
8.2.5.3 Design of beams for DCH buildings 360
8.2.5.4 Anchorage of beam reinforcement in joints 362
8.2.5.5 Splicing of bars 365
8.3 Design of columns 366
8.3.1 General 366
8.3.2 Columns under bending with axial force 367
8.3.2.1 General 367
8.3.2.2 Determination of characteristic points of M–φ diagram
and ductility in terms of curvature under axial load
for an orthogonal cross section 369
8.3.2.3 Behaviour of columns under cyclic loading 376
8.3.3 Strength and deformation of columns under prevailing shear 378
8.3.3.1 General 378
8.3.3.2 Shear design of rectangular R/C columns 379
8.3.4 Code provisions for columns under seismic action 383
8.3.4.1 General 383
8.3.4.2 Design of columns for DCM buildings 384
8.3.4.3 Design of columns for DCH buildings 389
8.3.4.4 Anchorage of column reinforcement 391
8.3.4.5 Splicing of bars 391
8.3.5 Columns under axial load and biaxial bending 392
8.3.5.1 General 392
8.3.5.2 Biaxial strength in bending and shear 393
8.3.5.3 Chord rotation at yield and failure stage:
skew ductility μφ in terms of curvature 396
8.3.5.4 Stability of M–θ diagrams under cyclic
loading: form of the hysteresis loops 397
8.3.5.5 Conclusions 397
8.3.6 Short columns under seismic action 397
8.3.6.1 General 397
8.3.6.2 Shear strength of short columns with inclined bars 401
8.3.6.3 Code provisions for short columns 402
8.4 Beam–column joints 402
8.4.1 General 402
8.4.2 Design of joints under seismic action 403
8.4.2.1 Demand for the shear design of joints 404Contents xiii
8.4.2.2 Joint shear strength according to the Paulay
and Priestley method 406
8.4.2.3 Background for the determination of joint shear resistance
according to ACI 318-2011 and EC8-1/2004 409
8.4.3 Code provisions for the design of joints under seismic action 411
8.4.3.1 DCM R/C buildings under seismic loading according
to EC 8-1/2004 412
8.4.3.2 DCH R/C buildings under seismic loading according
to EC 8-1/2004 412
8.4.4 Non-conventional reinforcing in the joint core 414
8.5 Masonry-infilled frames 414
8.5.1 General 414
8.5.2 Code provisions for masonry-infilled frames under seismic action 417
8.5.2.1 Requirements and criteria 417
8.5.2.2 Irregularities due to masonry infills 419
8.5.2.3 Linear modelling of masonry infills 420
8.5.2.4 Design and detailing of masonry-infilled frames 421
8.5.3 General remarks on masonry-infilled frames 422
8.6 Example: detailed design of an internal frame 423
8.6.1 Beams: ultimate limit state in bending 424
8.6.1.1 External supports on C2 and C28 (beam B8 – left,
B68 – right) 424
8.6.1.2 Internal supports on C8 and on C22 (beam B8 – right,
B19 – left, B57 – right, B68 – left) 426
8.6.1.3 Internal supports on C14 and C18 (beam B19 – right,
B37 – left, B37 – right, B57 – left) 427
8.6.1.4 Mid-span (beams B8, B68) 427
8.6.1.5 Mid-span (beams B19, B37, B57) 427
8.6.2 Columns: ultimate limit state in bending and shear 428
8.6.2.1 Column C2 (exterior column) 428
8.6.2.2 Design of exterior beam–column joint 433
8.6.2.3 Column C8 (interior column) 435
8.6.2.4 Design of interior beam–column joint 441
8.6.3 Beams: ultimate limit state in shear 444
8.6.3.1 Design shear forces 444
8.6.3.2 Shear reinforcement 448
9 Seismic-resistant R/C walls and diaphragms 451
9.1 General 451
9.2 Slender ductile walls 452
9.2.1 A summary on structural behaviour of slender ductile walls 452
9.2.2 Behaviour of slender ductile walls under bending with axial load 455
9.2.2.1 General 455
9.2.2.2 Dimensioning of slender ductile walls with orthogonal
cross section under bending with axial force 456xiv Contents
9.2.2.3 Dimensioning of slender ductile walls with a composite
cross section under bending with axial force 458
9.2.2.4 Determination of M–φ diagram and ductility in terms
of curvature under axial load for orthogonal
cross sections 459
9.2.3 Behaviour of slender ductile walls under prevailing shear 460
9.2.4 Code provisions for slender ductile walls 461
9.2.4.1 General 461
9.2.4.2 Design of slender ductile walls for DCM buildings 462
9.2.4.3 Design of slender ductile walls for DCH buildings 469
9.3 Ductile coupled walls 475
9.3.1 General 475
9.3.2 Inelastic behaviour of coupled walls 476
9.3.3 Code provisions for coupled slender ductile walls 478
9.4 Squat ductile walls 479
9.4.1 General 479
9.4.2 Flexural response and reinforcement distribution 480
9.4.3 Shear resistance 481
9.4.4 Code provisions for squat ductile walls 481
9.5 Large lightly reinforced walls 484
9.5.1 General 484
9.5.2 Design to bending with axial force 485
9.5.3 Design to shear 485
9.5.4 Detailing for local ductility 486
9.6 Special issues in the design of walls 487
9.6.1 Analysis and design using FEM procedure 487
9.6.2 Warping of open composite wall sections 489
9.6.2.1 General 489
9.6.2.2 Saint-Venant uniform torsion 491
9.6.2.3 Concept of warping behaviour 493
9.6.2.4 Geometrical parameters for warping bending 501
9.6.2.5 Implications of warping torsion in analysis and design
to seismic action of R/C buildings 505
9.7 Seismic design of diaphragms 508
9.7.1 General 508
9.7.2 Analysis of diaphragms 509
9.7.2.1 Rigid diaphragms 509
9.7.2.2 Flexible diaphragms 510
9.7.3 Design of diaphragms 511
9.7.4 Code provisions for seismic design of diaphragms 511
9.8 Example: dimensioning of a slender ductile wall
with a composite cross section 511
9.8.1 Ultimate limit state in bending and shear 511Contents xv
9.8.2 Estimation of axial stresses due to warping torsion 515
9.8.2.1 Estimation of the geometrical parameters for warping
bending of an open composite C-shaped wall section 515
9.8.2.2 Implementation of the proposed methodology for deriving
the normal stresses due to warping 517
10 Seismic design of foundations 521
10.1 General 521
10.2 Ground properties 522
10.2.1 Strength properties 522
10.2.1.1 Clays 522
10.2.1.2 Granular soils (sands and gravels) 523
10.2.1.3 Partial safety factors for soil 523
10.2.2 Stiffness and damping properties 523
10.2.3 Soil liquefaction 525
10.2.4 Excessive settlements of sands under cyclic loading 526
10.2.5 Conclusions 526
10.3 General considerations for foundation analysis and design 527
10.3.1 General requirements and design rules 527
10.3.2 Design action effects on foundations in relation
to ductility and capacity design 527
10.3.2.1 General 527
10.3.2.2 Design action effects for various types
of R/C foundation members 528
10.4 Analysis and design of foundation ground under the design action effects 531
10.4.1 General requirements 531
10.4.2 Transfer of action effects to the ground 532
10.4.2.1 Horizontal forces 532
10.4.2.2 Normal force and bending moment 533
10.4.3 Verification and dimensioning of foundation ground
at ULS of shallow or embedded foundations 533
10.4.3.1 Footings 533
10.4.3.2 Design effects on foundation horizontal connections
between vertical structural elements 534
10.4.3.3 Raft foundations 535
10.4.3.4 Box-type foundations 536
10.4.4 Settlements of foundation ground of shallow
or embedded foundations at SLS 536
10.4.4.1 General 536
10.4.4.2 Footings 536
10.4.4.3 Foundation beams and rafts 537
10.4.5 Bearing capacity and deformations of foundation ground
in the case of a pile foundation 539xvi Contents
10.4.5.1 General 539
10.4.5.2 Vertical load resistance and stiffness 540
10.4.5.3 Transverse load resistance and stiffness 542
10.5 Analysis and design of foundation members under the design action effects 544
10.5.1 Analysis 544
10.5.1.1 Separated analysis of superstructure and foundation 544
10.5.1.2 Integrated analysis of superstructure and foundation
(soil–structure interaction) 546
10.5.1.3 Integrated analysis of superstructure foundation
and foundation soil 547
10.5.2 Design of foundation members 547
10.5.2.1 Dissipative superstructure–non-dissipative foundation
elements and foundation ground 547
10.5.2.2 Dissipative superstructure–dissipative foundation
elements–elastic foundation ground 551
10.5.2.3 Non-dissipative superstructure–non-dissipative foundation
elements and foundation ground 552
10.5.2.4 Concluding remarks 552
10.6 Example: dimensioning of foundation beams 552
10.6.1 Ultimate limit state in bending 555
10.6.2 Ultimate limit state in shear 556
11 Seismic pathology 561
11.1 Classification of damage to R/C structural members 561
11.1.1 Introduction 561
11.1.2 Damage to columns 562
11.1.3 Damage to R/C walls 567
11.1.4 Damage to beams 570
11.1.5 Damage to beam–column joints 572
11.1.6 Damage to slabs 573
11.1.7 Damage to infill walls 575
11.1.8 Spatial distribution of damage in buildings 576
11.1.9 Stiffness degradation 578
11.2 Factors affecting the degree of damage to buildings 579
11.2.1 Introduction 579
11.2.2 Deviations between design and actual response spectrum 580
11.2.3 Brittle columns 580
11.2.4 Asymmetric arrangement of stiffness elements in plan 582
11.2.5 Flexible ground floor 583
11.2.6 Short columns 585
11.2.7 Shape of the floor plan 585
11.2.8 Shape of the building in elevation 585
11.2.9 Slabs supported by columns without beams (flat slab systems) 585
11.2.10 Damage from previous earthquakes 586
11.2.11 R/C buildings with a frame structural system 587Contents xvii
11.2.12 Number of storeys 587
11.2.13 Type of foundations 588
11.2.14 Location of adjacent buildings in the block 589
11.2.15 Slab levels of adjacent structures 591
11.2.16 Poor structural layout 591
11.2.17 Main types of damage in buildings designed
on the basis of modern codes 592
12 Emergency post-earthquake damage inspection, assessment
and human life protection measures 593
12.1 General 593
12.2 Inspections and damage assessment 594
12.2.1 Introductory remarks 594
12.2.2 Purpose of the inspections 594
12.2.3 Damage assessment 595
12.2.3.1 Introduction 595
12.2.3.2 General principles of damage assessment 596
12.3 Organisational scheme for inspections 597
12.3.1 Introduction 597
12.3.2 Usability classification–inspection forms 597
12.3.3 Inspection levels 598
12.4 Emergency measures for temporary propping 599
12.4.1 General 599
12.4.2 Techniques for propping vertical loads 601
12.4.2.1 Industrial-type metal scaffolds 601
12.4.2.2 Timber 601
12.4.2.3 Steel profiles 601
12.4.3 Techniques for resisting lateral forces 602
12.4.3.1 Bracing with buttresses 602
12.4.3.2 Bracing with diagonal X-braces 604
12.4.3.3 Bracing with interior anchoring 605
12.4.3.4 Bracing with tension rods or rings 605
12.4.4 Wedging techniques 605
12.4.5 Case studies 606
12.5 Final remarks 606
13 Seismic assessment and retrofitting of R/C buildings 609
13.1 General 609
13.2 Pre-earthquake seismic evaluation of R/C buildings (tiers) 610
13.3 Post-earthquake seismic evaluation of R/C buildings 612
13.3.1 Introduction 612
13.3.2 Objectives and principles of post-earthquake retrofitting 613
13.4 Quantitative detailed seismic evaluation and retrofitting design 614
13.5 Overview of displacement-based design for seismic actions 615
13.5.1 Introduction 615xviii Contents
13.5.2 Displacement-based design methods 615
13.5.2.1 N2 method (EC8-1/2004) 616
13.5.2.2 Capacity-spectrum method ATC 40-1996 622
13.5.2.3 Coefficient method/ASCE/SEI 41-06 (FEMA 356/2000) 625
13.5.2.4 Direct displacement-based design (DDBD) 627
13.5.2.5 Concluding remarks 629
13.6 Scope of the detailed seismic assessment and rehabilitation
of R/C buildings 630
13.7 Performance requirements and compliance criteria 630
13.7.1 Performance requirements 630
13.7.2 Compliance criteria 632
13.7.2.1 Seismic actions 632
13.7.2.2 Safety verification of structural members 632
13.7.2.3 ‘Primary’ and ‘secondary’ seismic elements 633
13.7.2.4 Limit state of near collapse (NC) 633
13.7.2.5 Limit state of significant damage (SD) 633
13.7.2.6 Limit state of damage limitation (DL) 633
13.8 Information for structural assessment 634
13.8.1 General 634
13.8.2 Required input data 634
13.8.2.1 Geometry of the structural system 634
13.8.2.2 Detailing 635
13.8.2.3 Materials 635
13.8.2.4 Other input data not related to the structural system 637
13.8.3 Knowledge levels and CFs 638
13.9 Quantitative assessment of seismic capacity 639
13.9.1 General 639
13.9.2 Seismic actions 639
13.9.3 Structural modelling 639
13.9.4 Methods of analysis 640
13.9.4.1 General 640
13.9.4.2 Lateral force elastic analysis 640
13.9.4.3 Multimodal response spectrum analysis 642
13.9.4.4 Non-linear static analysis 642
13.9.4.5 Non-linear time–history analysis 643
13.9.4.6 The q-factor approach 644
13.9.4.7 Additional issues common to all methods of analysis 644
13.9.5 Safety verifications 645
13.9.5.1 General 645
13.9.5.2 Linear methods of analysis 646
13.9.5.3 Non-linear methods of analysis (static or dynamic) 647
13.9.5.4 The q-factor approach 647
13.9.5.5 Acceptance criteria 647
13.10 Decisions for structural retrofitting of R/C buildings 649
13.10.1 General 649
13.10.2 Criteria governing structural interventions 651Contents xix
13.10.2.1 General criteria 652
13.10.2.2 Technical criteria 652
13.10.2.3 Types of intervention 652
13.10.2.4 Examples of repair and strengthening techniques 653
13.11 Design of structural rehabilitation 654
13.11.1 General 654
13.11.2 Conceptual design 655
13.11.3 Analysis 655
13.11.4 Safety verifications 655
13.11.4.1 Verifications for non-linear static analysis method 655
13.11.4.2 Verifications for the q-factor approach 657
13.11.5 Drawings 658
13.12 Final remarks 659
14 Technology of repair and strengthening 661
14.1 General 661
14.2 Materials and intervention techniques 662
14.2.1 Conventional cast-in-place concrete 662
14.2.2 High-strength concrete using shrinkage compensating admixtures 663
14.2.3 Shotcrete (gunite) 663
14.2.3.1 Dry process 664
14.2.3.2 Wet process 665
14.2.3.3 Final remarks 665
14.2.4 Polymer concrete 666
14.2.5 Resins 667
14.2.6 Resin concretes 668
14.2.7 Grouts 668
14.2.8 Epoxy resin-bonded metal sheets on concrete 669
14.2.9 Welding of new reinforcement 669
14.2.10 FRP laminates and sheets bonded on concrete with epoxy resin 670
14.2.10.1 General 670
14.2.10.2 Technical properties of FRPs 671
14.2.10.3 Types of FRP composites 672
14.3 Redimensioning and safety verification of structural elements 674
14.3.1 General 674
14.3.2 Revised γm-factors 675
14.3.3 Load transfer mechanisms through interfaces 675
14.3.3.1 Compression against pre-cracked interfaces 675
14.3.3.2 Adhesion between non-metallic materials 676
14.3.3.3 Friction between non-metallic materials 676
14.3.3.4 Load transfer through resin layers 677
14.3.3.5 Clamping effect of steel across interfaces 677
14.3.3.6 Dowel action 678
14.3.3.7 Anchoring of new reinforcement 678
14.3.3.8 Welding of steel elements 679
14.3.3.9 Final remarks 679xx Contents
14.3.4 Simplified estimation of the resistance of structural elements 679
14.4 Repair and strengthening of structural elements using conventional means 680
14.4.1 General 680
14.4.2 Columns 681
14.4.2.1 Local interventions 681
14.4.2.2 R/C jackets 681
14.4.2.3 Steel profile cages 684
14.4.2.4 Steel or FRP encasement 685
14.4.2.5 Redimensioning and safety verifications 686
14.4.2.6 Code (EC 8-3/2005) provisions 688
14.4.3 Beams 688
14.4.3.1 Local interventions 688
14.4.3.2 R/C jackets 689
14.4.3.3 Bonded metal sheets 690
14.4.3.4 Redimensioning and safety verification 690
14.4.4 Beam–column joints 695
14.4.4.1 Local repairs 695
14.4.4.2 X-shaped prestressed collars 696
14.4.4.3 R/C jackets 696
14.4.4.4 Bonded metal plates 697
14.4.4.5 Redimensioning and safety verification 698
14.4.5 R/C walls 698
14.4.5.1 Local repairs 698
14.4.5.2 R/C jackets 698
14.4.5.3 Redimensioning and safety verification 700
14.4.6 R/C slabs 701
14.4.6.1 Local repair 701
14.4.6.2 Increase in the thickness or the reinforcement of a slab 701
14.4.6.3 Redimensioning and safety verifications 702
14.4.7 Foundations 703
14.4.7.1 Connection of column jacket to footing 703
14.4.7.2 Strengthening of footings 704
14.4.8 Infill masonry walls 705
14.4.8.1 Light damage 705
14.4.8.2 Serious damage 705
14.5 Repair and strengthening of structural elements using FRPs 707
14.5.1 General considerations 707
14.5.2 Bending 707
14.5.2.1 Intermediate flexural crack-induced debonding 708
14.5.2.2 Crushing of concrete under compression before tension
zone failure 711
14.5.2.3 Plate-end debonding 712
14.5.2.4 Theoretical justification of debonding length lb
and strain ε
fe 713
14.5.3 Shear 716Contents xxi
14.5.4 Axial compression and ductility enhancement 718
14.5.4.1 Axial compression 718
14.5.4.2 Ductility enhancement 721
14.5.4.3 Clamping of lap splices 722
14.5.5 Strengthening of R/C beam–column joints
using FRP sheets and laminates 722
14.6 Addition of new structural elements 724
14.7 Quality assurance of interventions 725
14.7.1 General 725
14.7.2 Quality plan of design 726
14.7.3 Quality plan of construction 726
14.8 Final remarks 726
15 Seismic isolation and energy dissipation systems 729
15.1 Fundamental concepts 729
15.1.1 Seismic isolation 729
15.1.2 Buildings with supplemental damping devices 730
15.2 Concept design of seismically isolated buildings 732
15.2.1 Main requirements of concept design 732
15.2.1.1 Seismic isolation horizontal level 733
15.2.1.2 In-plan distribution of isolator devices 735
15.2.1.3 Theoretical background 735
15.2.1.4 Target fundamental period, damping
and expected displacements 737
15.2.2 Isolation devices 737
15.2.2.1 Inverted pendulum bearings 738
15.2.2.2 Rubber bearings 742
15.3 Concept design of buildings with supplemental damping 744
15.3.1 Concept design 744
15.3.2 Displacement-depended dampers 746
15.3.3 Velocity-dependent dampers 748
15.3.3.1 Solid viscoelastic devices 748
15.3.3.2 Fluid viscoelastic devices 750
15.4 Final design of buildings with seismic isolation
and/or supplemental damping 753
15.4.1 Analysis methods 753
15.4.2 Modal linear analysis for buildings with seismic isolation 754
15.4.3 Modal linear analysis for buildings with supplemental damping 755
15.4.4 Time–history linear analysis 755
15.4.5 Time–history nonlinear analysis for seismically isolated buildings 755
15.4.6 Time–history nonlinear analysis for buildings
with supplemental damping 756
References 757
Index 77
Index
1-DFE, 183
2-DFE, 183
A
Acceleration response spectra, 2, 15–17, 19,
35, 632; see also Elastic SDOF system
analysis
dynamic to static response, 18
examination of, 16
of strong earthquakes, 2, 16
Acceleration-displacement response spectra
(ADRS), 619; see also Elastic SDOF
system analysis
Accelerograph, 2
Adaptive pushover, 180, 202–203, 617; see also
Push-over analysis
Adhesion, 311, 313, 663–664, 667, 674,
676–677, 692, 694, 701, 703; see also
Resins; Shotcrete between non-metallic
materials
chemical, 311, 313, 667
constitutive law of, 312, 677, 718
inadequate, 354, 565, 567, 592, 652, 659,
681, 692, 698, 704, 720
ADRS, 21, 252, 254, 257, 618–620, 624, 629,
see Acceleration-displacement response
spectra (ADRS)
AFRP, 671, 718, see Aramid fibre reinforced
plastic (AFRP)
Allowable termination points, 713
American Codes of Practice, 5, 31
American Society of Civil Engineers (ASCE),
625
Angle of internal friction, 523
Angle of twist, 490–492, 496
Applied Technology Council (ATC), 622
ARIAS intensity, 217
Artificial accelerograms, 113–114, 216
disadvantage of, 114
for PGA = 0.24 g, 114
requirements for, 113, 137, 140–141, 161,
182, 280, 300, 319, 389, 454, 481,
530, 657
ASCE, 5, 101, 113, 135, 153, 164, 261, 291–292,
460, 480, 610–612, 614–615, 625, 651,
see American Society of Civil Engineers
(ASCE)
ATC, 594–595, 598, 610–611, 615, 622–623,
625, 645, 648, see Applied Technology
Council (ATC)
Athens Opera House, 181, 733, 735, 740–741,
751, 753
Axial compression, 264, 382, 456, 562–564,
580, 707, 718
B
Balanced failure, 329, 368, 372
Bauschinger effect, 298, 343
Beam, 33, 82, 135, 142, 146, 151, 170, 173,
175–177, 182–183, 193, 239, 248,
252, 260–266, 268–269, 319, 322,
325–329, 342, 344–351, 353–365,
369, 376, 379–380, 382, 386, 402–407,
409, 412–415, 423–428, 433, 435–436,
441, 444–448, 450, 454–456, 477–478,
503, 510, 534–535, 537–538, 542, 545,
549–550, 553, 555–557, 559, 570–572,
654, 669, 673, 681, 684, 689–691,
694–695, 697, 707–708, 710–711,
713–714, 722–723
Beam column joints, 363, 406
Code provisions, 224, 286, 342, 355, 383,
397, 402, 411, 417, 461, 478, 481, 511
column shear, 405–406
DCH R/C buildings, 261, 412, 511
DCM R/C buildings, 412
failure modes, 260, 403, 460, 481, 707–708
homogeneous stress field, 410
horizontal joint shear, 404, 408
horizontal reinforcement, 407, 409, 413, 434,
442–443, 482, 511, 513
hysteresis loops for exterior, 415
interior joints, 364, 403, 409, 413
joint shear strength, 406, 409
principal stresses, 410
shear design of joints, 404776 Index
shear transfer mechanism, 406
strut shear resistance, 406
vertical joint shear, 405, 408
vertical joint shear reinforcement, 408
Beam with resin-bonded metal sheets, 669
Behaviour factor, 31, 33, 68, 85–88, 101, 111–
113, 120, 135, 137–139, 149, 153, 156,
159, 163, 165, 168–169, 201, 231, 233,
237, 242, 272, 274, 277, 279–280, 282,
451, 463, 468, 629, 755; see also q-factor
approach; Structural system analysis
and ductility, 25–26, 28, 31, 89, 120–121,
127, 134, 142, 147, 163–165, 167, 169,
259, 319, 330, 337, 369, 457, 459, 481,
595–596, 650–651, 660, 718
aspect ratio, 147, 149–150, 153, 166,
273–274, 322, 366, 377, 452, 454–455,
460–461, 470, 479–480, 482, 485, 562
basic value, 165, 168, 463, 468, 710
differential relations, 170
for horizontal seismic actions, 165, 322
for vertical seismic excitation, 169
magnifier factor, 167
pushover curve, 166, 215
upper-limit value of, 165
Bending resistance, 148, 384, 458, 469,
472–473, 481, 505
Bidiagonal reinforcement, 399–400, 472
Bilinear elastic-plastic diagram, 627
BIM, 181, 193, see Building Information
Modelling (BIM)
Bonded metal sheets, 669, 690, 694
redimensioning and safety verification,
674–675, 680, 690, 698, 700, 727
Brittle columns, 580
Building Information Modelling (BIM), 181
Buildings, 1–6, 8, 10, 12, 14–20, 22, 24, 26
developed horizontally, 141
FE model, 181–182
for special use, 141
in modern Codes, 180, 286
inspection, 196, 561, 593–599, 601, 603,
605–608, 638, 661, 726, 732–733, 738
multi-storey buildings, 44, 64, 140–142, 144,
153, 208, 266, 399, 550, 577, 587
buildings with damping devices, 191
seismic isolation, 90, 184, 191, 653, 729–739,
741–743, 745, 747–749, 751, 753–756
Burj Dubai, 142
Buttresses, 602–604
C
Capacity curve, 3, 81–89, 116–117, 121, 169,
180, 218, 254, 614–619, 621–622,
626–627, 629, 643–645, 657–658
MDOF model, 616, 621–622, 629
of structure, 45, 131, 147, 165, 484, 585
yield point of, 621
Capacity design, 3–4, 85, 88, 119, 122, 134, 155,
160–161, 163–164, 259–263, 265–277,
279–281, 283, 285–286, 288, 302,
319–320, 325, 354–356, 361, 364,
369, 379, 384, 396–397, 405, 412, 422,
429, 431, 437–438, 443–444, 451,
454, 461–462, 470, 472, 480–481,
484–485, 522, 527–528, 530–531, 534,
551–552, 564, 615, 646–647, 657–658;
see also Damage limitation (DL); Design
action effects; Collapse prevention
measures; Ultimate limit state
amplification factor, 2, 189, 262, 267, 589, 643
axial load effects, 263, 268, 366, 489
capacity design values of shear forces, 262
DCH buildings, 263, 272–273, 355, 358,
360–363, 365, 389, 391, 405, 414,
419–420, 422, 461, 469–470, 474,
479, 481–482, 551–552
DCM buildings, 178, 271, 273, 299, 355,
360–363, 384, 389–390, 414, 462,
469, 474, 481–482, 484, 551
design envelope of shear forces, 271
for beams, 178, 261, 267, 318, 322, 325,
350–351, 355–356, 358, 361–362,
369–370, 379–380, 382, 391, 455–456,
459–461, 482, 555, 645–646
for columns, 178, 266, 322, 369–370, 374–375,
378–379, 381–384, 389, 391, 397–398,
411, 422–423, 458, 460, 465, 564
for slender ductile walls, 269, 461, 478
for squat walls, 273, 472, 480–481
moment diagrams, 150, 175–176, 269, 271,
301, 321, 325, 366, 423, 475
moment resistance, 261, 271, 422, 478
of foundation, 125, 135, 237, 274, 276, 521,
528, 530–537, 539, 542, 544–545,
547–548, 550–552, 588–589, 703
of large lightly reinforced walls, 139, 149, 273
shear forces, 46, 62, 88, 130, 137, 141, 149,
185, 237, 242, 245, 247, 262–263,
267–269, 271–273, 325, 361, 366, 398,
406, 418, 420, 422, 431, 438, 444,
446–448, 463, 485, 498, 509–510,
532, 550, 584, 694, 725
slender ductile wall moment diagram, 270
stability condition against overturning, 275
strong columns-weak beams, 134, 261, 266,
396, 640
tension shift, 270
Capacity spectrum, 200, 616, 618–619, 622,
624–625, 629
Capacity-spectrum method, 615, 622, 629;
see also Displacement-based design
(DBD); N2 method
demand spectra, 618–619, 623–624, 629
equivalent SDOF model, 616–617, 619, 622,
624, 627, 629
hysteretic damping, 5, 24–26, 30, 81, 622–623Index 777
Cast-in-place concrete, 662–663, 684
Caushy theorem, 405
Centre of gravity (CG), 493
Centre of mass (CM), 211, 255
CFRP, 671–673, 707, 709, 718, 722–723,
see Carbon fibre reinforced plastic
(CFRP)
CFs, 630, 634, 638–639, see Confidence factors
(CFs)
CG, 493, 502–503, 512, 515, see Centre of
gravity (CG)
Clamping, 472, 677, 707, 722
effect of steel across interfaces, 677
CM, 19, 67, 93, 102, 183, 208, 211, 215, 231,
248, 254–255, 257, 424–428, 434,
442, 448, 486, 515–516, 554–557,
723, see Centre of mass (CM)
Coefficient method, 615, 625, 629; see also
Displacement-based design (DBD)
modification factor, 625–626
strength ratio, 627
target displacement, 3, 252, 254–255, 257,
614, 616, 619–622, 624–629, 641,
643, 650, 655
Column damage, 563–565, 578
explosive cleavage failure, 379, 550, 565–566
in masonry, 94
Column jacket, 703–705
arrangement, 33, 51, 126, 129, 151, 195, 303,
307, 318, 348, 354, 358, 361–362, 365,
389, 399, 414–415, 418, 422, 464,
472–474, 477, 549, 568, 582–583, 591,
634–635, 664, 669, 683–684, 696,
700, 703–705, 722
for foundation, 276, 281, 527, 535
Column repair, 681–682, 689
encasement, 685–686
local interventions, 650, 681, 688
one-sided strengthening, 685
R/C jackets, 659, 680–681, 687–689,
695–696, 698–699, 724
redimensioning and safety verification,
674–675, 680, 690, 698, 700, 727
steel profile cages, 684
Combination coefficient, 115, 221
Complete quadratic combination (CQC), 227
Compliance criteria, 79–81, 83, 85, 87, 89, 91, 93,
95, 97, 99, 101, 103, 105, 107, 109, 111,
113, 115–117, 119–123, 276, 285, 630,
632–633; see also Damage limitation;
Limit states; Seismic assessment and
retrofitting; Ultimate limit state
NC limit state, 633, 649
SD limit state, 633, 655
Composite wall sections, 458, 460, 462, 489,
505
crushing of concrete, 34, 265, 456, 596, 681,
688, 707, 711
concept design, 732, 740, 744–745, 750, 753
Concept design of seismically isolated buildings,
732
Concrete-to-concrete friction, 471, 676
Confidence factors (CFs), 630
Confined concrete, 302, 304–306, 313, 315,
720; see also Steel and concrete bonding
factors influencing confinement, 303
influence of confinement, 303, 306, 318
provisions of Eurocodes, 292, 304, 317
under triaxial compressive loading, 302
Constitutive law, 35, 197, 287, 293, 299, 312,
676–677, 707, 718
of adhesion, 311, 313, 677
of material, 180, 287, 291, 295
Conventional reinforcement, 399, 415
Core taking, 637
Corner buildings, 589
Cost-benefit analysis, 613
Coupled slender ductile walls, 478; see also
Slender ductile walls
behaviour in coupled shear walls, 477
Code provisions for, 342, 355, 383, 397,
402, 411, 417, 461, 478, 481, 511
inelastic behaviour of, 2, 22, 476
issues in, 195, 344, 487
structural behaviour of, 146, 421, 451–452,
455, 476, 479, 506, 508, 521, 650
x-shaped reinforcement, 361, 378, 383, 472,
477
Coupled walls, 149, 271, 273, 451, 469,
475–479, 570
CQC, 43, 227, 239, 489, see Complete quadratic
combination (CQC)
Crack patterns, 480
Critical damping ratio, 9, 12
Critical regions, 88, 121, 123, 147, 151, 163
D
d’Alembert equation, 37
Damage assessment, 594–597
Damage evaluation, 423, 594, 596–597, 606,
608, 614; see also Statistical damage
evaluation
Damage limitation (DL), 120, 122, 630, 633,
648–649; see also Compliance criteria;
Design action effects
compliance criteria, 119–123, 276, 285, 630,
632–633
inter-storey displacement, 283, 751
inter-storey drift, 84, 243–244, 279–280,
282–283, 617, 625, 634
masonry failure, 282, 566
reduction factor, 192, 243, 282–283, 307,
421, 461, 479, 525, 657, 692
Damage-oriented evaluation, 594
Dampers, 22, 24, 28, 90, 732, 744–748,
750–751, 753, 755–756, see Passive
energy dissipators778 Index
Damping, 2, 4–5, 7, 9–10, 12, 15–16, 19–31,
33, 35–38, 53, 81, 101, 107–109,
112–114, 191–192, 201, 204, 231,
521–526, 546–547, 614, 622–623,
625, 627–629, 653, 729–730, 732,
735–738, 740, 742–749, 751, 753–756
average soil damping ratios, 525
DBD, 19–21, 25, see Displacement-based design
(DBD)
DCH, 159, 164–165, 178, 237, 261, 263,
272–273, 276, 292, 299–300,
302, 355, 358–365, 384, 389, 391,
405–406, 411–412, 414, 419–420,
422, 427, 461, 466, 469–470,
474, 477–479, 481–483, 511, 528,
530–531, 551–552, 554; see Ductility
class high (DCH)
DCM, 159, 164–165, 178, 261, 263, 271,
273–274, 276, 292, 299–300,
355–356, 359–363, 365, 378, 384,
389–391, 411–412, 414, 419–420, 422,
461–462, 466, 469, 474, 481–482, 484,
528, 530–531, 551–552, see Ductility
class medium (DCM)
Debonding, 671, 707–708, 710, 712–717
intermediate crack-induced, 714
plate-end, 707–708, 712
Decisions for structural retrofitting, 649
Deformation vector, 203
Demand spectra, 618–619, 623–624, 629
Design acceleration spectra, 649
Design action effects, 259–261, 263, 265, 267,
269, 271, 273, 275–277, 279, 281,
283, 285, 302, 422, 451, 527–528,
530–532, 534, 544, 547, 551, 554;
see also Collapse prevention measures;
Damage limitation; Foundation ground
design and analysis; Ultimate limit
state
box-type basements of dissipative structures,
530
design criteria influencing, 260
Design seismic action (DSA), 631
Design spectrum, 69–70, 101, 111–114, 121,
139, 164, 178, 185, 224, 231, 286,
546, 580–582, 587, 642, 657; see also
Inelastic response spectra; Seismic
action
characteristics, 79, 82, 92, 98, 101, 115,
140–141, 151, 183–184, 189, 191, 208,
259, 288, 294, 298, 313, 454, 484,
509, 519, 580, 588, 596, 613, 630,
655, 672–673, 676, 724, 726–727,
730, 756
for elastic analysis, 111, 181
for horizontal components, 111–112
Diagonal compression failure, 350, 413, 469,
481–482
Diagonal tension failure, 469, 481–483
Diagonal x-braces, 604
Diaphragms, 4, 44, 126, 131, 139, 160, 184,
224; see also R/C wall
Code provisions, 224, 286, 342, 355,
383, 397, 402, 411, 417, 461, 478, 481,
511
constraint, 182–184, 192–193, 214, 248,
308
diaphragmatic slab, 508
in-plane stiffness, 45, 157, 509–510
Dimensioning, 87, 121, 137, 139, 141, 164,
169, 228, 260, 276, 281, 304,
344–345, 429, 437, 456, 458–459,
469, 488–489, 506, 511–512, 530,
533, 536, 545, 548, 550–552, 661,
679, 686, 702–703
of foundation beams, 135, 237, 534–535,
537, 542, 552, 588–589
reliability, 103, 197, 259–260, 274,
304–305, 369, 392, 416–417, 487,
651, 661
Displacement response spectra, 19, 21, 36, 110,
619; see also Elastic SDOF system
analysis
acceleration, 11–19, 21–22, 35–36, 110–112,
618–621
DBD method, 20–21
inelastic, 19, 21–22, 24–28, 30–33,
35–36, 101, 113, 120–121, 617,
619–620
Displacement-based design (DBD), 19; see also
Elastic SDOF system analysis
direct, 2–3, 19, 44, 72, 84, 86, 177, 286,
588, 615, 627–629, 644, 679, 729
force-based design procedure, 3, 615
pushover analysis, 3, 85–87, 168, 179,
200–203, 214–215, 615, 617, 622, 639,
643
DL, 120, 122, 630–633, 647–649, see Damage
limitation (DL)
DLS, 120, 658, see Damage limitation state
(DLS)
Dowel action, 461, 674, 678
Dry-mix shotcrete on old concrete, 666
DS, 224, 242–243, 282–283, 310, 318, 406,
502, 544, 734, see Damage states
(DS)
DSA, 631, 633–634, see Design seismic action
(DSA)
DT, 13, 20, 23, 217, 635, 637, 718–719, see
Destructive test (DT)
Dual system, 126, 135, 138, 143, 147, 151–152,
154, 159, 161, 163, 168, 203, 269, 272,
531
Ductile walls, 64, 138, 148, 269–272, 274, 376,
451–452, 454–456, 458–463, 465,
469, 474–482, 645, see Shear—wallsIndex 779
Ductility, 25–26, 28, 30–36, 87–89, 112–113,
120–123, 127, 129, 134, 142, 147, 149,
153, 155, 160–161, 163–167, 169–170,
173, 177, 197, 200–203, 233, 237,
252, 259–262, 264–265, 267, 273,
277–278, 280, 285–286, 288, 292,
294–295, 299–300, 302–303, 316,
319, 329–330, 336–337, 341, 348, 353,
355–359, 362–363, 367, 369, 374, 376,
378, 383–386, 388, 390, 392–393,
396–397, 421–422, 432, 439, 451, 454,
457, 459–461, 463, 465–466, 468,
470, 474, 476–477, 479–481, 486,
512, 522, 527–528, 530, 550–552,
580, 584–585, 587, 595–596, 614–615,
617, 619, 627–628, 639, 641, 644,
646, 650–652, 656–658, 660, 670,
674, 681, 685, 688, 707, 718, 721,
729, 732; see also Structural system
analysis
design force and ductility demand, 164
differential relations, 170
energy dissipation and, 28, 31, 165
hysteretic damping and, 25
index, 92, 100, 102, 138, 190, 243, 614,
680, 687
Q-factor and, 121, 163, 169, 615
R/C beam, 33, 173, 326, 344, 354, 707, 722
R/C column, 367, 371, 373, 674, 683, 720
section curvature, 34, 173
supply factor, 30
uncertainties, 123, 180, 184, 271, 285–286,
521, 526, 651, 662, 675
Ductility class high (DCH), 292
Ductility class medium (DCM), 292
E
Earthquake-resistant R/C structural systems,
125, 127, 129, 131, 133, 135, 137,
139, 141, 143, 145, 147, 149, 151,
153; see also Plane structural systems;
Pseudospatial multistorey structural
system
bi-directional resistance and stiffness, 125,
134
concentration of large shear forces, 130, 725
diaphragmatic behaviour, 131
flat slab systems, 129, 131, 137, 573, 585
foundation system, 135, 151, 526, 530, 553
geometric configuration in plan, 127
layout of shear walls, 129
mass and stiffness distribution, 126
second line of defense, 135
seismic members, 137, 300, 420
short columns, 129–130, 201, 379, 397–402,
416, 472, 479, 566, 571, 585, 590,
592, 596
soft storey, 131, 152, 160, 202, 260–261,
264–265, 286, 615, 640–641, 651
strong columns-weak beams, 134, 261, 266,
396, 640
structural R/C types, 137
structural redundancy, 129, 165
structural regularity, 126, 155–156,
161–162, 234
structural simplicity, 125–126
structural walls, 50–51, 123, 127, 131, 135,
137–138, 141, 147–149, 151, 166, 179,
248, 260, 275, 280, 456, 472, 474,
528, 531, 548, 550, 552, 596, 651
unfavourable core arrangement, 129
Earthquakes, 1–2, 15–17, 22, 24, 79, 88–89,
91–92, 94–98, 100–101, 104–106,
113, 121–122, 144, 151–152, 165, 216,
259, 416, 423, 505, 562, 567, 576, 578,
586–587, 589–590, 594, 612–613, 661,
751; see also Post-earthquake evaluation;
Pre-earthquake evaluation; Seismic
design, Seismic hazard; Seismicity
acceleration response spectra of, 35
cumulative function of, 96
displacement response spectra, 19, 21, 36,
110, 619
El Centro earthquake record, 2
elastic response spectra, 2, 13–15, 19,
105–107, 109–110, 524, 632, 639
empirical intensity scales, 92
energy release, 92, 100
ground motion, 12–13, 18, 58, 92, 94, 136,
733, 736
intensity of, 92, 100, 576, 593, 595
isoseismic contours, 92
lithospheric plates, 89, 91
magnitude of, 91–92, 97, 203, 408, 595,
600
Mexico City earthquake, 16–17, 565, 577,
581, 585, 589, 591, 653
per year, 94–95, 98
strong earthquakes, 2, 16, 151, 416, 423,
562, 578, 594, 612
tectonic, 89, 596
terminology related to, 91
EC 8-3/2005, 286, 645–649, 651, 655, 675,
688, 692, 709–710, 712, 716; see
also Post-earthquake evaluation;
Pre-earthquake evaluation; Seismic
design, Seismic hazard; Seismicity
Eccentricity, 72, 74, 157, 182, 184, 188–189,
224, 234, 236, 239–240, 254, 355,
419, 422, 512, 725, 735, 741, 754
Effective stress, 523
Eigen frequency, 57–60, 77–78, 163
El Centro earthquake record, 2
Elastic acceleration response spectrum, 85, 89,
101, 110, 120, 620, 626, 642780 Index
Elastic analysis methods, 181; see also Modal
response spectrum analysis; Structural
system analysis
diaphragm constraint, 182–184, 192–193
eccentricity, 182, 184, 188–189, 224, 234,
236
modelling of buildings for, 181
modelling of ribs, 183
specific modelling issues, 182
stiffness, 112, 116, 125–129, 131, 134, 137,
142, 147, 150–151, 153, 156–158, 161,
167, 170, 172, 180, 182–184, 186,
416–420
time-history elastic analysis, 191
walls and cores modelling, 182
Elastic behaviour, 30, 196, 200, 274, 286–287,
531, 536, 620, 670; see also unlimited
elastic behaviour
Elastic displacement response spectrum, 110, 113
Elastic response spectra, 2, 13–15, 19, 105–107,
109–110, 524, 632, 639; see also
Inelastic response spectra; Inelastic
SDOF system analysis; Seismic action
damping correction factor, 108–109
generic shape of, 106
maximum acceleration, 2, 11, 14, 16, 22, 619
maximum velocity, 14, 217
relative displacement, 5–6, 8–10, 12–13,
17, 20, 24, 45, 60–61, 110, 136, 619,
676–677, 730, 733, 736, 746, 748
soft soils, 17, 106, 108, 588
values of parameters, 110
Elasto-perfectly plastic (EPP), 618
Empirical attenuation laws, 97
Empirical intensity scales, 92
EMS, 92, see European Macroseismic Scale (EMS)
Encasement, 685–686
Energy balance, 2–3, 80, 89, 656
Epoxy resins, 667, 681, 687, 698, 701, 707, 718
EPP, 25, 27, 616, 618, 622, 625, 747, see Elastoperfectly plastic (EPP)
Equilibrium condition, 6, 268, 277, 280, 332,
334, 711
Equivalent SDOF elastoplastic model, 617
Equivalent SDOF systems, 203; see also
Multi-degree of freedom (MDOF)
deformation vector, 203
elastoplastic model, 617
equation of vibration under excitation, 207
for torsionally restrained buildings, 203
for torsionally unrestrained buildings, 208
generalised restoring torque, 212
lateral storey force, 213
load vector, 191, 214
target displacement of, 252, 619, 621,
624–625, 629
transformation factor, 208, 618
Excessive settlements of sands under cyclic
loading, 526
F
FEM, 134, 420, 475, 487–488, 506, 545, 547,
679, see Finite element method (FEM)
FEMA, 97, 116–120, 195–196, 200, 594, 598,
610–612, 614–615, 625–626, 629–631,
645, 648, 651, see Federal Emergency
Management Agency (FEMA)
Fibre model, 180, 192–193, 195, 248
nonlinear analysis, 180, 182, 192–193, 197,
200–201, 215–216, 248, 252
Fibre-reinforced plastic (FRP), 667
constitutive laws of, 670, 679
glass, 94, 122, 282, 577, 600, 671
mechanical properties of, 667, 671–672
on concrete, 302, 306, 345, 669–670, 681
prefabricated laminates, 672
technical properties of, 671, 673
wet lay-up method, 672
Finite element method (FEM), 679
Flexible ground floor, 577, 583–585
Flexural response and reinforcement
distribution, 480
fluid viscoelastic devices, 750
Force reduction factor, 30, 33
Force-based design, 3, 15, 36, 83, 86–87, 89,
120–122, 163, 286, 615, 627, 629,
657–658
Fragility curves, 595
seismic vulnerability, 588
Frame elements, 248
Frame systems, 89, 138, 147–148, 151, 153,
321, 366, 551, 565, 587, 650
Friction coefficients for masonry, 676
FRP, 303, 667, 670–672, 674, 681, 685–686,
688, 695, 705–711, 713–714, 716–723,
see Fibre-reinforced plastic (FRP)
Fundamental normal mode, 39
G
GFRP, 671, 718, see Glass fibre reinforced
plastic (GFRP)
Global target displacement, 621, 625
Ground, 102, 521–528, 530–539, 542, 544–
548, 550–552, 566, 576–578, 582–
585, 588–590, 596–597
angle of internal friction, 523
average soil damping ratios, 525
differential settlements of, 546, 588
effective stress, 523
excessive settlements of sands under cyclic
loading, 526
ground types, 102–103, 107, 165
partial safety factors, 523, 540–541, 577,
630, 634, 639
pore water pressure, 523
soil liquefaction, 523, 525, 588–589
soil strength, 522, 526Index 781
stiffness parameter, 505, 523
undrained shear strength, 102, 522–523
Grouts, 668–669, 678
Gunite, 663–664, 684, 687, 690, 696, 702, 706,
see Shotcrete
H
H-section core, 494
Hammer tests, 636
High-strength concrete, 295, 663, 678
historical overview, 141
Hognestad’s expression, 289, 293
Housner intensity, 217
Hysteretic damping, 5, 24–26, 30, 81, 622–623
I
IDA, 214, 216, 218–219; see also Inelastic
dynamic analysis (IDA)
Importance factor, 98, 101, 103–105, 115, 119,
185, 221, 231, 284; see also Seismic
action
classes of buildings and, 104
Incremental dynamic analysis (IDA), 218
Inelastic analysis methods, 192; see also Equivalent
SDOF systems; Nonlinear behaviour
analysis; Pushover analysis; Multi-storey
R/C building; Structural system analysis;
-D Moment resisting frame
Inelastic dynamic analysis (IDA), 214
Inelastic response spectra, 35, 101; see also
Elastic response spectra
Inertia, 50, 53, 58, 60, 63, 147, 185, 233, 237,
491, 495, 498, 501–502, 504–505,
516–517, 539, 745, 755
polar moment of, 53, 233, 491, 498
polar radius of, 58
Information for structural assessment, 634; see
also Seismic assessment and retrofitting
confidence factors, 630
core taking, 637
hammer tests, 636
knowledge levels, 634, 638
Inspection, 196, 561, 593–599, 601, 603,
605–608, 638, 661, 726, 732–733,
738; see also Post-earthquake
emergency inspection
usability classification-inspection forms, 597
Integrated analysis of superstructure and
foundation, 546
Inter-storey drifts, 122, 147, 150, 152, 183, 201,
265, 377, 416, 421, 587, 622, 640, 687
Interior anchoring, 605
inverted pendulum bearings, 738
rubber bearings, 730, 742
Inverted pendulum system, 139, 151
Isolation devices, 737, 740, 756
Isoseismic contours, 92
J
Jacketing of column and beam, 723
K
Kelvin-Voigt model, 22
maximum potential energy, 23, 26
P-u function, 23
restoring force, 22–24, 29–30, 204, 212
total force, 22, 678
viscous damping, 22, 24–25, 27–29, 35,
108–109, 113–114, 546, 622, 749
viscous damping ratio, 24, 109, 546
Knowledge levels, 634, 638
classification, 608, 637–638
L
Laminate elongation, 714
Large lightly reinforced walls, 139, 149, 159,
273–274, 484
bending with axial force, 458–459, 480,
485–487
design to shear, 485, 564
local ductility, 486, 550–552, 615, 644, 652,
657–658
rocking of, 484
Lateral inertial forces, 5
Limit states, 118, 120, 326, 630–632, 648–649,
754; see also Seismic assessment and
retrofitting
compliance criteria, 119–123, 276, 285, 630,
632–633
EC8-3/2005, 197, 305, 609, 611, 614–615,
630–632, 634, 638–639, 644, 720–722
performance requirements, 115–121, 123,
630
Lithospheric plates, 89, 91
motion system of, 91
Load cases, 80, 121, 179, 184, 323, 458
Load transfer, 126, 312, 416, 674–675, 677,
681, 688, 707, 714
anchoring of new reinforcement, 678
clamping effect of steel across interfaces,
677
compression against pre-cracked interfaces,
675
constitutive law of adhesion, 677
dowel action, 461, 674, 678
formalistic models for concrete-to-concrete
friction, 676
friction between non-metallic materials, 676
friction coefficients for masonry, 676
load transfer through resin layers, 677
monotonic and cyclic compression, 675
welding of steel elements, 679
Load vector, 191, 214
Local seismic demands, 622, 625782 Index
M
M-diagram, 269
Magnifier factor, 167; see also Behaviour factor
main requirements of concept design, 732,
see also Behaviour factor
seismic isolation horizontal level, 733
Masonry infilled frames, 158; see also Seismicresistant R/C frames
advantages and disadvantages, 179–180, 416
adverse effects on columns adjacent to, 421
Code provisions, 224, 286, 342, 355, 383,
397, 402, 411, 417, 461, 478, 481, 511
compression diagonal model, 420
design and detailing, 34, 147, 170, 421, 522,
633
forms of, 177, 295, 321, 503
irregularities, 178, 419–420, 422, 591, 640,
651–652
lateral load-displacement loops, 418
structural behaviour of, 146, 421, 451–452,
455, 476, 479, 506, 508, 521, 650
maxD, 218
Maximum bonding action balancing, 715
MDOF, 18, 23, 36–37, 40, 200, 202–206, 212,
214, 252, 614, 616–617, 621–622,
625–627, 629, see Multi-degree of
freedom (MDOF)
Medvedev, 92; see also Sponeur; Karnik scale
(MSK scale)
Metal towers, 601–602
Mexico City earthquake, 16–17, 565, 577, 581,
585, 589, 591, 653
acceleration spectra of, 16
ground stratification of Mexico City, 17
MM scale, 92, 95, see Modified Mercalli scale
(MM scale)
modal linear analysis for buildings with seismic
isolation, 754, see Modified Mercalli
scale (MM scale)
modal linear analysis for buildings with
supplemental damping, 755
Modal response spectrum analysis, 3–4, 18,
40, 100, 159, 179, 181, 189, 218, 224,
227, 239, 478, 546, 638, 646; see also
Multi-degree of freedom elastic system
analysis
CQC, 43, 227, 239, 489
modal participation, 41–42, 58, 190
natural periods and normal modes, 40
Ritz vector analysis, 191
storey and wall shears, 191
variation of correlation coefficient, 44
Modification factor, 625–626
Moment diagrams, 150, 175–176, 269, 271,
301, 321, 325, 366, 423, 475
bending moment diagram, 177, 322, 488,
563, 565, 586
M-V diagrams, 324
of frame beams, 323
of seismic actions, 325, 639
Moment-rotation, 193, 456, 645
Monotonic and cyclic compression, 675
MRF, 203, 216, 218, 735, see Moment resisting
frame (MRF)
Multi-degree of freedom (MDOF), 18; see also
Equivalent SDOF systems
equation of vibration of, 7, 205
modal deformation of, 204
N
N2 method, 215, 615–616, 629; see also
Displacement-based design (DBD)
capacity spectrum, 200, 616, 618–619, 622,
624–625, 629
demand spectra, 618–619, 623–624, 629
elastic acceleration response spectrum, 85,
89, 101, 110, 120, 620, 626, 642
equivalent SDOF elastoplastic model, 617
global target displacement, 621, 625
local seismic demands, 622, 625
performance evaluation, 202, 622, 625
transformation factor, 208, 618
unlimited elastic behaviour, 620
National Institute of Standards and Technology
(NIST), 629
Natural period, 8–11, 13–16, 18, 39, 43, 92,
112, 652
NC, 120, 199, 630–631, 633, 647–650, 655,
752, see Near Collapse (NC)
NDT, 635, 637, see Non-destructive test (NDT)
Near Collapse (NC), 120, 630, 633
compliance criteria, 119–123, 276, 285, 630,
632–633
Newton’s second law of translational motion,
52
NIST, 629, see National Institute of Standards
and Technology (NIST)
Non-linear methods of analysis, 647
Non-linear static analysis, 200, 615, 642–643,
655, see Push-over analysis
Non-linear time-history analysis, 643
Non-structural elements, 243, 282–283, 416, 652
O
Olympia tower, 144
P
P-δ curve, 200, 342; see also Inelastic analysis
methods
Partial safety factors, 80, 259, 523, 540–541,
577, 630, 634, 639
Passive energy dissipators, 90
Peak ground acceleration (PGA), 1, 16, 79, 217
Peak ground displacement (PGD), 20Index 783
Performance evaluation, 202, 622, 625
Performance levels, 116–120, 630–632; see also
Performance-based design
seismic excitation, 116, 118–120, 164, 169,
203, 288, 526–527, 565, 574, 580, 587,
589, 595, 631, 738
Performance-based design, 3, 80, 116; see also
Performance-based design
damage limitation requirement, 118
performance requirements, 79, 81, 83, 85, 87,
89, 91, 93, 95, 97, 99, 101, 103, 105,
107, 109, 111, 113, 115–121, 123, 630
seismic excitation levels, 631
PGA, 1–2, 16, 22, 67, 79, 92, 96–98, 101,
103, 113–115, 215, 217, 231, see Peak
ground acceleration (PGA)
PGD, 20, see Peak ground displacement (PGD)
Pile foundation, 526, 539, 546
Pitching effect


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Concrete Buildings in Seismic Regions
رابط مباشر لتنزيل كتاب Concrete Buildings in Seismic Regions
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Concrete Buildings in Seismic Regions
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Design of Reinforced Concrete Buildings for Seismic Performance
» كتاب Seismic Design of Reinforced and Precast Concrete Buildings
» كتاب Dynamic Behavior of Concrete and Seismic Engineering
» كتاب Guidelines for Use of Glass in Buildings
» كتاب Mechanical and Electrical Equipment for Buildings Eleventh Edition

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى كتب ومحاضرات الأقسام الهندسية المختلفة-
انتقل الى: