كتاب Applied Thermodynamics For Engineering Technologists
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com


-----------------------------------
-Warning-

This website uses cookies
We inform you that this site uses own, technical and third parties cookies to make sure our web page is user-friendly and to guarantee a high functionality of the webpage.
By continuing to browse this website, you declare to accept the use of cookies.



 
الرئيسيةالبوابةأحدث الصورالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر
 

 كتاب Applied Thermodynamics For Engineering Technologists

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 18733
التقييم : 34733
تاريخ التسجيل : 01/07/2009
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى

كتاب Applied Thermodynamics For Engineering Technologists  Empty
مُساهمةموضوع: كتاب Applied Thermodynamics For Engineering Technologists    كتاب Applied Thermodynamics For Engineering Technologists  Emptyالأحد 11 أكتوبر 2020, 11:11 pm

أخوانى فى الله
أحضرت لكم كتاب
Applied Thermodynamics For Engineering Technologists
Fifth Edition  
T. D. EASTOP , A. McCONKEY
B.Sc., Ph.D., C.Eng.,
F.I.Mech.E., F.C.I.B.S.E.,
B.Sc., Ph.D., C.Eng.,
F.I.Mech.E.
Formerly Head of the School
of Engineering at
Wolverhampton Polytechnic
Formerly Head of the
Department of Mechanical and
Industrial Engineering at
Dundee College of Technology  

كتاب Applied Thermodynamics For Engineering Technologists  A_t_d_10
و المحتوى كما يلي :


Contents
Preface
Acknowledgements
Nomenclature
xi
Kill
XV
Introduction and the First Law of Thermodynamics
1.1 Heat, work, and the system
1.2 Units
1.3 The state of the working fluid
1.4 Reversibility
1.5 Reversible work
1.6 Conservation of energy and the First Law of Thermodynamics
1.7 The non-flow equation
1.8 The steady-flow equation
Problems
1 1
269
10
11
15
17
19
23
2 The Working Fluid 27
Liquid, vapour, and gas
The use of vapour tables
The perfect gas
Problems
3 Reversible and Irreversible Processes 51
3.1 Reversible non-flow processes
3.2 Reversible adiabatic non-flow processes
3.3 Polytropic processes
3.4 Reversible flow processes
3.5 Irreversible processes
3.6 Nonsteady-flow processes
Problems
4 The Second Law 88
4.1 The heat engine 88Contents
4.2 Entropy
The T-s diagram
Reversible processes on the T-s diagram
Entropy and irreversibility
Exergy
Problems
5 The Heat Engine Cycle
5.1 The Carnot cycle
5.2 Absolute temperature scale
5.3 The Carnot cycle for a perfect gas
5.4 The constant pressure cycle
5.5 The air standard cycle
5.6 The Otto cycle
5.7 The diesel cycle
5.8 The dual-combustion cycle
5.9 Mean effective pressure
5.10 The Stirling and Ericsson cycles
Problems
6 Mixtures 147
6.1 Dalton’s law and the Gibbs-Dalton law
Volumetric analysis of a gas mixture
The molar mass and specific gas constant
Specific heat capacities of a gas mixture
Adiabatic mixing of perfect gases
Gas and vapour mixtures
The steam condenser
Problems
7 Combustion 176
Basic chemistry
7.2 Fuels
7.3 Combustion equations
7.4 Stoichiometric air-fuel ratio
7.5 Exhaust and flue gas analysis
7.6 Practical analysis of combustion products
7.7 Dissociation
7.8 Internal energy and enthalpy of reaction
7.9 Enthalpy of formation
7.10 Calorific value of fuels
7.11 Power plant thermal efficiency
7.12 Practical determination of calorific values
7.13 Air and fuel-vapour mixtures
Problems
8 Steam Cycles 234
The Rankine cycle
Rankine cycle with superheat
The enthalpy-entropy chart
The reheat cycle
The regenerative cycle
Further considerations of plant efficiency
Steam for heating and process use
Problems
9 Gas Turbine Cycles 260
9.1 The practical gas turbine cycle
9.2 Modifications to the basic cycle
9.3 Combustion
9.4 Additional factors
Problems
10 Nozzles and Jet Propulsion 287
Nozzle shape 287
Critical pressure ratio
Maximum mass flow
10.4 Nozzles off the design pressure ratio
10.5 Nozzle efficiency
10.6 The steam nozzle
10.7 Stagnation conditions
10.8 Jet propulsion
10.9 The turbojet
10.10 The turboprop
Problems
11 Rotodynamic Machinery 328
11.1 Rotodynamic machines for steam and gas turbine plant
11.2 The impulse steam turbine
11.3 Pressure and velocity compounded impulse steam turbines
11.4 Axial-flow reaction turbines
11.5 Losses in turbines
11.6 Axial-flow compressors
11.7 Overall efficiency, stage efficiency, and reheat factor
11.8 Polytropic efficiency
11.9 Centrifugal compressors
11.10 Radial-flow turbines
Problems
12 Positive Displacement Machines 381
12.1 Reciprocating compressors
12.2 Reciprocating compressors including clearance
382
388
V I IContents
12.3 Multi-stage compression
Steady-flow analysis
Rotary machines
Vacuum pumps
Air motors
Problems
13 Reciprocating Internal-combustion Engines
Four-stroke cycle
Two-stroke cycle
Other types of engine
Criteria of performance
Engine output and efficiency
Performance characteristics
Factors influencing performance
Real cycles and the air standard cycle
Properties of fuels for IC engines
13.10 Fuel systems
13.11 Measurement of air and fuel flow rates
13.12 Supercharging
13.13 Engine emissions and legal requirements
13.14 Alternative forms of IC engines
13.15 Developments in IC engines
Problems
14 Refrigeration and Heat Pumps
14.1 Reversed heat engine cycles
14.2 Vapour-compression cycles
14.3 Refrigerating load
14.4 The pressure-enthalpy diagram
14.5 Compressor type
14.6 The use of the flash chamber
14.7 Vapour-absorption cycles
14.8 Gas cycles
14.9 Liquefaction of gases
14.10 Steam-jet refrigeration
14.11 Refrigerants
14.12 Control of refrigerating capacity
Problems
15 Psychrometry and Air-conditioning
15.1 Psychrometric mixtures
15.2 Specific humidity, relative humidity, and percentage saturation
15.3 Specific enthalpy, specific heal capacity, and specific volume of
moist air
15.4 Air-conditioning systems
1Contents
Cooling towers 553
Problems
16 Heat Transfer 561
Fourier’s law of conduction
Newton’s law of cooling
The composite wall and the electrical analogy
Heat flow through a cylinder and a sphere
General conduction equation
Numerical methods for conduction
Two-dimensional steady conduction
One-dimensional transient conduction by finite difference
Forced convection
Natural convection
Heat exchangers
Heat exchanger effectiveness
Extended surfaces
Black-body radiation
The grey body
The Stefan-Boltzmann law637
Lambert’s law and the geometric factor
Radiant interchange between grey bodies
Heat transfer coefficient for radiation
Gas radiation
Further study
Problems
17 The Sources, Use, and Management of Energy 663
17.1 Sources of energy supply, and energy demands
17.2 Combined cycles
17.3 Combined heat and power (co-generation)
17.4 Energy management and energy audits
17.5 The technology of energy saving
17.6 Alternative energy sources
17.7 Nuclear power plant
Problems
Index 708
I X17$5* i
Absolute pressure, 3
Absolute temperature scale, 8, 127
Absolute zero, 7-8
Absorption refrigerator, 511-17
Absorptivity, 633
monochromatic, 634
Accelerating well (pump), 456
Ackroyd-Stuart, 138
Additives, 445
Adiabatic process, 59
free expansion, 74
irreversible flow, 75
mixing, 78, 162-6
reversible, non-flow (isentropic),
Air-fuel vapour mixtures, 228-30
Air-standard cycles, 133-45
comparison of real cycles, 447—50
diesel, 136-8
dual or mixed, 138-41
Ericsson, 145
Joule, 130-3
Otto, 135-6
Stirling, 143-5
Air-vapour mixtures, 533-42
Alcohol-petrol mixtures, 450-1
Alternative energy, 696-9
Amagat’s law, 151
Amount of substance, 40
Analogy
electrical, of conduction,
568-71
Reynolds, 603-8
Analysis
by mass (gravimetric), 148,
183-92
dimensional, 599-602
of air, 148-9
of exhaust and flue gases,
183-92
of fuels, 179
practical, of combustion products,
192-200
proximate, 178-9
ultimate, 178-9
volumetric, 150, 183-92
Apparatus dew point, 545
Applied thermodynamics
(definition), 1
Arithmetic mean radius, 574
Atmospheric nitrogen, 180
Atoms, 177
Audits (energy), 680-8
Availability, 115
Avogadro’s hypothesis, 40, 151
Axial-flow
compressor, 360-3
turbine, 346-58
Axial thrust, 346
Back pressure turbine, 255
Backward difference, 584-5, 593
Balance point (heat pump),
489-90
Barometer, 4
Bell-Coleman refrigerator, 518
Benzole, 451
Black body radiation, 633-4
Blade height (turbine), 343-6
Blade profiles, 332, 347, 354,
* I
362
Blade-speed ratio, 335
optimum, impulse stage, 337-8
optimum, reaction stage, 351-2
optimum, velocity-compounded
stage, 340-3
Blade velocity coefficient, 333
Blade velocity diagrams, 332-50
optimum operating conditions,
337, 340, 351
Blades, stator and rotor, 351
Bown-down (air motor), 412
Blower, Roots, 407-8
Boiler
capacity, 255
economizer, 254
efficiency, 254
equivalent evaporation, 255
feed pump, 235-7
fluidized bed, 669-90
preheater, 254
waste, 680
Bomb calorimeter, 223-6
Bottom dead centre, 420
Boundary of system, 2-3
Bourdon gauge, 3
Boys’ calorimeter, 227-8
Brake
mean effective pressure, 430-3
power, 429
thermal efficiency, 430-3
Brayton or Joule cycle, 130-3
Bulk temperature, mean, 601
By-pass engine, 325
59
for a perfect gas, 60-3, 103-4
for a vapour, 64-6, 103-4
throttling, 75
Admission
full, 346
partial, 343
Advanced gas-cooled reactor
(AGR), 721-2
After burning, 321-2
After-cooler, 397
Air %
conditioning, 542-53
composition of, 148-9
compressors, 381-412
molar mass of, 148
motors
reciprocating, 412-15
rotary, 415-16
pollution, 470-5, 524-8, 650-1
preheater, 254, 623
saturated, 166-7, 533-6
Air/fuel ratio
for combustion, 180-3
in C.I. engines, 441-2
in gas turbines, 282
in S.I. engines, 439-41
measurement of, 460-3
stoichiometric (chemically
correct), 182-3, 439—40
708
;;
fIndex
Calorific value of fuels, 221
gross and net, 221, 254, 450
Calorifier, 255
Calorimeters
bomb, 223-6
Boys’, 227-8
gas, 227-8
separating, 76-8
throttling, 76-8
Capacity, boiler, 255
Carbon dioxide recorder, 194
Carburation, 452-6
Carburettors
accelerating pump (well), 456
constant vacuum, 454
fixed choke, 454
S.U, 454
Carnot cycle, 125-30
perfect gas, 128-30
wet vapour, 126
work ratio, for, 128
efficiency, 126
reversed, 487
Cathode ray oscilloscope, 428
Celsius or Centigrade scale, 7
Central difference, 584-5
Centrifugal compressor, 372-5
Cetane number, 447
CFCs, 524
Change of phase, 27
Characteristic equation of state,
39-40
Charge stratification, 459-60
Chemical
energy, 2, 176, 431
equations of combustion, 180-2
reaction, 176, 180-2
Chemiluminescent analyser, 196
Choked flow, 295
CHP (cogeneration), 673-80
Clausius statement of Second Law,
fundamental loss, 283
in C.I. engines, 446-7
in gas turbines, 281-3
in S.I.*engines, 444-6
intensity, 282
mixture strength, 183
products of, 192-200
Composite streams, 694
Composite wall, 568-71
Compounded impulse turbine,
338-43
Compound engines, 468
Compression-ignition engine, 419
Compression ratio, 135
influence on performance, 442-3
Compressor stage, 396-7
Compressors, positive displacement,
382—411
reciprocating machines, 382-406
actual indicator diagram, 392
condition for minimum work,
Consumption loop, 439-40, 442
Contact factor, 545
Continuity of mass equation, 21
Continuous injection, 458-9
Control of refrigerating capacity,
528-9
Control volume and surface, 19
Convection
forced, 562, 599-610
natural, 562, 610-13
Convergent-divergent nozzle,
288-94, 299-300
Convergent nozzle, 295-8
Cooling correction (combustion),
225-6
Cooling, Newton’s law of, 565-7
Cooling towers, 553-6
Corona discharge, 463
Counter-flow heat exchanger, 614-18
Criteria of performance, 427-34
Critical
point, 28
pressure, 28
pressure ratio, 289-94
temperature, 29
temperature ratio, 291
velocity, 293
Cross-flow recuperator, 618-19
Cross-flow scavenge, 425
Curtis turbine, 339-43
Cushion air, 412
Cut-off ratio
in air motor, 413
in diesel cycle, 137
Cycle ; v :
air-standard, 133-45
Carnot, 125-30
closed, 13, 130-1
constant pressure, 130-3
definition of, 13
diesel, 136—8
dual (mixed), 138-41
dual (refrigeration), 507-11
efficiency, 89
gas refrigeration, 517-20
gas turbine, 130-3
ideal (Carnot), 125-30
Joule (Brayton), 130-3
open, 132-3
Otto, 135-6
Rankine, 235-45
refrigeration, vapour absorption,
511-17
refrigeration, vapour compression,
491-9
regenerative (steam), 248-53
reheat, 246-8
reversed heat engine, 89
reversible, 13
steam, 16-17, 234—55
thermodynamic, 13
4
402
effect of clearance, 388-96
energy balance, two stage
machine, 403-5
for refrigeration, 503-5
free air delivery, 393
ideal indicator diagram for, 389,
397
ideal intermediate pressure,
401-2
isothermal efficiency, 387-8
multi-stage compression,
396-403
volumetric efficiency, 392-6
rotary machines, 406-12, 415-16
Roots blower, 407-8
Roots efficiency, 408
vacuum pump, 411-12
vane type, 408-11
Compressors, rotary
axial flow, 360-3
centrifugal flow, 372-5
positive displacement, 382-406
Condenser (steam), 170
Conduction of heat, 561, 562-99
Fourier’s law, 562-3
general equation, 577-81
numerical methods, 584-99
radial (cylinder and sphere), 572-7
rod analogy, 587-8
through composite wall, 568-71
transient, 593-9
two-dimensional steady, 587-93
Conductivity, thermal, 563
values of, 564
Conservation of energy, 15-17
Constant pressure (Joule) cycle,
130-3
Constant pressure process, 52-4
Constant temperature process, 55-9
Constant volume combustion,
208-10, 221, 223-6
Constant volume process, 51-2
£
89
Clearance ratio, 388-9
Clearance volume, 135, 388-9
Closed cycle, 13
Closed cycle, gas turbine, 130-1
Closed feed water heater, 251-3
Closed system, 3, 16
Coefficient
blade velocity, 333
of discharge, 301
of heat transfer, 565
of performance, heat pump, 487
of performance, refrigerator, 486
of velocity, 301
Cogeneration (CHP), 673-80
Coil by-pass factor, 545
Combined cycles, 670-3
Combined heat and power, 673-80
Combustion, 176-230
basic chemistry, 177-8
by self ignition, 444
efficiency, 282
equations of, 180-2
Dalton’s law, 147
Dead centres, definitions, 420
::liH
1s
Index
Degradation of energy, 115
Degree days, 683-6
Degree of reaction, 347
half degree of, 347
Degree of super-cooling, 307
Degree of superheat, 29
Degree of supersaturation, 307
Dehumidification, 690
Delay-period, 444, 446
De Laval turbine, 330
Density, 4
Detonation, 444
Dew point, 534
Diagram efficiency, 334-5
Diagram of properties
enthalpy-concentration
(LiBr-HzO), 514
enthalpy-entropy (steam), 246
pressure-enthalpy (R134a), 502
psychrometric chart, 539
Diesel cycle, 136-8
Diesel fuel, 451
Diesel knock, 447
Diffuser, 287
Dimensional analysis, 599-602
Discharge coefficient, 301
Dissociation, 200-7, 217-19
District heating, 675-80
Dry bulb thermometer, 537
Dryness fraction, 29-30
Dual combustion cycle, 138-41
Dual fuel engine, 426
Ducted fan engine, 325
thermal, 221-3
brake, 430-3
indicated
, 431-3
volumetric, 392-6, 433-4, 504
Electrical analogy (conduction of
heat), 568-71
Electrolux refrigerator, 512-3
Emissions, 470-5
Emissive power, 633
Emissivity, 634
monochromatic, 634
Emitter, selective, 636
Energy
alternative sources, 696-9
audits, 680-8
balance (IC engine), 437-8
conservation of, 15-17
conversion, 2
degradation of, 115
demands, 664-7
equation
non-flow, 17-19
steady flow, 19-23
from waste, 680
in transition, 4
internal of reaction, 208
intrinsic, 4-5
kinetic, 19
management, 680-8
potential, 19
recovery, 688-93
reservoir, 88-9
saving, 688-96
solar, 697
sources, 663-7
total, 673
values, 682
Engine
by-pass, 325
consumption loop, 439-40, 442
criteria of performance, 427-34
dual fuel, 426
efficiency, 434-7
emissions, 470-5
energy balance, 437-8
factors influencing performance,
442-7
four- and two-stroke cycle,
421-4, 424-6
free piston, 427, 477-8
jet, 311-25
legal requirements in I.C. engines,
470-5
modern developments, 479-81
multi-fuel, 426
output and efficiencies, 434-7
performance characteristics,
437-42
compression ignition (C.I.),
441-2
spark ignition (S.I.), 439-41
rotary, 475-7
sleeve valve, 426
supercharging, 436-70
turbo-prop, 322-5
two-stroke, 424-6
vehicle, 435-6
volumetric efficiency, 433-4
Wankel, 475-7
Enthalpy, 20
and change of phase, 27, 31-2
datum of, 32
-entropy (h-s) chart), 245-6
of formation, 219-20
of mixtures, 150, 158
of moist air, 540-1
of perfect gas, 44-5
of reaction, 208-19
of vaporization, 27-9
of wet vapour, 31
specific, 20
Entropy, 90-3
and irreversibility, 109-121
as criterion of reversibility, 113-15
datum of, 93
of mixtures, 150, 159-60
of perfect gas, 96-9
of wet vapour, 93-6
specific, 92
Entry length, 609—10
Equation, flow, 19-23
Equation, non-flow, 17-19
Equation of continuity, 21
Equation of state, of perfect gas,
39-40 ; :
Equilibrium
constant, 203
metastable, 306
running, 325
thermal, 2
Equivalent evaporation, 255
Ericsson cycle, 145
Ethyl alcohol, 220, 229, 450-1
Excess air (definition), 182
Exergy, 115-21
Exhaust and flue gas analysis,
183-92
Expansion
free or unresisted, 15, 74-5
supersaturated, 305-9
throttling, 75-8
Extended surface recuperator, 621-2
Extended surfaces, 627-33
External irreversibility, 10-11
E3
0 i?
si
I!&5y* 1%%I333
if
I >
Economic thickness of insulation,
696
Economizer, 254
Effectiveness
of a heat exchanger, 274-5, 623-7
of a process, 117-21
Efficiency
air-standard, 133-75
boiler, 254
brake thermal, 430-3
Carnot, 126
combustion, 282
cycle, 89
diagram, 334-5
engine, 434-7
fin, 632
indicated thermal, 431
intake, 314
isentropic, 238, 262-3
isothermal, 387-8
jet pipe, 315
mechanical, 385, 429-30
nozzle, 301
overall, 363-4
plant, 253-5
propulsive, 312
Rankine, 235-8
ratio, 238
Roots, 407-8
stage, 364-6
i
II
is
Feed pump (boiler), 235-7
Feed water heater, open, 248-51
Feed water heater, closed, 251-3
Film temperatures, 601
Fin efficiency, 632
Finite difference (conduction),
584-99
First Law of Thermodynamics, 16
Fixed choke carburettor, 454
Flame ionization detector (FID), 196
Flash chamber, 507-11
Flow equation, 19-23
Flow meters (IC engines), 460-3
s s3 3l I •>!: KFlow processes reversible, 72-3
Flue gas analysis, 183-92
Fluidized bed boiler, 669-70
Forced convection, 599-610
Forward difference, 584-5
Fouling resistance, 620-1
Fourier’s law of conduction, 562-3
Four-stroke cycle, 421-4
Fraction
dryness, 29-30
mass, 152
volume, 153
wetness, 29-30
Free air delivery, 393
Free convection, 610-13
Free expansion, 15, 74-5
Free piston engine, 427, 477-8
Free vortex blading, 355
Friction
power, 385, 429-30
losses in turbines, 358-9
Fuel consumption, specific, 431
Fuel injection, 456-9
Fuel systems (IC engines), 452-60
Fuels, 178-9
analysis of, 179
self-ignition, 444
properties of, 179, 450-1
volatility, 451
Full admission, 346
Fundamental loss (combustion), 283
Gas turbine cycle, 260-83
dosed, 130-1
modifications to basic cycle,
269-80
open, 132-3
parallel flow, 269
practical, 260-9
pressure ratio, 131, 269-70
simple, 130-1
with heat exchanger, 273-9
with intercooling, 271-2
with reheating, 272-3
work ratio, 132
Gasifier, 477-8
Gauge, pressure, 3
Geometric factor, 641
Geometric mean radius, 576
Gibbs-Dalton law, 147
Governing
quality, 441-2
quantity, 439
Grashof number, 611
Gravimetric analysis, 148, 183-92
Greenhouse effect, 650-1
Grey body, 634-7
Gross Calorific Value (GCV), 221
general conductor equation,
577-81
through cylinder and sphere,
572-7
transient conduction, 593-9
two-dimensional steady
conduction, 587-93
Hero of Alexandria, 330
Hot-well, 243
Humidity
relative, 535
specific, 534
measurement of, 537-8
Hygrometer, 537-8
Hygrometry, 533-42
1 $% -
Ideal cycle (Carnot), 125-7, 128-30
Ignitability, 447
Ignition
advance, 444, 448-9
Cl engines, 446
delay, 444, 446
SI engines, 444, 448-9
Impeller (centrifugal compressor),
372-3
Impulse steam turbine, 332-8
Index of expansion or compression
isentropic, 61, 104
polytropic, 66
Indicated
power, 427-8
mean effective pressure, 428
thermal efficiency, 431
Indicator diagram, 427-8
Injection, fuel, 456-9
Inner dead centre, 420
Intake efficiency, 314
Intensity of radiation, 639
Intercooling, 271-2, 397-400
Internal
reversibility, 10-11, 73-4
turbine losses, 358-60
Internal-combustion engines,
419-81
brake mean effective pressure,
430-1
brake power, 429
British Standards for, 434-6
comparison with air standard
cycles, 447-50
compression-ignition, 419,
423-4, 426
criteria of performance, 427-34
consumption loops, 439-40, 442
cross-flow scavenge, 425
DIN, 434-6
detonation, 444
developments, 479-81
dual fuel, 426
energy balance, 437-8
factors influencing performance,
442-7
four-stroke cycle, 421-4
free piston, 427, 477-8
1
Half degree reaction, 347
HCFCs, 524
Heat,
definition, 2
flow, resistance to, 568
recovery, 688-93
sign convention, 5-6
transfer of, 561-651
Heat engine, 1
cycle, 88, 125-45
efficiency, 89
reversed, 88-90
Heat exchanger, 613-27
effectiveness, 623-7
fouling resistance, 620-1
recuperator, 614-18
compact, 621-2
cross flow, 618-19
extended surface, 621-2
mixed flow, 619-20
multi-pass, 619-20
parallel and counter flow, 614-18
plate, 622
plate-fin, 621, 690
number of transfer units, 623
regenerators, 621-3
thermal capacity, ratio, 624
thermal ratio, 275
Heat pipe, 692
Heat pump, 90, 486-91, 690-2
Heat transfer
by conduction, 561, 562-99
by convection, 562, 599-613
by radiation, 562, 633-51
coefficient for convection, 565
coefficient for radiation, 649-50
extended surfaces, 627-33
Gas,
calorimeter (Boys’), 227-8
constant, molar, 40
constant, specific, 40-1
power, 478
liquefaction of, 520-1
perfect, 39-47
specific heat capacities of, 42-3
radiation, 650-1
thermometer, 7-8
Gas analysis
by flame ionization (FID), 196
by infra-red spectra (NDIR),
192-4
chemiluminescent, 196-7
by magnetic method, (Ch), 195
by thermal conductivity method,
(COa), 194
by zircon cell, 196
Gas mixtures, 147-66
adiabatic mixing of perfect, 162-6
molar heat capacities, 160
molar mass, 151-7
partial pressure in, 147-8
partial volumes of, 151
specific gas constant, 151-7
specific heat capacities of, 157-62
volumetric analysis of, 150-1
with vapour, 166-73
Gas oil, 451, 682
Gas radiation, 650-1
Gas refrigeration cycle, 517-20
> •
iI a
Index
Internal-combustion engines,
continued
friction power, 429
fuel systems, 452-60
indicated mean effective pressure,
Kadenacy effect, 426
Kelvin temperature scale, 8
Kerosene, 229, 282, 451
Kinetic energy, 19
Kirchhoffs law, 634
Knock in IC engines, 444, 447
partial pressure of, 145—51
partial volume of, 150-1
psychrometric, 533-42
saturated, 166-7
specific heat capacities of, 157-62
stoichiometric, 182-3
volumetric analysis of, 150-1
Moisture content, 534
Molar gas constant, 40
Molar heat capacities, 160
Molar mass, 40, 151-7
of air, 148
of a gas mixture, 151-7
Molecules, 177
Momentum ' .
rate of change of, 329-30
thrust, 312
transfer, 603-6
Monochromatic
absorptivity, 634
emissivity, 634
Montreal protocol, 526
Morse test, 430
Multi-fuel engines, 426
Multi-pass recuperators, 619-20
Multi-stage compression, 396-403
428
indicated power, 427-8
loop-scavenge, 426
mechanical efficiency, 429
Morse test, 430
multi-fuel engine, 426
output and efficiencies, 434-7
performance characteristics,
437-42
piston speeds, 436, 443
properties of fuels for, 450-1
ramjet, 312-3
reciprocating, 419-81
self-ignition, 444
sleeve valve, 426
spark ignition, 419
specific fuel consumption, 431
stratification, 459-60
supercharging, 463-70
thermal efficiency, 430-3
timing diagrams, 422-6
torque, 429, 431, 435-6
two-stroke cycle, 424-6
uni-flow scavenge, 426
volumetric efficiency, 433-4
Willan’s line, 430
Internal energy, 17
datum for, 32
of a wet vapour, 33
of mixtures, 150, 160
of perfect gas, 43-4
of reaction, 208-19
International scale of temperature,
8, 127-8
Intrinsic energy, 4-5
Inversion temperature, 521
Inward flow turbine, 375-6
Irradiation, 643
Irreversibility, 10, 73-8
and work, 15
external and internal, 11, 73-8
in mixing processes, 78
Irreversible processes, 10, 73-8
Isentropic
efficiency, 238, 262-3
flow process, 72-3
index of expansion or
compression, 61
non-flow process, 59-66
Isothermal
efficiency, 387-8
non-flow process, 55-9, 99-103
Labyrinth gland, 359-60
Lambert’s cosine law, 639-43
Laminar flow, 602, 613
Laminar sub-layer, 604
Large-scale CHP, 675^80
Law of conservation of energy, 15-17
Law of partial volumes, 151
Laws of thermodynamics,
First Law, 16
Second Law, 89
Lead in petrol, 451, 470-1
Leduc’s law, 151
Linde process, 521
Liquefaction of gases, 520-1
Liquid metals, 608
Lithium bromide-water chart, 514
Ljungstrom
air preheater, 622-3
turbine, 376
Logarithmic mean
area, 573
radius, 573
temperature difference, 616
Loop scavenge, 426
Losses in turbines, 359-60
Natural convection, 610-3
Net Calorific Value (NCV), 221
Newtonian heating and cooling,
582-4
Newton’s law of cooling, 565-7
Non-dispersive infra-red (NDIR),
Mach number, 310
Machine cycle, 314
Management of energy, 680-8
Manifold injection, 457-9
Manometer, 4
Mass
continuity of, equation, 21
fraction, 152
Mean bulk temperature, 601
Mean film temperature, 601
Mean effective pressure, 141-2
brake, 430-3
indicated, 428
Mechanical efficiency, 385, 429-30
Metallurgical limit, 134, 270
Metastable state, 306
Micro-CHP, 673-5
Mixed-flow recuperators, 619-20
Mixing of gases, 78, 162-6
Mixture strength, 183
Mixtures, 147-73
enthalpy of, 150, 158
entropy of, 150, 159-60
gas constant of, 151-7
gravimetric analysis of, 148,
183-92
internal energy of, 150, 160
molar heat capacities of, 160
molar mass of, 151-7
of air and water vapour, 166-73
of gases, 162-6
192
Non-flow energy equation, 17-19
Non-flow exergy, 117
Non-flow process, 51-72, 99-109
irreversible, 10, 73-8, 109-15
isentropic, 59-66, 103-4
on the T-s diagram, 93-109
polytropic, 66-72, 104-9
reversible adiabatic, 59-66, 103-4
reversible constant pressure, 52-4
reversible
^
constant volume, 51-2
reversible isothermal, 55-9
Nonsteady-flow process, 78-84
NOx, 196-7, 204, 470-5
Nozzles, 287-311
choked flow in, 295-8
coefficient of discharge, 301
coefficient of velocity, 301
convergent, 295-8
convergent-divergent, 288-94,
299-300
critical pressure ratio, 289-94
critical temperature ratio, 291
critical velocity, 293
efficiency of, 300-4
maximum mass flow in, 295-8
off the design point, 298-300
pressure and velocity variations,
Jet engine, 311-25
Jet pipe efficiency, 315
Jet propulsion, 311-22
Jet refrigeration, 522
Joule cycle, 130-3
Joule’s law, 43
288
shape, 287-9
shock waves in, 298-300
712'
Index
Nozzles, continued
stagnation conditions, 309-11
steam, 304-9
supersaturation in, 305-9
Nuclear power plant, 699-701
Nuclear reactors, 699-701
Number of transfer units, 623
Numerical methods for conduction,
584-99
boundary conditions, 588-9,
594-6
choice of, 590
Crank-Nicholson, 597
errors, 586
Euler solution, 593
explicit solution, 593
Gaussian elimination, 585, 598
Guass-Siedel iteration, 586, 590
implicit solution, 596-9
matrix inversion, 585
notation, 586 ^
Nusselt number, 601
mixtures, 147-66
molar gas constant, 40
molar heat, capacities, 160
process,
non-flow, 51-72
steady-flow, 72-3
specific heat capacities, 42-3
Performance
characteristics (IC engines),
437-42
criteria (IC engines), 427-34
number, 445
ratio, 487
Petrol injection, 457-9
Pinch technology, 693
Piston speed, 436, 443
Plate heat exchanger, 622
Plate-fin heat exchanger, 621, 690
Pollution, 470-5, 524-8, 650-1
Polytropic efficiency, 368-72
Polytropic process, 66-72
Positive displacement machines,
381-416
motors, 412-6
reciprocating compressors,
382-406
rotary compressors, 406-11
vacuum pump, 411-12
Potential energy, 19
Power
brake, 429
friction, 385, 429-30
indicated, 427-8
nuclear, 699-701
shaft, 385
solar, 697
water, 698-9
wind, 698
Prandtl number, 601
Pre-ignition, 444
Pre-whirl, 374
Pressure
absolute, 3
barometric, 4
compounding,. 338-9
gauge, 3
mean effective, 141-2
brake, 430-3
indicated, 428
partial, 147
ratio
gas turbine, 131, 269-70
critical, 289-94
saturation, 29
stagnation, 309-11
thrust, 315-6
vacuum, 4
Pressure-enthalpy diagram, 502
Principle of the conservation of
energy, 15-17
Process
reversible and irreversible, 10-11,
51-73
non-flow, 51-72
nonsteady-flow, 78-84
steady-flow, 72-3
Process integration, 693
Process steam, 255-7
Products of combustion, 192-200
Properties, 9
ethyl alcohol, 220, 229
liquid and vapour, 30-1
of fuels for I.C. engines, 179,
450-1
of refrigerants, 498, 502, 505,
514, 522-3
Propulsion, jet, 311-22
Propulsive efficiency, 312
Proximate analysis, 178-9
Psychrometer, 537
Psychrometric chart, 538-40
Psychrometry, 533-42
Pulsed injection, 458-9
Pump work, 236-7
Pumping loop, 427-8
Pumping power, 606
.
I ’•{' v. V
Octane number, 445
ODP, 526
One-dimensional flow, 287
Open
cycle, 132-3, 260-1
feed heater, 248-51
system, 3, 19
Otto cycle, 135-6
Outer dead centre, 420
Outward-flow radial turbine, 375
Overexpansion, 298
Overall efficiency, 363-8
Overall heat transfer coefficient, 567
Oxides of nitrogen, 470-6
Oxygen
in air, 148-9
in combustion products, 183-92
in fuels, 179 iXrecorders, 195
Ozone depletion potential (ODP),
Quality governing, 441-2
Quantity governing, 439
Radial-flow turbine, 375-6
Radiation, 562, 633-51
absorptivity, 633
black body, 633-4
emissive power, 633
emissivity, 634
from gases, 650-1
geometric factor, 639-43
grey body, 634-7
heat transfer coefficient, 649-50
intensity, 639
irradiation, 643
KirchhofFs law, 634
Lambert’s cosine law, 639
radiosity, 643
reflectivity, 633
selective emitter, 636
Stefan-Boltzmann law, 637-9
transmissitivity, 633
wavelength, 635
Wien’s law, 635
Radiosity, 643
Ram effect, 313
Ram-jet engine, 312-13
Rankine cycle, 235-45
with superheat, 243-5
Rateau turbine, 338-9
Ratio
air/fuel, 180-3, 282, 439-42,
460-3
blade-speed, 335
clearance, 388-9
compression, 135
critical pressure, 289-94
critical temperature, 291
cut-off, 137, 413
efficiency, 238
of specific heats, 45
:
.;b
b
526
Ozone layer, 525
Paddle-wheel work, 5
Parallel-flow recuperators, 614-8
Paramagnetic gas analysis, 195
Parson’s turbine, 346-7
Partial admission, 343
Partial pressure, 147
Partial volumes, 150-1
Pass-out turbine, 255
Path of a process, 10
Percentage saturation, 536
Perfect gas, 39-47
characteristic equation of state,
39-40
enthalpy, 44-5
entropy, 96-7
gas constant, 40-1
internal energy, 43-4
Joule’s law, 43-4Ratio, continued
pressure, 131, 269-70
work, 128
Reaction
chemical, 176, 180-2
degree of, 347
turbine, 330-1, 346-58
Reactors
advanced gas cooled, 700-1
Magnox, 699-700
pressurized water, 701
Reciprocating
air motor, 412-14
compressor, 382-406
I.C. engine, 419-81
Recuperator, 614-21
Reflectivity, 633
Refrigerants, 522-8
Refrigeration and heat pumps,
485-529
coefficient of performance, 486-7
compressor type, 503-7
control, 528-9
dual cycles, 507-11
Electrolux, 512-13
flash chamber, 507-11
gas cycles, 517-20
load, 499-500
pressure-enthalpy diagram, 501-3
steam jet, 522
throttle yalve, 491
undercooling, 492
vapour absorption, 511-17
vapour compression, 491-9
Refrigerating effect, 485
Regenerative cycle, 248-53
Regenerator
rotating matrix, 622-3
stationary matrix, 621-2
Regnault and Pfaundler’s
correction, 225-6
Reheat
factor, 365-8
\ gas turbine cycle, 272-3
steam cycle, 246-8
Relative atomic mass, 40
Relative humdity, 535
Relative molecular mass, 40
Reservoir of energy, 88-9
Resistance to heat flow, 568-9
Reversibility, 10-11
and chemical reaction, 180
and heat, 11, 16
and mixing, 78, 110-11, 162-3
and work, 11-15
criteria of, 10-11
internal and external, 11, 73-4,
113-15
Reversible heat engine, 89, 486-7
Reversible processes,
non-flow, 51-72
nonsteady-flow, 78-84
steady-flow, 72-3
Reynolds analogy, 603-8
Reynolds number, 601
Rich mixture, 182
Room ratio line, 544
Roots blower, 407-8
Rotadynamic machinery, 328-76
Rotary
air compressor, 406-11
air motor, 415-16
engine, 475-7
Rotating matrix, 622-3
Rumble or pounding, 446
Run-around coil, 689
State, 9
equation of, 39-40
Steady conduction of heat, 562-76
Steady flow, 72-3
energy equation, 19-23
exergy, 117
mixing, 78
processes, 72-3
Steam
condenser, 170-3
consumption, 238-9
cycle, 16-7, 234-55
diagram of properties, 246
for heating and process work, 255-7
jet refrigeration, 522
nozzle, 304-9
tables of properties, 30-9
turbines, 332-54
Stefan-Boltzmann law, 637-9
Stirling cycle, 143-5
Stoichiometric air/fuel ratio, 182-3
Stratification, 459-60
S.U. carburettor, 454
Sub layer, laminar, 604
Summer air conditioning, 543-6,
550-2
Supercharging, 463-70
Supercooling, degree of, 307
Superheat
degree of, 29
tables, 30-9
Supersaturation, 305-9
Surroundings, 4, 10-11
Swept volume, 142, 389-90, 433
System, 2
closed, 3
open, 3
3*
Il I 8 5>I
Sankey diagram, 668-9
Saturated
air, 166-7, 533-6
liquid and vapour, 28-9
mixture, 166-7
Saturation pressure and
temperature, 28-9
Scavenging, 425-6
Second Law of Thermodynamics,
88-121
and chemical reaction, 202
statements, 89
Secondary injection, 457
Selective emission, 636
Self-ignition, 444
Shear stress in fluid, 604
Shock-wave, 298
Sleeve valve, 426
Sling psychrometer, 538
Slip factor, 374
Small-scale CHP, 673-5
Smog, 470
Smoke limit, 442
Solar energy, 697
Solid angle, 640
Sonic velocity, 292
Sources of energy, 663-7
Spark-ignition engine, 419
Specific enthalpy of moist air,
540-1
Specific enthalpy of vaporization,
27-9
Specific fuel consumption, 431
Specific heat capacities
of gas mixtures, 157-62
of gases, 42-7
of moist air, 541-2
ratio of, 45
Specific humidity, 534
Specific steam consumption, 238-9
Specific volume, 4
of moist air, 542
of wet vapour, 32
Stage
compressor, 396-7
efficiency, 364-8
impulse, 338
reaction, 346-7
turbine, 338
Stagnation conditions, 309-11
Stanton number, 605
5 1 1 I
Tables of properties,
air, 148-9
refrigerants, 498, 505
steam, 30-9
Temperature
absolute, 8, 127
bulk mean, 601
Celsius (centrigrade), 7
critical, 29
dew point, 534
equivalent of velocity, 309
film, 601
international scale, 8, 127-8
Kelvin, 8
measurement, 7-8
of inversion, 521
saturation, 28-9
thermodynamic, 127
wet- and dry-bulb, 537
zero, absolute, 8
Temperature-entropy diagram, 93-9
Thermal conductivity, 563
Thermal efficiency, 221-3
brake, 430-3
indicated, 431
power plant, 221
I :Index
n.
'B.MM ?-1
Thermal equilibrium, 2
Thermal ratio, 275
Thermal resistance, 568-9
Thermal wheel, 689
Thermodynamic properties, 9
Thermodynamics
definition of, 1
first law of, 15-23
second law of, 2, 88-121
Thermometer
constant pressure gas, 7-8
constant volume gas, 7-8
wet- and dry-bulb, 537
Throttle valve in refrigeration, 491
Throttling, 75-8, 109-10
calorimeter, 76-7
Thrust
axial, 346
momentum, 312
pressure, 315-16
Timing diagram for I.C engine,
422-5
Ton of refrigeration, 499
Top dead centre, 420
Torque, 429, 435-6
Total energy concept, 673
Transient conduction, 593-9
Turbine
axial flow, 330-1, 346-58
back pressure, 255
blade height, 343-6
blade profiles, 332, 347, 354
blade-speed ratio, 335
blade velocity coefficient, 333
blade velocity diagrams, 332-50
compounded, 338-43
Curtis, 339-43
degree of reaction, 347
de Laval, 330
efficiency, 242, 358-60
extraction (or pass-out), 255
friction losses, 359
gas, 260-83
impulse, 329-46
inward-flow radial, 375-6
leakage losses, 359-60
Ljungstrom, 376
multi-stage, 338-43, 346-53
outward-flow radial, 375
Parson’s, 346
pressure compounded, 338-9
Rateau, 338-9
reaction, 330-1, 346-58
velocity compounded, 339-43
Turbo-blower, 466
Turbo-charging, 466-70
Turbo-jet engine, 314-22
Turbo-prop engine, 322-5
Turbulent flow, 602
Two dimensional steady
conduction, 587-93
Two-property rule, 9
Two-row turbine stage, 340-1
Two-stage compressor, 397-402
Two-stroke cycle, 424-6
coefficient of, 301, 333
compounded turbine, 339-46 I
head, 310
jet, 311
of sound, 292
of whirl, 333
relative, 330
Vienna convention, 526
Viscosity
dynamic, 599
kinematic, 599
Volatile matter, 178-9
Volatility (fuel), 451
Volume
molar, 40
partial, 150
specific, 4
Volumetric analysis, 150, 183-92
Volumetric efficiency,
gas compressor, 392-6
IC engine, 433-4
Vortex blading, 355
Ultimate analysis, 178-9
Undercooling, 492-3
Underexpansion, 298
Units, 6
Unresisted or free expansion, 15,
74-5
Wankel engine, 475-7
Waste heat boiler, 680
Water power, 698-9
Weak mixture, 182
Wet- and dry-bulb temperatures, 537
Wet bulb depression, 538
Wet vapour, 28
Whirl velocity, 333
Wind power, 698
Wien’s law, 635
Willan’s line, 430
Winter air conditioning, 546-50,
552-3
Work, 4-6
paddle wheel, 5
ratio, 128
reversible, 11-15
sign convention, 5-6
Work done factor, 363
Working fluid, 9, 27-47
liquid-vapour, 27-39
perfect gas, 39-47
superheated vapour, 29, 34-9
Vacuum pumps, 411-12
Valve timing diagrams, 422-5
Vane pump or compressor, 408-11
Van’t Hoff equilibrium box, 200-1
Vaporization, specific enthalpy of,
27-9
Vapour
dry saturated, 28
ethyl alcohol, 220, 229, 450-1
petrol, 450-1
superheated, 29
tables, use of, 30-9
wet, 28
Vapour absorption refrigerator,
511-17
Vapour compression refrigerator,
491-9
Vehicle engines, 435-6
Velocity
absolute steam, 329
blade, 330
Zirconia cell, 196


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Applied Thermodynamics For Engineering Technologists
رابط مباشر لتنزيل كتاب Applied Thermodynamics For Engineering Technologists
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Applied Thermodynamics For Engineering Technologists
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1
 مواضيع مماثلة
-
» كتاب Applied Thermodynamics
» حل كتاب Thermodynamics: an Engineering Approach - Solutions Manual
» كتاب Engineering Thermodynamics
» كتاب Thermodynamics - An Engineering Approach
» كتاب Thermodynamics - An Engineering Approach

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى كتب ومحاضرات الأقسام الهندسية المختلفة-
انتقل الى: