كتاب Invasive Mechanical Ventilation Handbook
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Invasive Mechanical Ventilation Handbook

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18761
التقييم : 34807
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Invasive Mechanical Ventilation Handbook  Empty
مُساهمةموضوع: كتاب Invasive Mechanical Ventilation Handbook    كتاب Invasive Mechanical Ventilation Handbook  Emptyالجمعة 19 فبراير 2021, 7:35 pm

أخوانى فى الله
أحضرت لكم كتاب
Invasive Mechanical Ventilation Handbook
Editors
Leo Heunks and
Marcus J. Schultz  

كتاب Invasive Mechanical Ventilation Handbook  I_m_v_10
و المحتوى كما يلي :


Table of contents
Contributors vii
Preface xiv
Get more from this Practical Handbook xvii
List of abbreviations xviii
Conflicts of interest xix
1. Physiology
Mechanisms of hypoxaemia and hypercapnia 1
Rebecca F. D’Cruz and Nicholas Hart
Respiratory mechanics 8
Guilherme Benfatti Olivato, Robert Huhle, Marcelo Gama de Abreu
and Ary Serpa Neto
Effects of invasive ventilation on the lungs 16
Irene Cavalli, Tommaso Tonetti and V. Marco Ranieri
Effects of invasive ventilation on the respiratory muscles 26
Annemijn H. Jonkman, Zhong-Hua Shi and Leo Heunks
2. Getting the basics right: artificial airway and ventilator modes
Artificial airways 33
Christian S. Bruells and Tim Frenzel
Controlled modes 43
Jakob Wittenstein, Robert Huhle and Marcelo Gama de Abreu
Partially supported modes 53
Christian Putensen and Stefan Muenster
Proportional modes 62
Michela Rauseo and Lise PiquilloudAutomated modes 74
Jean-Michel Arnal and Cenk Kirakli
3. Getting the basics right: mechanical ventilation in
specific diseases
Invasive ventilation in ARDS 81
Irene Telias, Lieuwe D. Bos and Eddy Fan
Invasive ventilation in obstructive airway disease 88
Louis-Marie Galerneau, Claude Guérin and Nicolas Terzi
Invasive ventilation in interstitial lung diseases 95
Sunil Patel, Ricardo Estêvão Gomes and Antonio M. Esquinas
4. Monitoring the ventilated patient
Monitoring oxygenation 100
Marco Giani and Giacomo Bellani
Monitoring ventilation 105
Luis Morales-Quinteros, Lluís Blanch and Antonio Artigas
Monitoring respiratory mechanics 111
Cong Lu, Nicole Philips and Lu Chen
Monitoring breathing effort 119
Heder J. de Vries and Leo Heunks
Electrical impedance tomography 129
Inéz Frerichs, Tobias Becher and Norbert Weiler
Monitoring lung aeration: lung ultrasound 136
Ezgi Ozyilmaz and Annia Schreiber
Monitoring respiratory muscles: respiratory muscle ultrasound 147
Pieter R. Tuinman and Nic TjahjadiMonitoring lung pathology: chest radiography and computed
tomography 154
Lara Pisani, Giuseppe Francesco Sferrazza Papa and Davide Chiumello
Monitoring patient–ventilator interaction 159
Candelaria de Haro, Leonardo Sarlabous, José Aquino Esperanza,
Rudys Magrans and Lluís Blanch
5. Supportive therapy and rescue strategies in hypoxaemic failure
Extracorporeal lung support 171
Christoph Fisser and Thomas Bein
Prone position in ARDS 177
Hernán Aguirre-Bermeo and Jordi Mancebo
Recruitment manoeuvres 185
Carmen Sílvia Valente Barbas and Gustavo Faissol Janot de Matos
Pulmonary vasoactive drugs 195
Luigi Camporota and Francesco Vasques
6. Inhalation therapy in ventilated patients
Inhalation therapy in ventilated patients 201
Federico Longhini and Paolo Navalesi
7. Weaning from mechanical ventilation
Weaning definition and outcome 207
Laurent Brochard, Michael Sklar and Martin Dres
Weaning protocols and automatic modes 214
Louise Rose
Failure to wean and causes for difficult weaning 221
Alexandra Beurton and Martin DresWeaning: a practical approach 227
Rebecca F. D’Cruz, Nicholas Hart and Georgios Kaltsakas
Tracheostomy 235
Elise Morawiec, Bernard Fikkers and Alexandre Demoule
Physiotherapy and speech therapy in ventilated patients 242
Rik Gosselink and Christina Iezzi
8. Technical aspects of the ventilator
Technical aspects of the ventilator 252
Frans de Jongh and Peter Somhorst
Index
A
abdominal muscle wall, ultrasound 149, 151,
151f
absorbance ratio 101, 101f
ACURASYS trial 55–56, 86
acute lung injury, potentially recruitable lung
185–186
acute respiratory distress syndrome (ARDS)
ACURASYS trial 55–56, 86
airway closure 115
airway opening pressure 115
airway resistance 10t
alveolar instability, collapse 185
alveolar recruitment optimisation 109
chest radiography 156f, 157
controlled invasive ventilation 86
vs partial ventilator support 55–56
definition, modified (based on SpO2/FIO2
ratio) 103
driving pressure (ΔP) 49, 86
increase effect 22–23
early phase
prone position use 180
ventilator settings 83–84, 85f
extracorporeal lung support 84, 172, 173,
174f
hypoxaemia
mechanism 196
refractory, almitrine in 199
invasive ventilation 81–87, 172
current considerations 86–87
impact 16
low VT 83
PEEP, setting 18, 83–84, 85f, 86, 133,
134f
risks and aims 81–83, 82f
settings 83–84, 85f
strategies, aims 83
late phase, ventilation 84
lung collapse 185, 186f
reversal, recruitment manoeuvre 187,
188, 190f
lung compliance 10t, 117
lung injury 172
lung overdistension risk 83, 84, 172
lung-protective ventilation protocol 17–18,
17f, 18t, 83
best PEEP 18, 109
lung ultrasound 139, 140t
mechanical power, inflammation 14
mild, controlled ventilation 86
moderate-to-severe
adjuvant therapies 84
PEEP setting 83–84
spontaneous breathing 86
neuromuscular blocking agents 55–56, 86
PaO
2/FIO2 2
pathophysiology 81–83, 82f, 185
prognosis, dead space measurement 109
prone position, use see prone positioning, in
ARDS
recovery phase, spontaneous breathing 87
recruitment manoeuvres 109, 185–186
see also recruitment manoeuvres
respiratory system compliance 10t
ROSE trial 56
severe
ECMO, settings 84, 173, 174f
ECMO and almitrine 199
inhaled nitric oxide 197
prone positioning see prone positioning
right ventricular failure 178
spontaneous breathing, ventilation
considerations 86–87
ultraprotective ventilation 86
vasoconstrictors and vasodilators
almitrine 198, 199
nitric oxide 196–198, 197t
rationale for 195–196
ventilation/perfusion (V'/Q') mismatch 81,
83, 172
weaning, criteria for 84
acute respiratory failure (ARF)
differential diagnosis 142, 143f
inhalation therapy 201
in interstitial lung disease 95, 97
lung ultrasound 142, 143f
adaptive pressure-controlled ventilation 74
adaptive support ventilation (ASV) 74–80, 75f,
218t
evidence and advantages 76
INTELLiVENT-ASV see INTELLiVENT-ASV
in passive patients 74, 75, 76t
principles 74, 75, 75f
settings, adjustments and monitoring 75,
76t
in spontaneously breathing patients 74, 75,
76t
for weaning 75–76
b2-adrenergic agonists 203, 204–205
aerosol therapy see inhalation therapy
(ventilated patients)
air
humidification 202, 203f, 238, 254
pressure, changing 254
pressurised, mixture 254
trapping 70
air bronchogram 140f
dynamic 139
airflow 8–9, 252–254
acute obstruction 40, 89
airway resistance calculation 9
breathing effort monitoring 121t, 122,
123f
inspiratory, optimisation 163, 256
inspiratory mismatching 161–162, 161f
low, flow starvation 114
measurement, ventilators 11
proportional assist ventilation 68
pressure difference governing 252
pressure relationship, mathematical
253–254, 257
Indexprinciples 252–254
recommendations (ventilators) 114
resistive pressure (PRES) dependent on
112, 113
starvation 114, 122, 123f
unit, on ventilator 114
waveforms
pressure-controlled ventilation 19–20,
20f
volume-controlled ventilation 19, 19f
airway
clearance, assisting/management 247–248
closure 114–115, 116f
detection 115
difficult, management 33, 35, 38
emergency management 34–35, 39–40
cricothyroidotomy 40
intubation, risks 35–36
see also intubation
obstruction, tracheotomy indication 40
occlusion pressure at 100 ms (P0.1) 121t,
122, 124f, 127
opening pressure (PAO) 20
in ARDS 115
patency
assessment, above cuff vocalisation 249
assessment before weaning 243
resistance see airway resistance (Raw)
“secured” 33
suctioning 248
airway pressure (Paw) 9, 21, 111, 114, 253
assessment for weaning 247
breathing effort monitoring 121t, 122,
123f, 247
definition 9, 112
expiratory (PEmax), measurement 247
force provided by ventilator 111, 112
ineffective inspiratory efforts 160f
measurement 112
peak (Ppeak) see peak pressure (Ppeak)
plateau (Pplat) see plateau pressure (Pplat)
pressure-controlled ventilation 19–20, 20f
proportional assist ventilation 67, 68
during spontaneous breathing 113
transpulmonary pressure (PL) estimation
21, 22, 22f
unplanned extubations 168f
volume-controlled ventilation 19, 19f
airway pressure release ventilation (APRV) 44,
45t, 47, 54t, 59–60, 60f
controlled invasive ventilation vs 60
airway resistance (RAW) 8–10, 222
in ARDs 10t
in asthma 89
calculation 9, 9f, 11
in COPD 10t, 89, 223
expiratory time constant (RCexp) calculation
75
normal 9, 10t
total, of respiratory system 9
weaning failure and 222–223, 222f
airways, artificial see artificial airways
A-lines 137, 139f, 141, 144
almitrine (almitrine bismesylate) 198–200
adverse effects 199, 200
clinical uses 197t, 199
dosage 199
evidence for actions 199
inhaled nitric oxide with 199
mechanism of action 198–199
altitude 5
alveolar–arterial gradient 2
alveolar–capillary barrier 43, 81
alveolar distending pressure 17
alveolar gas equation 2, 5
alveolar instability, in ARDS 185
alveolar oedema, protein-rich, in ARDS 185
alveolar oxygen tension (PaO2) 2
alveolar pressure (Palv) 9, 10, 11, 113, 114,
253
alveolar distending pressure, stress 17
at end-inspiration (plateau pressure)
19, 21, 44, 113
see also plateau pressure (Pplat)
positive pressure ventilation 253
alveolar recruitment see recruitment
manoeuvres
alveolar rupture 16
alveolar ventilation 3, 4
aminoglycosides 205
anaemia 102, 225
antibiotics, inhaled 205
anticholinergics 205
antimuscarinics 231
antistatic spacers 202–203
aphonia 246
apnoea, in NAVA 64
ARDS see acute respiratory distress syndrome
(ARDS)
arterial blood sampling 103
artificial airways 33–42
locations 33–34
placement 34
subglottic 40
supraglottic 33, 39–40
limitations 39–40
transglottic 33, 36, 41
tubes, types and material 33–34
types 33–34
see also intubation
artificial intelligence 258
in weaning process 211, 218, 218t
ART trial 86, 190, 191
aspiration
precautions 35
silent 246
assist-control ventilation 54t, 57, 58–59, 122
advantages/disadvantages 59
flow dyssynchrony 161, 161f
parameters modified 58–59
tidal volume 57
assisted breathing 54, 60
see also partially supported modes
assisted invasive ventilation 55
pressure-controlled ventilation 44
volume-controlled ventilation 44, 161,
161f
asthma
airway closure 115
respiratory resistance 89
severe, salbutamol 205
atelectasis 133, 134fatelectrauma 16, 83, 172
atrophy
fibres, diaphragm 27, 29
longitudinal, diaphragm 29
see also diaphragm, disuse atrophy
automated modes 74–80, 103, 257f
see also adaptive support ventilation (ASV);
closed-loop ventilation modes
automatic compensation 255
Automode 218b, 218t
auto-PEEP 49, 57
autotriggering 93, 122, 160f
B
“baby lung” concept 48, 81, 83, 86, 116–117
barotrauma 16, 83, 172
aggressive recruitment manoeuvres causing
193
bat sign 137, 139f
Bedside Lung Ultrasound in Emergency (BLUE)
protocol 137, 138f, 142
Berlin criteria 179–180, 179f
Bernoulli’s law 257
b2-agonists 203, 204–205
BetterCare system 166–167
bi-level positive airway pressure mode 45t, 47,
59–60, 60f
bilirubin, increased levels 102
biofeedback of breathing pattern 250
biotrauma 16–17, 83
biphasic positive airway pressure ventilation
45t, 47, 59–60, 60f
controlled invasive ventilation vs 60
bleeding
awake fibreoptic intubation 39
direct laryngoscopy 37
electrical impedance tomography, EELV
measurement 132
B-lines 137, 139, 139f, 140t, 142, 144
blood flow, nitric oxide effect 196
blood–gas barrier, thickening 4–5
blood gases, target, in ECMO 173, 174f, 175f
blowers 254
body mass index (BMI) 254
Bohr-Enghoff equation 109
breathing 252
frequency 122
mechanism 63
pressure and airflow 252–253
see also spontaneous breathing
breathing effort
clinical management 127–128
definition 119
high 123f, 124f, 126
clinical management 127–128
ventilator dependency 247
inappropriate, detrimental effects 120
during invasive ventilation 120
low/absent 122, 123f, 124f, 126
clinical management 127
detection 122
magnitude, factors affecting 119
monitoring 30, 119–128
by airway occlusion pressure (P0.1)
121t, 122, 124f, 127
by diaphragm electromyography 127
by diaphragm thickness 124, 125f
by oesophageal pressure 121t, 123f,
125–126
patient categories 127
rationale for 120
techniques for 120–127, 121t
by ventilator variables 121t, 122, 123f
by visual inspection 120, 121t, 122
physiological level 123f, 126
physiology 119–120
quantification 120
breath stacking (double cycling) 61, 162–163,
162f, 165f
breath-to-breath analysis 106, 109
bridging therapy
ECMO 171
nasal tubes 34
supraglottic devices 39–40
bronchodilators 201, 204–205, 223
bronchoscope 39, 41
bronchospasm 10
“BURP” manoeuvre 37
C
cannula
high-flow nasal oxygen see high-flow nasal
cannula oxygen (HFNC)
tracheal 34, 41
tracheotomy 41
capnography 2, 40, 105–109, 255
clinical applications in ICU 2, 108–109
conventional, time (TCap) 105, 106, 108
correct placement of devices/tubes
108–109
trace characteristics 108t
types 105
volumetric (VCap; SBCO2) 2, 105, 106
areas 106, 107f
cardiac output measurement 109
measurements derived from 106, 108,
109
phases 2, 106, 107f
principle and graph 106, 107f
use in ICU 108–109
carbon dioxide
alveolar 2, 3, 106
arterial partial pressure (PACO2) 2, 3
normal range 2
in obstructive lung disease 90
underestimation from PETCO
2 3
dissociation curve 3
elimination (V'CO2) 106
volumetric capnogram area 106
elimination kinetics 106
end-tidal PCO
2 (PETCO2) 2, 3, 106, 108
capnography to monitor 106, 108, 108t
INTELLiVENT-ASV 76, 77, 77f, 78t
in mild lung disease 108
trends, monitoring progress 3
extracorporeal removal (ECCO2-R) 171,
172, 173
amount removed 173
in ARDS 86
mean alveolar tension (PCO2) 106, 108mixed-expired CO2 tension (PĒCO2) 108
monitoring 2
capnography see capnography
transcutaneous 105, 109–110
partial rebreathing 109
peripheral venous PCO2 2
single-breath CO2 curve 106, 107f
transcutaneous monitoring 105, 109–110
transcutaneous tension, PtcCO2 2, 110
correlation with PACO
2 105, 109–110
earlobe sensor 109, 110f
limitations 110b
monitoring 105, 109–110
carboxyhaemoglobin 102
carboxyhaemoglobinaemia 102
cardiac dysfunction
weaning failure and 222, 223, 223f
weaning-induced 223–224, 223f
echocardiography to diagnose 224
treatment 224
cardiac output
measurements, volumetric capnography
109
prone position effect 178
cardiogenic shock 29
cardiorespiratory status, prolonged weaning
233
cardiothoracic surgery 145
catheter
central venous, malposition 155f
EAdi 63, 64
central venous catheter, malposition 155f
chamber spacers 202–203, 203f
chest radiography (bedside) 137, 154,
155–157
in ARDS 156f, 157
indications 155
limitations 155–157
role, and principal aspects 155
chest wall
compliance see compliance
compression before endotracheal suctioning
248
elastance see elastance
mechanics, oesophageal pressure and 116
stiffness, plateau pressure and 21, 22f
chlorofluorocarbon (CFC) 202
chronic obstructive pulmonary disease (COPD)
airway closure 115
airway resistance 10t, 89, 223
almitrine use 198, 199
exacerbations
monitoring, EMGpara 6
radiography limitation 155
inhalation therapy 201, 203, 204–205
anticholinergics 205
b2-agonists 203, 204–205
corticosteroids 205
invasive ventilation 91f
expiratory time 113
inhalation therapy with 203
PEEP setting 90
noninvasive ventilation 88
pathophysiology 88–90
Raw and Crs 10t
time constant 89, 89f
weaning, difficult to and NIV 230
weaning failure 223, 230
see also obstructive lung disease
Ciaglia technique 40–41
closed-loop ventilation modes 74, 103, 256,
257f
advantages 74
see also adaptive support ventilation (ASV)
C-MAC device 38
cold freon effect 202
colistin 205
communication
difficulties 248–249
restoring/facilitating 248–249
speaking valves see speaking valve
compliance 10–11
chest wall 11, 113
calculation 112t, 117
causes of elevation/reduction 114t
monitoring in passive ventilation 117
dynamic respiratory system (Cdyn) 13
lung (CL) 11–14, 113
calculation 11–12, 112t, 117
causes of elevation/reduction 114t
monitoring in passive ventilation 117
quasi-static (Cstat) 10–11
compliance, of respiratory system (CRS)
10–11, 112, 113, 253
calculation 9f, 10.11, 112t, 113
causes of elevation/reduction 114t
in COPD 10t
decreased, in ARDS 10t, 81, 185
estimation, proportional assist ventilation
68, 69, 70
expiratory time constant (RCexp) calculation
75
in interstitial lung diseases 98
monitoring during passive ventilation 113
normal 10, 10t
reference range in ventilated patients 113,
114t
stress index and 20, 21f
volume-controlled ventilation (VCV) 20
compressed gas storage 254
computed tomography (CT)
chest 137, 154, 157
recruitment manoeuvres guided by
186–187, 188f, 189f, 192f
limitations 157
role, principal aspects 157
computer control, ventilation 256, 257f
congestive heart failure 54–55
continuous mandatory ventilation (CMV) 256,
259t
continuous positive airway pressure (CPAP)
59–60, 60f
controlled invasive ventilation modes 43–52,
45t, 56
APRV see airway pressure release ventilation
(APRV)
in ARDS 55–56, 86
breathing effort 120
conventional 44
NAVA vs 66
PCV see pressure-controlled ventilation
(PCV)VCV see volume-controlled ventilation
(VCV)
high frequency jet ventilation (HFJV) 45t, 47
high frequency modes 47
high frequency oscillatory ventilation (HFOV)
45t, 47
nonconventional 47
partial ventilator support vs, in ARDS 55–56
pressure support ventilation vs 58
protective see lung-protective ventilation
time cycled mode 44, 45t, 47, 48
cor pulmonale 90
corticosteroids 229
inhaled 205
cough 209, 227, 231
efficacy 214b, 229, 243
ineffective, secretion clearance 248
Covidien PB840 259t
cricothyroidotomy, emergency 40
cuff deflation see tracheostomy
cuff leak test 229
cycling-off criteria, pressure support ventilation
57, 58f
D
dead space
instrumental 106
physiological see physiological dead space
tubing system of ventilator 106, 255
diaphragm 119–120
compliance 11
contraction 119, 252, 255–256
disuse atrophy 27–28, 29, 29f, 55
prevention, pressure support ventilation
57
prevention, training 249
dysfunction 147, 225, 226
causes 147
definition (Pet,tw) 148
detection 147–148, 225
diagnosis by ultrasound 27, 148, 152,
153, 225, 247
minimisation 255
prevalence 224–225
weaning failure 224–225, 226
weaning success 225
efficiency 127
electrical activity (EAdi) see electrical diaphragmatic activity (EAdi)
electromyography (EMGdi) 6, 127
patient–ventilator asynchrony detection
165–166
excursion, ultrasound assessment 124,
125f, 148, 150–151, 151f, 152, 247
factors influencing 152
in spontaneous breathing 150, 152
function evaluation, ultrasound 27
injury, load-induced 28–29, 29f
longitudinal atrophy 29
monitoring techniques 30
normal function 252
paralysis, ultrasound diagnosis 141, 152
protective ventilation 29–30, 29f
monitoring 30
strength assessment 26–27
noninvasive surrogate measure 27
thickening fraction (TFdi) 27, 124, 148,
149, 152, 225
intercostal approach, ultrasound
149–150, 153
thickness during inspiration/expiration 27,
124, 148
end-expiratory 27
measurement errors 124, 152
reduced, invasive ventilation 249
ultrasound 27, 124, 125f, 148,
149–150, 152, 225, 247
ultrasound image acquisition 149–150,
150f
ultrasound 27, 30, 148–149, 152–153
dysfunction diagnosis 27, 148, 152,
153, 225, 247
excursion assessment see above
hemidiaphragm 149–150, 152
image acquisition 149–151, 150f, 151f
indications 148
intercostal approach 149–150, 150f
pearls and pitfalls 152–153
positioning 152
subcostal approach 150–151, 151f, 225
thickness assessment see above
weaning outcome assessment 148–149
work of breathing assessment 149
zone of apposition, probe at 27, 29, 149,
150f, 152, 225
weakness, invasive ventilation causing 26,
27, 225
causes and mechanisms 27–29, 28f
definition and prevalence (in ICU) 26–27
disuse atrophy see diaphragm, disuse
atrophy
excessive inspiratory loading 28–29
longitudinal atrophy 29
prevention 30
sepsis and shock 29
therapeutic strategies 30–31
weaning and 225
diffusion, limitation, hypoxaemia mechanism
4–5, 4t
direct laryngoscopy 36–37
disuse atrophy, diaphragm see diaphragm
double cycling (breath stacking) 61, 162–163,
162f, 165f
Dräger Evita XL 259t
driving pressure (ΔP) 22–23, 253
in ARDS 22–23, 49, 86
high frequency oscillatory ventilation 47
lung-protective level, ECCO2-R 173
measurement 253
protective controlled ventilation 48–49
drugs
inhalation therapy see inhalation therapy
(ventilated patients)
intubation preparation 36t
pulmonary vasoactive 195–200
see also almitrine; nitric oxide
dry-powder inhalers 202
duration of invasive ventilation 148, 221, 227
diaphragm-protective protocol reducing 30
long-term, environmental influences
improving 247lung-protective protocol reducing 17
reducing, weaning criteria 209
see also prolonged invasive ventilation
dynamic pulmonary hyperinflation (DPH) 3,
88, 90
definition 88
in obstructive lung disease 88, 90, 92f, 93
dysphagia 243, 246
assessment methods 246
prevalence after extubation 246
dysphonia 246
dyspnoea
diaphragm ultrasound 153
noninvasive ventilation 21, 22
E
echocardiography, weaning-induced cardiac
dysfunction 224
elastance 10, 14, 22f, 112, 179
calculation 112t
of chest wall 179
calculation 112t
of lung 179
calculation 112t
increased, in interstitial lung disease 98
elastance-derived pleural pressure (PL) 117,
117t
elastic force 10, 12–13
elastic recoil pressure (Pel) 112, 113
elastic retraction pressure (Pelastic) 67, 68, 69
electrical bioimpedance 133
electrical diaphragmatic activity (EAdi) 30,
62, 63
amplitude, NAVA level 63, 64, 65f, 66
for monitoring patient-ventilator
asynchronies 67
electrical impedance 130
electrical impedance tomography (EIT)
129–135
basic principles 130
devices 130, 131f
examination 130–132, 130f, 135
duration 132
electrode interfaces, positioning 130f,
131–132, 131f
findings 132–135
functional images, types 133, 135
global/regional waveforms 132
monitoring invasive ventilation 132–135,
134f, 135
breath-by-breath measurement of VT
132–133
factors affecting 132–133
numerical measures, calculation 133
primary EIT images 132
recommendations/indications 130–131,
132, 135
recruitment manoeuvre monitoring 186,
191
temporary disturbances, data 132
tidal variation, VT 132
electromyography
diaphragm (EMGdi) 6, 127, 256
patient–ventilator asynchrony detection
165–166
parasternal muscles (EMGpara) 6
emergency cricothyroidotomy 40
emphysema, mediastinal 34
end-expiratory lung volume (EELV) 112, 132
in ARDS 81
EIT measurement 132–133
nebulised fenoterol effect 205
end-expiratory pressure see positive endexpiratory pressure (PEEP)
end-inspiratory hold 11, 113, 114, 115f
airway closure 115–116
plateau pressure (Pplat) measurement 11,
113, 117, 118f
see also inspiratory pause
end-inspiratory occlusion manoeuvre
plateau pressure 19, 19f
proportional assist ventilation 68, 70
end-inspiratory pressure 113
measurement 113
transpulmonary 11
see also plateau pressure (Pplat)
endotracheal suctioning 248
endotracheal tubes 33
sensors, and dead space 255
see also intubation
energy, expenditure see breathing effort
entrainment phenomenon (reverse triggering)
163, 164f, 165f
equation of motion, of respiratory system 67,
68, 253, 257
exercise
hypoxaemia during 5
see also physical activity
expiration 119–120, 149
forceful 149
passive, ventilators 255
pressure and flow 253
time/duration, in COPD 223
expiratory effort 254
expiratory flow, peak, assessment before
weaning 243
expiratory muscle(s)
recruitment 126
ultrasound assessment 149, 151, 151f
expiratory time constant (RCexp) 75
expiratory valve 69, 255
ExPRESS study 84
extracorporeal carbon dioxide removal
(ECCO2-R) 171
effects on natural (injured) lung 172
invasive ventilation strategy changed by
172–173
CO
2 removal, amount 173
settings (VT, ΔP, RR) 173
sweep gas flow 173
extracorporeal lung support 171–176
ECCO
2-R see extracorporeal carbon dioxide
removal (ECCO2-R)
ECMO see extracorporeal membrane oxygenation (ECMO)
effects on natural (injured) lung 172
strategy of invasive ventilation changed
172–173, 174f
carbon dioxide removal 172, 173
oxygenation 172, 173
weaning from 175–176, 175fextracorporeal membrane oxygenation (ECMO)
171–176
effects on natural (injured) lung 172, 176
hypoxaemia correction by 172, 173
indications 171
interstitial lung diseases 99
severe ARDS 84, 173, 174f
invasive ventilation strategy changed by
172–173, 174f
oxygenation 172, 173, 174f
“medium” flow 171
monitoring, lung ultrasound 145
risks/complications 99, 176
in spontaneous breathing (augmented) 176
target blood gases 173, 174f, 175f
veno-venous 84, 175, 176
weaning from 175–176, 175f
algorithm 175f
indications 175, 176
withdrawal trial 175
extubation(s) 207
after successful SBT 27, 149, 229–230
criteria in interstitial lung disease 99
delayed, reasons 27, 208, 211
dysphagia prevalence after 246
early, noninvasive ventilation and 230, 250
failure 148, 221–222
predictors 230
reintubation 208, 211, 230
high-flow nasal cannula oxygen after 209,
230
noninvasive ventilation after 209, 230
predictors of success 144, 152
recognition of readiness for 76, 79, 215,
217, 243
success rate, TFdi to predict 152
timing 214
unplanned 108, 163–164, 168f, 183
see also weaning from ventilator
F
fenoterol 205
fibreoptic endoscopic evaluation of swallowing
(FEES) 246
fibreoptic intubation 33, 34
awake 38–39
finger sensors, pulse oximetry 101, 102
flow see airflow
flow assist (FA) 67–68
flow dyssynchrony 161–162, 161f
flow starvation 114, 122, 123f, 161f, 162
Fluid Administration Limited by Lung
Sonography (FALLS) protocol 142
fluid overload 212
fluorescent light, pulse oximetry interference
102
forehead reflectance sensors 102
formoterol 204
functional residual capacity (FRC) 6, 88, 112,
117
G
gas exchange 1
abnormal 2, 7
in ARDS 81, 83
ECMO and ECCO
2-R 171
prone position effect 178
gas flow see airflow
gas mixture 254
gas trapping 88
Glidescope 38
gravitational forces, prone position 178
Guedel tube 34, 35f
guidewires 33, 34
H
haemodynamic response
to intrathoracic pressure 103
prone position effect 178
spontaneous breathing trial 223
haemoglobin 1
light absorption 100, 101f
Hamilton GS 259t
heart failure 211, 212
congestive 54–55
high-flow nasal cannula oxygen (HFNC) 97,
230
in interstitial lung diseases 97–98
reintubation risk reduced by 209, 230
high frequency jet ventilation (HFJV) 45t, 47
high frequency oscillatory ventilation (HFOV)
45t, 47
in ARDS 84
humidification 202, 203f, 254
tracheostomy 238
hydrofluoroalkane (HFA) 202
hypercapnia 2–3
almitrine effect 198
causes 1
mechanisms 5–6
in obstructive lung disease 90
permissive, concept 90
in protective controlled ventilation 48
V'/Q' mismatch leading to 3
hypercapnic acidosis 224
hyperinflation see lung(s), hyperinflation
hyperoxia 103
hyperventilation 3
synchronised intermittent mandatory
ventilation 61
hypoperfusion, oxygenation monitoring 102
hypotension 198
hypothermia, oxygenation monitoring 102
hypoventilation, hypoxaemia mechanism 4, 4t
hypoxaemia 1–2
almitrine effect 198
in ARDS, mechanism 196
causes 1, 3–5, 4t
compensatory mechanisms 3
diagnosis, PaO2 1
ECMO for see extracorporeal membrane
oxygenation (ECMO)
hyperventilation effect 3
life-threatening, extracorporeal support 172
low SpO2 levels 103
mechanisms 3–5, 4t
nitric oxide effect 196, 197
refractory, rescue therapy, HFOV 84
rescue, lung recruitment manoeuvres 49
hypoxia 1–2I
ideal body weight (IDW) 75
idiopathic pulmonary fibrosis (IPF) 95
acute exacerbation (AE-IPF) 97
prognosis 97
I:E ratio (inspiratory:expiratory ratio) 44
inflammation
in ARDS 81
neutrophilic 14
inflammatory mediators
activation, VILI 16–17
increase in transpulmonary pressure and 55
ventilation in interstitial lung disease 98
influenza B pneumonia, recruitment
manoeuvres 191–192, 192f
inhalation therapy (ventilated patients)
201–206
administration 201, 202–204
devices 202–204
metered dose inhalers 202–203, 202f
nebulisers 202, 202f, 203–204
drugs 203, 204–205
frequency of use in ICUs 201, 202
ventilator circuit with 202f, 203
inspiration 119, 255–256
pressure and flow, principles 8–9, 252–253
inspiration triggering/triggers 256
controlled ventilation modes 44, 47,
255–256
ineffective, pressure support ventilation
160, 160f
in COPD 93
in NAVA 63, 64, 66
neural 63, 64, 66
pneumatic 64, 66, 70
pressure assisted ventilation 57
inspiratory bias flow 47
inspiratory effort 113, 160, 254
ineffective 160–161, 160f
maximal, diaphragm excursion 148
measurement 30
optimal level to prevent diaphragm
weakness 29–30
partially supported ventilation 123f
proportional assist ventilation 63, 67, 69
in spontaneous breathing 117
sustained, double cycling 162f
trigger, controlled ventilation modes 44, 47
vigorous, adverse effects 162
weak
assessment for weaning 247
in obstructive lung disease 93
inspiratory flow, optimisation 163, 256
inspiratory flow phase
mismatching, flow dyssynchrony 161–162,
161f
pressure support ventilation 57, 58f
inspiratory muscle(s) 119
accessory 119–120
capacity, impairment 5–6
diaphragm see diaphragm
pressure (Pmus)
peak 69–70
proportional assist ventilation 63, 67,
68, 70
strength, measurement 27
inspiratory muscle training (IMT) 30–31,
249–250, 249f
device 30–31, 31f
inspiratory pause 11, 19
plateau pressure measurement 113
in pressure-controlled ventilation 48
in volume-controlled ventilation 44
see also end-inspiratory hold
inspiratory pressure
maximal see maximal inspiratory pressure
(PImax)
measurement 247
pressure-controlled ventilation 44
inspiratory rise time (IRT), pressure support
ventilation 57, 58f
inspiratory volume 10
instrumental dead space 106
intelligent ventilators 260
INTELLiVENT-ASV 74, 76–80, 217, 219
evidence and safety 79
in passive patients 77
principles 77–78
Quick Wean 218t, 219
settings, adjustments and monitoring 78,
78t
in spontaneously breathing patients 77
for weaning 78–79, 79f
intensive care unit (ICU)
artificial airways used 33
supraglottic devices 39–40
see also artificial airways
capnography applications 108–109
chest imaging 154
chest radiography 155
difficult weaning see weaning from ventilator
dysphagia assessment 246
early mobilisation 243, 244–245f
emergency intubation 35–36
inhalation therapy use 201, 202
intubation, risks 35–36
lung ultrasound 137, 139–142
physical activity 243, 244–245f
prolonged weaning see weaning from ventilator, prolonged
sedative use minimisation 56
suctioning practices 248
water swallow test 246
weakness associated, prolonged weaning
233
weaning protocol use/benefits 217
see also specific topics
intermittent mandatory ventilation (IMV) 259t
International Consensus Conference on Lung
Ultrasound 137, 138f, 144
interstitial lung disease (ILD) 5, 95–99
acute exacerbation (AE-ILD) 96–97, 99
acute presentations 95–96
chronic, acute worsening 96
de novo, acute 96
diagnostic features 95, 96
fibrotic changes 95, 98
functional decline, “percolation” concept
95, 96b
idiopathic pulmonary fibrosis 95, 97
invasive ventilation 96, 98–99
extubation 99lack of evidence-based strategies 98
lung-protective ventilation 96, 98
patient selection 96
prognosis and mortality 95, 96, 98
prognostic factors 98
lung transplantation candidates 99
lung ultrasound 137, 139
management, before invasive ventilation
high-flow nasal oxygen 97–98
noninvasive ventilation 97
oxygenation techniques 97–98
mortality 95, 97, 98
palliative care 97
interstitial syndrome 144
diffuse 139
focal 139
lung ultrasound 137, 139
intrapulmonary shunt 196
nitric oxide effect 196, 198
prone position effect 178
intrathoracic pressure 103
in COPD, weaning and 223
intubation
aspiration risk 35
difficult 35, 37, 38, 40
failed 37, 39
fibreoptic 33, 34
awake 38–39
Macintosh blade use 36–37, 37f
direct laryngoscopy 36–37
positioning 36
mask ventilation before 34
preparation before 34–35, 36t
procedure 34–36
risks 35–36
supraglottic devices, as bridging method
39–40
tube positioning 37
videolaryngoscopy 37–38
see also artificial airways
invasive ventilation 16
principle and aim 111
ipratropium bromide 205
isokinetic loading, respiratory muscles 250
J
“Jackson position” 36
jet ventilators 45t, 47
L
laryngeal injury, susceptibility 246
laryngeal masks 39, 39f
laryngeal tubes 39, 39f
laryngoscopes 37f, 38
laryngoscopy
device selection 38
direct 36–37, 38
indirect 37–38
leak compensation 258
left ventricle ejection fraction 224
left ventricle filling pressure 224
left ventricular afterload 178, 223–224
levosimendan 30
light absorption, pulse oximetry 100–101,
101f
load, respiratory muscle see respiratory muscle
load
load-induced diaphragm injury 28–29, 29f
local anesthetics, awake fibreoptic intubation
38–39
long-acting b2-agonists 204
lung(s)
aeration
decrease, causes 144
monitoring 144–145
scores, ultrasound 144
see also lung ultrasound
collapse 81
ARDS 185, 186f
indicator, negative pleural pressure 116
regions prone to, in supine position
11–12, 12f
reversal in ARDS, recruitment manoeuvre
187, 188, 190f
compliance see compliance
consolidation 137
lung ultrasound 137, 139, 140f
deflation (expiration) 255
elastance see elastance
electrical impedance 130
fibrosis
lung ultrasound 140t
see also idiopathic pulmonary fibrosis
(IPF)
hyperinflation 5, 126
dynamic 3
manual, airway clearance 247–248
ventilator, airway clearance 247–248
see also lung(s), overdistension
injury
patient self-inflicted see patient selfinflicted lung injury (P-SILI)
ventilator-induced see ventilator-induced
lung injury (VILI)
invasive ventilation effect on 16–25
see also ventilator-induced lung injury
(VILI)
overdistension 16
in ARDS 83, 84, 172
cross-over point with atelectasis, EIT
image 133, 134f
inspiratory flow mismatching 162
lung ultrasound limitation 145
plateau pressure to identify 21–22
prevention, stress index monitoring 19,
20, 21f
reduced by NAVA 66
reduced by PAV+ 70
reduced by prone positioning 178
see also lung(s), hyperinflation
pressure to insufflate (Ptot) 67, 68
recruitment see recruitment manoeuvres
single compartment model 89, 89f
sliding, ultrasound 137, 141, 144
strain, prone position effect 178–179, 180
three-compartment model 195
transplantation, in interstitial lung diseases
99
volume see lung volume
lung parenchyma 11ARDS 172
compliance 11
stress and strain, invasive ventilation 17
lung point, in ultrasound 141
lung-protective ventilation 17–18, 17f, 18t,
43, 47–49
in ARDS, study 17–18, 17f, 18t
components 43
driving pressure 48–49
inspiratory peak pressures 48
lung recruitment manoeuvres 49
PEEP role 49
plateau pressure 48
tidal volume role 48
inspiratory flow mismatching 162
in interstitial lung disease 96, 99
lung ultrasound 136–146
advantages 136
A-lines 137, 139f, 141, 144
as bedside diagnostic tool, critically ill 137,
139–142
acute respiratory failure 142, 143f
consolidation 137, 139, 140f, 144
interstitial syndrome 137, 139, 140t,
144
pleural effusion 140f, 141–142
pneumothorax 141
B-lines 137, 139, 139f, 140t, 142, 144
features 139
BLUE protocol 137, 138f, 142
conditions detected 137, 139–142, 140f,
143f
FALLS protocol 142
interpretation 137
limitations 145
machine and probe 137
method/procedure 137, 138f
as monitoring tool 142, 144–145
pulmonary aeration 144–145
pulmonary congestion 142, 144
normal lung 137
scanning methods, protocol 137, 138f
usefulness 136
in weaning from ventilator 144
lung volume
changes during tidal ventilation 13, 13f
decay during expiration, COPD/asthma 89,
89f
dynamic hyperinflation 88, 90
end-expiratory see end-expiratory lung
volume (EELV)
increase, passive ventilation 112
inspiratory 10
loss, lung compliance reduction 117
prone position effect 178–179, 180
resting 89, 112, 178
M
Macintosh blade 36–37, 37f
magnetic resonance imaging (MRI) 157
Mallinckrodt tube 33
Mandatory minute ventilation (MMV) 218b
Mandatory rate ventilation (MRV) 218b
Maquet Servo-i 259t
masks, laryngeal 39, 39f
mask ventilation 34
maximal expiratory airway pressure (PEmax),
measurement 247
maximal inspiratory pressure (PImax)
improving by inspiratory muscle training 31
measurement 27, 225, 247
mechanical insufflation–exsufflation (MIE)
231, 248
mechanical power (MP) 12–13, 13f
calculation 14, 23
monitoring, to prevent VILI 23–24
mechanical work (MW) 12–13, 13f
calculation 13, 14
expiratory/inspiratory 13, 13f
metered dose inhalers (MDIs) 202–203, 203f
drawbacks to use 202–203
ventilator circuit with 202f
methaemoglobin 102
methaemoglobinaemia 198
minute ventilation (V'E) 3, 6
adaptive support ventilation 75, 76t
increased by almitrine 198
INTELLiVENT-ASV 77
partial ventilatory support 53
minute volume, modulation, partial ventilator
support 55
mitochondria
dysfunction, diaphragm weakness 27
nitric oxide effect 196
mobilisation, early 231, 243, 247
programmes for 247
protocol 243
ranking of patients by mobility level 243,
244–245f
risk of moving vs risk of immobility 247
models/modelling
respiratory mechanics 11
single compartment 89, 89f
three-compartment 195
monitoring 120
carbon dioxide 2
COPD exacerbations, EMGpara 6
definition 120
diaphragm 30
respiratory mechanics in spontaneous
breathing 117–118, 118f
monitoring, in invasive ventilation 120–126
breathing effort see breathing effort
by chest radiography 154, 155–157
by computed tomography (CT) 154, 157
by electrical impedance tomography see
electrical impedance tomography (EIT)
future prospects 260
importance 129
in interstitial lung diseases 99
lung aeration by ultrasound see lung ultrasound
by lung ultrasound 142, 144–145
oxygenation see oxygenation
patient–ventilator interaction see patient–
ventilator interaction
to reduce VILI see ventilator-induced lung
injury (VILI)
respiratory mechanics see respiratory mechanics
respiratory muscle effort 30respiratory muscles, by ultrasound 30,
147–153
see also diaphragm
ventilation see ventilation
mortality
interstitial lung disease 95, 96, 97, 98
mechanical power association 14
recruitment manoeuvres 190, 191f
mouth, pressure changes at, ventilator
function 253, 254
mouth occlusion pressure 6
mucolytic drugs 205
multiorgan failure 29
in ARDS 82f, 83
in interstitial lung diseases 98
muscle fibres, atrophy, diaphragm weakness
27, 29
musculus transversus abdominis (TA) 149
myocardial ischaemia 224
myopathy, spontaneous breathing trial failure
224–225
N
nasal tubes 34
nasogastric tube 35
nasotracheal suctioning 248
NAVA see neurally adjusted ventilator assist
(NAVA)
nebulisers 202, 203–204, 203f
drugs used 204, 205
jet 203f, 204
performance, criteria affecting 204
ultrasonic 203f, 204
ventilator circuit with 202f
vibrating mesh 203f, 204, 205
nephrotoxicity, nitric oxide 198
neurally adjusted ventilator assist (NAVA) 30,
63–67, 127, 218b, 219
advantages 66
contraindication 64
conventional controlled ventilation vs 66
diaphragm electromyography 165–166
level 63, 64
titration procedure/setting 64
for monitoring patient–ventilator
asynchronies 67
practical use 64
pressure support ventilation (PSV) vs 66
previsualisation system 64
principles 63–64, 65f
use and limitations of 64, 66
neural respiratory drive (NRD) 3, 62, 63, 127,
255
hypercapnia mechanism 6, 6f
noninvasive marker 6
physiological biomarker 6
reverse trigger (entrainment phenomenon)
163
neuromuscular blocking agents (NMBAs) 55
ACURASYS trial (ARDS) 55–56, 86
neutrophilic inflammation 14
nitric oxide, inhaled 196–198
actions 196, 198
evidence for 196–197
mechanism 196
administration 197
adverse effects 198
with almitrine 199
dose, and monitoring 197
indications 197, 197t
nitric oxide production inhibition 198
weaning from 197, 198
noninvasive ventilation (NIV) 256
in COPD 88
for decannulation (tracheostomy) 240
differences from conventional ventilation
258
early extubation, with 230, 250
after extubation 209, 230
in interstitial lung disease 97
intolerance 231
leak compensation 258
prolonged weaning and 231
“normoxia,” target, ECMO 173
nutrition, prolonged weaning approach 233
O
obesity, lung ultrasound limitation 145
obstructive lung disease 3
airway resistance, hyperinflation 5
dynamic pulmonary hyperinflation 88, 90,
92f, 93
invasive ventilation 88–94
goal 90
pathophysiological basis 88–90
passive invasive ventilation 90, 91f, 92f
monitoring 90, 93
settings 90, 93
patient–ventilator asynchrony 93
pressure-controlled ventilation 90
pressure support ventilation 93–94
monitoring 94
settings 93
volume-controlled ventilation 90
see also chronic obstructive pulmonary
disease (COPD)
occlusion pressure 6
oesophageal balloon 125, 126f, 127
oesophageal pressure (Poes) 12, 18, 21, 22, 94
breathing effort, monitoring 121t, 123f,
125–126
changes during tidal breathing 116
decrease, breathing effort physiological/
excessive 126
increase, breathing effort 126
measurement 21, 113, 116
advanced analysis 126
method 125–126
monitoring during passive ventilation
115–117, 115fmonitoring during spontaneous breathing
117, 118f
in patient–ventilator asynchrony detection
163, 164
one-way speaking valves 248
see also speaking valve
“open-lung hypothesis” 187
organ failure
shock-related 29
see also multiorgan failure
oropharyngeal dysphagia see dysphagia
“outsucking the machine” 122, 123f
overassist, ventilator 120, 127
management 127
overdistension see lung(s), overdistension
oxidative stress, diaphragm weakness 27
oxygen
alveolar–arterial PO
2 gradient 2, 7
alveolar oxygen tension (PAO2) 2
arterial partial pressure (PaO2) 1
calculation 2
determination, V'/Q' mismatch 3
hypoventilation 4
normal range 1
prone position effect 177, 178
SpO2 relationship 103
concentration, ventilators 254
diffusion 1
fraction of inspired O2 (FIO2)
INTELLiVENT-ASV 78, 79
lung-protective ventilation protocol 17,
17f, 18t
reducing, ECMO 173
high, therapy, ECMO 172
high-flow nasal see high-flow nasal cannula
oxygen (HFNC)
PaO
2/FIO2 ratio 2, 103
criteria for spontaneous breathing trial
208
increase, by recruitment manoeuvres
188, 189f
nitric oxide improving 196
prone position in ARDS 177, 178, 178f,
182, 190–191
readiness to wean 208, 209, 215
partial pressure of inspired O2 (PIO2) 2
reduced, hypoxaemia 4t, 5
saturation, arterial (SaO2) 1
saturation, measurement 1
monitoring of ventilated patients 103
saturation measured by pulse oximetry
(SpO2) 1, 100
INTELLiVENT-ASV 76, 77, 78t, 79
monitoring oxygenation by 103
principle 100–101, 101f
target levels 103
see also pulse oximetry
SpO2/FIO2 ratio 103
oxygenation
adequate, readiness to wean 228t
almitrine increasing 199
criteria for spontaneous breathing trial 208
extracorporeal lung support improving 172,
173
improvement by prone position 178
INTELLiVENT-ASV 77f
monitoring, in invasive ventilation 100–104
plethysmographic trace 103–104
pulse oximetry (SpO2) 103
SpO2/FIO2 ratio 103
see also pulse oximetry
nitric oxide effect 196, 198
oxyhaemoglobin 102
PP
alv see alveolar pressure (Palv)
PAO see airway, opening pressure
parasternal muscles, electromyography
(EMGpara) 6
partially supported modes 53–61
benefits 53
breathing effort 120
controlled invasive ventilation vs, in ARDS
55–56
disadvantages 53
increasing use in ARDS 56
indications 53
see also specific modes (see table page 54t)
passive ventilation
definition and principle 112
respiratory mechanics monitoring see respiratory mechanics
Passy Muir speaking valve 249
patient self-inflicted lung injury (P-SILI) 120
in ARDS 83
patient triggers 44, 255
patient–ventilator interaction 159–170
assessment/detection of asynchrony 159,
164–168
automated detection algorithms
166–167
diaphragm electromyography 164, 165
oesophageal pressure tracing 164, 165
waveform analysis 164, 165
asynchrony/dyssynchrony 127, 159, 164
in ARDS 87
assessment/detection see above
classification 159
ineffective inspiratory efforts 160–161,
160f
load-induced diaphragm injury 28
in obstructive lung disease 93
occurrence, causes 159
phase 163, 166f, 167f
prolonged weaning 249
reverse triggering 163, 164f, 165f
treatment 159, 160, 163
double cycling (breath stacking) 61,
162–163, 162f, 165f
flow dyssynchrony 161–162, 161f
phase dyssynchrony 163, 166f, 167fprolonged/delayed cycling 163, 167f
reverse triggering 163, 164f, 165f
short/premature cycling 163, 165f
synchrony 28
NAVA improving 66
unplanned extubations 163–164, 168f
Paw see airway pressure (Paw)
peak expiratory flow, assessment before
weaning 243
peak pressure (Ppeak) 11, 113, 115f
calculation 9f, 113
monitoring, resistance calculation 113–114
protective controlled ventilation 48
volume-controlled ventilation 19
PEEP see positive end-expiratory pressure
(PEEP)
PEmax (maximal expiratory airway pressure)
247
pendelluft 44, 49, 114
percutaneous dilatational tracheotomy 40–41
peripheral neuropathy, almitrine causing 199,
200
PETAL Network, trial 86
phosphodiesterase-4 inhibitors 30
photodiode 101
phrenic nerve
pacing 31
stimulation 6, 26–27, 148
physical activity
benefits in long-term ventilator-dependency
247
during ICU stay 243, 244–245f
physiological dead space
increased 3
ARDS 83, 172, 185
measurements, indications/uses 109
volume calculation, capnography 109
volumetric capnogram 106
physiotherapy 242–251
aims 242
secretion clearance, prolonged weaning
231
pigmentation, skin, pulse oximetry interference
102
PImax see maximal inspiratory pressure (PImax)
PL see transpulmonary pressure (PL)
plasma, volume contraction 224
plateau pressure (Pplat) 9, 9f, 19, 21, 48
airway, volume-controlled ventilation 44
diaphragm-protective protocol of ventilation
30
estimating 21, 30, 48
levels (without injury) 48
lung overdistension identification 21–22
conditions misrepresenting 21–22, 22f
preventing, Pplat limitation 113
lung-protective protocol of ventilation 17,
17f, 48
measurement 11, 113, 117, 118f
monitoring during passive ventilation 113,
115f
monitoring during spontaneous breathing
117, 118f
monitoring during ventilation to reduce VILI
19
resistive pressure calculation 113, 114
volume-/pressure-controlled ventilation 48
platelets, nitric oxide adverse effects 198
plethysmographic trace 103–104
pleura, lung ultrasound in normal lung 137,
139f
pleural effusion 140f
chest radiography limitations 156–157
lung ultrasound 140f, 141–142
size 142
types/nature of 142
weaning failure and 224
pleural pressure (Ppl) 20, 252
body position effect 11–12, 12f, 178
changes during tidal breathing 116
elastance-derived 117, 117t
estimating 21, 116–117
lung mechanics 115f, 116
measurement 12, 113, 117
directly measured 116, 117t
minimally invasive surrogate measure
12
monitoring
during passive ventilation 116
during spontaneous breathing 117
negative, directly-measured 116
Pmus see respiratory muscle(s), pressure
generated by (Pmus)
pneumocystis pneumonia 156f
pneumonia
influenza B, recruitment manoeuvres in
191–192, 192f
pneumocystis 156f
ventilator-acquired 144, 205, 235
pneumothorax 133, 237f
decision tree, (diagnostic) 141f
lung ultrasound 141
size, ultrasound prediction 141
Poes see oesophageal pressure (Poes)
polyneuropathy, spontaneous breathing trial
failure 224–225
positive end-expiratory pressure (PEEP) 10, 49
auto- see positive end-expiratory pressure
(PEEP), intrinsic (PEEPi)
best to improve oxygenation (in ARDS) 18,
109, 173
EIT images 133, 134f
biphasic positive airway pressure 59–60
compliance (Crs) calculation 10
criteria for spontaneous breathing trial 208
“cross-over point” (overinflation/atelectasis)
133, 134f
decremental, trial 49, 50f, 133, 134f
effect on transpulmonary pressure 179
external, in total PEEP 112
high
in ARDS 49, 83, 86hyperinflation after 172, 173
INTELLiVENT-ASV 78, 78t, 79
intrinsic (PEEPi) 5, 44, 57, 59, 90, 223
b2-agonists effect 204
calculation 112t
cycling settings to reduce 223
generation, mechanism 112–113, 223
measurement 90, 91f, 93
obstructive lung disease 90, 91f, 93
longitudinal atrophy of diaphragm muscle
fibres 29
low
in ARDS, vs recruitment and PEEP
titration 190, 191, 191f
in interstitial lung disease 99
low vs high
ARDS, extracorporeal support 173
VILI and 18
lung-protective ventilation protocol 17–18,
17f, 18t, 49, 173
lung volume changes 13, 13f
mechanical power and 23, 24
minimal, spontaneous breathing trial 210,
210t
offset auto-PEEP 97
in proportional assist ventilation 69, 70
readiness to wean 208, 209, 215, 228t
setting(s)
after recruitment manoeuvre in ARDS
187–188, 188f
in ARDS 18, 83–84, 85f, 86, 133, 134f
ECMO impact on 172, 173
in obstructive lung disease 90, 93
prone position in ARDS and 179, 191
stress index and 20
titration
in ARDS 85f
in COPD 90
lung-protective ventilation 18, 49
lung ultrasound in 144
methods 49
recruitment manoeuvre 18, 186–187,
188f, 189f, 191–192, 191f, 192f, 193
total (PEEPtot) 112–113
monitoring during passive ventilation
112–113, 115f
transpulmonary (PEEPL) 11
in VCV and PCV 49
positive pressure ventilation 8, 253
post-operative lung complications 145
Ppeak see peak pressure (Ppeak)
Pplat see plateau pressure (Pplat)
predicted body weight (PBW)
calculation 17, 48
low VT in protective ventilation 17, 48, 83
recruitment manoeuvre trials 186
Pres see resistive pressure (Pres)
pressure
airflow relationship, mathematical 8–9,
253–254, 257
airway see airway pressure (Paw)
alveolar see alveolar pressure (Palv)
driving see driving pressure (ΔP)
principles 252–254
spontaneous breathing 252–253
ventilator action 253, 254
see also specific pressures
pressure-controlled ventilation (PCV) 44, 45t,
46f
airway pressure and flow waveforms 19–20,
20f, 46f
assisted 44
inspiratory peak pressure 48
lung recruitment manoeuvre 49
in obstructive lung disease 90
VCV comparison 49–50
ventilators 259t
pressure support ventilation (PSV) 53, 54t,
56–58, 58f
benefits 57
controlled invasive ventilation vs 58
cycling-off criteria 57, 58f
difficult to wean, resting on 230
high, prolonged insufflation in COPD 93
ineffective inspiratory effort 160, 160f
initiation, weaning and 227, 228
level of support 57
monitoring, in obstructive lung disease 94
NAVA comparison 66
in obstructive lung disease 93–94
parameters modulated 57–58
patient–ventilator dyssynchrony 166f, 167f
settings 57
in obstructive lung disease 93
pressure–time curves 20
pressure–time product (PTPdi) 149
pressure ulcers 183
pressure–volume curves, monitoring
recruitment manoeuvres 186, 187f, 191
prolonged invasive ventilation
ineffective inspiratory effort 160, 160f
poor patient–ventilator interaction 159
see also duration of invasive ventilation
prolonged weaning see weaning from ventilator
prone positioning, in ARDS 84, 85f, 177–184,
180–181, 181b, 182f
adverse effects/complications 84, 183
background to use of 177
benefits 84, 177
conditions to consider before 180, 180t
contraindications 180, 180t
patient eligibility criteria 179–180, 179f
physiological effects 178–179
procedure/manoeuvre for 180–181, 181b,
182f
complications 183
reasons for use 84, 177, 178, 191
recruitment manoeuvres with 191, 192f
refractory, recruitment manoeuvres
192–193
stopping, indications 182
survival improvement 177, 178, 180when to use 180, 190–191
proportional assist ventilation (PAV) 63,
67–70, 219, 256
amplitude of assistance 67–68
with load adjustable gain factor (PAV+) 68,
69, 70, 218b, 219
advantages 70
for monitoring 70
use and limitations 70
outcomes 70
practical use 69–70
principles and equations 67–69, 68f, 71
use and limitations of 70
proportional modes 62–73
automated 218b, 219
NAVA see neurally adjusted ventilator assist
(NAVA)
proportional assist see proportional assist
ventilation (PAV)
Proportional Pressure Support (PPS) 218b
prostaglandins, nebulised 205
protective invasive ventilation see lungprotective ventilation
psychological factors, prolonged weaning 233
pulmonary arterial pressure, almitrine effect
200
pulmonary congestion, monitoring by lung
ultrasound 142, 144
pulmonary embolism 109
chest radiography limitation 155
computed tomography 157
exclusion, by dead space measurement 109
pulmonary fibrosis
idiopathic see idiopathic pulmonary fibrosis
(IPF)
lung ultrasound 140t
pulmonary hypertension
almitrine effect 200
nitric oxide effect 196–197, 197t
pulmonary oedema 16, 120, 162
acute cardiogenic, lung ultrasound 140t
inflammatory, in ARDS 81
weaning-induced 212, 223–224, 223f
signs 224
pulmonary vasoactive drugs 195–200
see also almitrine; nitric oxide
pulse oximetry 1, 100, 255
accuracy 103
calibration 100
clinical benefits 100
development 100
interferences with 102
motion artefacts 102
multiwavelength 103, 104
oxygenation monitoring by 103
pitfalls 102
principles 100–101
sensors and measurement sites 101–102
signal extraction technology 102
transmission modality 101, 102
pulsus paradoxus 103
Pvent (ventilator pressure) 254
R
rapid sequence induction protocol 35
rapid shallow breathing index 208, 209, 211,
228t, 247
Raw see airway resistance (Raw)
rebreathing 106
recruitment manoeuvres 86, 120, 185–194
in acute lung injury 185–186
in ARDS 86, 185–194
as adjunctive manoeuvre 193
effects 190
optimisation 109
refractory to prone position 192–193
definition 185
effects/results 186, 186f, 190, 193
barotrauma 190, 193
lung collapse reversal 187, 188, 189f,
193
mortality 190, 191f
PaO
2/FIO2 ratio increase 188, 189f
PEEP titration with, vs low PEEP 190,
191, 191f, 192f
in influenza B multifocal pneumonia
191–192, 192f
lung-protective ventilation 49, 50f
lung ultrasound assessment 144
maximal recruitment strategy (MRS)
187–188
monitoring 186–187, 192, 193
electrical impedance tomography 186,
191
importance 186–187, 186f, 193
lung ultrasound 144
pressure–volume curves 186, 187f, 191
recommendation 191
thoracic CT 186–187, 188f, 189f, 192f
PaCO
2 in prone position and 178
PEEP levels/titration 18, 186–187, 188,
188f, 189f, 190, 191–192
PEEP settings after 187–188, 188f
percentage of recruitable lung tissue
185–186, 188
recommended method 188, 190
reduction in requirements, by extracorporeal
support 172, 173
risk factors 188
in spontaneous breathing 54
stepwise 186–187, 189–190, 190f, 193
weaning and 247–248
when to apply 190–193
reflection-mode oximeters 101–102
rehabilitation
on ICUs 247
prolonged weaning and 231, 233
respiratory muscle, before weaning 209
reintubation 208, 209, 211, 230
risk reduced by high-flow nasal cannula
oxygen 209
resistance 8–10, 13of airway see airway resistance (Raw)
estimation, proportional assist ventilation
68, 69, 70
tubing system, ventilator 255
resistance of respiratory system (Rrs) 113–114
calculation 112t, 113–114
causes of elevation/reduction 114t
reference range in ventilated patients 114t
resistive pressure (Pres) 9, 67, 68, 69, 112,
113
calculation 113
respiration, definition 252
respiratory alkalosis 61
respiratory capacity
assessment, before weaning 247
decrease, causes 224–225
weaning failure 222–224, 222f, 224–225,
230, 247
respiratory centres 62, 63, 64, 66
respiratory distress, pressure support
ventilation 23f
respiratory drive
EAdi as surrogate 63, 67, 127
in early ARDS 83
impaired, weaning failure 224
increased, EAdi 127
see also neural respiratory drive (NRD)
respiratory exchange ratio 2
respiratory failure 26, 120
acute see acute respiratory failure (ARF)
acute-on-chronic, in interstitial lung disease
95
chronic, NIV after extubation 230
hypercapnic type 2 3, 5, 6f
hypoxaemic type 1 3, 196
nitric oxide improving 196–197
ultrasound in 152
respiratory load see respiratory muscle load
respiratory mechanics 8–15, 111–112
in ARDS 81
calculations 112t
estimation, proportional assist ventilation
68
monitoring, in passive ventilation 111–117,
113
airway closure 114–115, 116f
calculations used 112t
chest wall compliance 117
compliance 113, 114t, 117
lung compliance 117
oesophageal pressure 115–117, 115f
plateau pressure 113, 115f
pleural pressure 116–117, 117t
resistance (Rrs) 113–114
total PEEP 112–113, 115f
transpulmonary pressure 115–117, 115f
volume-controlled mode 113–114, 115f
monitoring during spontaneous breathing
117–118, 118f
prone position effect 179
see also specific parameters
respiratory muscle(s) 26, 119–120
atrophy, prevention 249
breathing effort 30, 119
see also breathing effort
deterioration during invasive ventilation 26
expiratory see expiratory muscle(s)
function, assessment for weaning 247
hypercapnia mechanism 5–6, 6f
injury, excessive breathing effort 120
inspiratory see diaphragm; inspiratory
muscle(s)
intact pathway from respiratory centre 63,
64, 66
invasive ventilation effects on 26–32
in ARDS 83
minimising 26
strategies to improve function 30–31
see also diaphragm
load see respiratory muscle load
loading (training) and unloading 249–250,
255
see also inspiratory muscle training (IMT)
overloading, during weaning 249
pressure generated by (Pmus) 111–112, 254
difficulties measuring 112
monitoring mechanics in spontaneous
breathing 117
peak 69–70
proportional assist ventilation 63, 67,
68, 70
rehabilitation, before weaning 209
ultrasound monitoring 30, 147–153, 225
diaphragm see diaphragm, ultrasound
expiratory muscles 149, 151, 151f
image acquisition 149–151
pearls and pitfalls 152–153
weakness 120
PImax measurement to detect 225
weaning difficulties 212
weaning failure 224–225
respiratory muscle load 5
quantification 5
resistive or elastic 5
respiratory capacity balance 6, 6f, 222f
respiratory capacity imbalance
hypercapnic respiratory failure 5, 6f
weaning failure 222–2224, 222f, 230
respiratory muscle pump 5–6, 26
respiratory rate (RR)
adaptive support ventilation (ASV) 75, 75f
COPD 89f
ECCO
2-R 173
increased, obstructive lung disease 3
INTELLiVENT-ASV 77, 79
lowering, obstructive lung disease 90
mechanical power equation and 14, 23, 24
patient and ventilator mismatched 161f
readiness to wean 215b, 228t
respiratory system compliance see compliance
(Crs)
reverse triggering 163, 164f, 165fright-to-left shunt, V'/Q' mismatch and
hypoxaemia 5
right ventricular failure 178, 197
ROSE trial 56
S
salbutamol 204, 205
saline, instillation 248
salmeterol 204
sarcoidosis 97
SBT see spontaneous breathing trial (SBT)
secretions
assessment by fibreoptic endoscopic
evaluation of swallowing 246
clearance 243
assisting/management 247–248
prolonged weaning 231
“secured airway” 33
sedation/sedatives
interruption, weaning from ventilation 209
low respiratory drive due to 224
neuromuscular blockers, ARDS 56, 86
weaning delayed by 211
sensors
forehead reflectance 102
pulse oximetry 101–102
transcutaneous CO
2 monitoring 109, 110f
ventilators 255–256, 260
Servo I ventilators 165–166
shock, cardiogenic 29
short-acting b2-agonists 204, 205
shunt, right-to-left, V'/Q' mismatch and
hypoxaemia 5
single-breath carbon dioxide curve (SBCO2)
106
sinusoid sign 142
skeletal muscle, weakness, prolonged weaning
approach 233
SmartCare system 211, 218, 218t
soft-mist inhalers 202
spacers, large volume chamber 202, 203f
speaking valve 248–249
tracheostomy 237f, 238b, 240, 246
ventilator-dependent patients 248
specialist weaning unit (SWU) 231
speech and language therapy 242–251
aims 243
role during weaning 246
speech restoration, ventilated patients
248–249
SpO2/FIO2 ratio 103
spontaneous assisted breaths 57
spontaneous awakening 209
spontaneous breathing
in ARDS 86–87
late phase 84
recovery phase 87
diaphragm excursion, ultrasound in 150,
152
during invasive ventilation 44, 47, 54
adaptive support ventilation 74, 75, 76t
advantages 54–55
airway pressure release ventilation 44,
47
APRV/biphasic positive airway pressure
59
diaphragm atrophy prevention 29, 55
disadvantages 53, 54–55
inability to 247
interactions 55
monitoring respiratory mechanics
117–118, 118f
pressure and flow, principles 117, 247,
254
pressure support ventilation 56–58
as spontaneous assisted breaths 57
synchronised intermittent mandatory
ventilation 60
trials in ICUs 56
in nonventilated person
physiology in 54
pressure and flow 54, 252–253
tracheostomy 237f, 238b, 239
spontaneous breathing trial (SBT) 210–211,
221, 228–229, 243
clinical consequences 211
definition 210, 228
diaphragm dysfunction 29
diaphragm ultrasound 149
duration 228–229
failure 216f, 230
criteria 216f
critical illness 224–225
diaphragm dysfunction and 224–225
early detection, benefits 243
first attempt 209, 210, 212, 222
respiratory capacity decrease 224–225,
230
respiratory load increase 222–224, 222f,
230
first attempt 222
failure 209, 210, 212, 222
as form of physical exercise 223
global approach to weaning and 209
importance 208, 210
indication, criteria 208, 209, 211, 228t
modalities 210, 210t
physiological consequences 211
prediction of weaning success 211, 221,
228
readiness for extubation 76, 79, 215, 217,
243
recommended in weaning protocols 215
screening test before 208, 209
sedative use minimisation 56
settings for 216f
in simple weaning 208
SmartCare system and 211
success, defining 229
Toronto city-wide policy 216f
types 210, 210t, 228low pressure support 210, 210t, 211,
215, 221, 228, 229t
T-piece 210, 210t, 211, 215, 228, 229t
T-piece vs low PEEP 211
unsupported on ventilator 210, 210t
“Start to Move as Soon as Possible” 243,
244–245f
stiffness, of respiratory system 10
strain, lung parenchyma, invasive ventilation
17
prone position effect 178–179, 180
stress, lung parenchyma, invasive ventilation
17, 21, 22
stress index (SI) 20, 21f
stylets 34
suctioning 248
in-line system 248
intubation preparation 35, 36t
supine position 178
manoeuvre after prone positioning 182
surfactant
malfunction 16, 185
nebulised 205
swallowing, difficulties, see dysphagia
synchronised intermittent mandatory
ventilation (SIMV) 54t, 60–61
pressure-controlled 61
volume-controlled 61
syringe, insufflation 39f
T
team, for intubation 36t
teeth, damage, during intubation 37
theophylline 30
three-compartment model 195
tidal controlled invasive ventilation 12
tidal impedance, variation, EIT 133, 134f
tidal ventilation
lung volume changes 13, 13f
mechanical energy/work (MW) 12, 13f
tidal volume (VT) 11, 253, 254
adaptive support ventilation (ASV) 75, 75f
APRV/biphasic positive airway pressure 59,
60f
assist-control ventilation 58, 59
compliance calculation 9, 9f, 113
double cycling 162–163, 162f
electrical impedance tomography 132
breath-by-breath measurement
132–133, 134f
high frequency oscillatory ventilation 47
ineffective inspiratory effort 160, 160f
low
adverse effects 5, 83
ARDS, ventilation 83
tidal volume (VT)
low


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Invasive Mechanical Ventilation Handbook
رابط مباشر لتنزيل كتاب Invasive Mechanical Ventilation Handbook
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Invasive Mechanical Ventilation Handbook
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Respiratory Monitoring in Mechanical Ventilation
» كتاب Handbook of Mechanical Design
» كتاب Mechanical Engineer’s Handbook
» كتاب Mechanical Engineer’s Handbook
» كتاب Mechanical Design Handbook

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: