Admin مدير المنتدى
عدد المساهمات : 18984 التقييم : 35458 تاريخ التسجيل : 01/07/2009 الدولة : مصر العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
| موضوع: كتاب Introduction to Radar Using Python and MATLAB الإثنين 20 مارس 2023, 6:13 am | |
|
أخواني في الله أحضرت لكم كتاب Introduction to Radar Using Python and MATLAB Andy Harrison
و المحتوى كما يلي :
Contents Preface xiii 1 Introduction 1 1.1 History of Radar . 1 1.2 Radar Classification . 2 1.2.1 Frequency Band 2 1.2.2 Waveform . 3 1.2.3 Application . 3 1.2.4 Configuration . 4 1.3 Accompanying Software 6 1.3.1 Python 7 1.3.2 MATLAB . 9 Problems . 9 References . 12 2 Electromagnetic Fields and Waves 15 2.1 Maxwell’s Equations 15 2.2 Time Harmonic Electromagnetics 17 2.3 Electromagnetic Boundary Conditions . 18 2.3.1 General Material Interface . 18 2.3.2 Dielectric Interface . 19 2.3.3 Perfect Electric Conductor Interface 20 2.3.4 Perfect Magnetic Conductor Interface 20 2.3.5 Radiation Condition 20 2.4 Wave Equations and Solutions . 21 2.4.1 Scalar and Vector Potentials . 21 2.4.2 Fields Due to Sources 23 2.4.3 Source Free Fields 24 2.5 Plane Waves . 24 vvi Introduction to Radar Using Python and MATLAB 2.5.1 Plane Waves in Lossless Media 25 2.5.2 Plane Waves in Lossy Media 27 2.5.3 Plane Waves in Low-Loss Dielectrics . 29 2.5.4 Plane Waves in Good Conductors . 30 2.6 Plane Wave Reflection and Transmission 31 2.6.1 Perpendicular Polarization . 32 2.6.2 Parallel Polarization 36 2.6.3 Brewster Angle . 38 2.6.4 Critical Angle . 38 2.7 Tropospheric Refraction 39 2.7.1 Apparent Elevation . 41 2.7.2 Apparent Range 42 2.7.3 Beam Spreading 43 2.7.4 Ducting . 43 2.8 Earth Diffraction 44 2.8.1 Case 1: d ≥ dlos 45 2.8.2 Case 2: d < dlos 47 2.9 Plane Wave Attenuation 48 2.9.1 Atmospheric Attenuation 48 2.9.2 Attenuation in Vegetation 49 2.9.3 Rain Attenuation . 51 2.9.4 Cloud and Fog Attenuation 52 2.10 Examples 54 2.10.1 Plane Wave Propagation . 54 2.10.2 Reflection and Transmission . 55 2.10.3 Tropospheric Refraction . 56 2.10.4 Earth Diffraction . 58 2.10.5 Attenuation . 60 Problems . 64 References . 65 3 Antenna Systems 67 3.1 Antenna Parameters . 67 3.1.1 Radiation Pattern . 67 3.1.2 Beamwidth 70 3.1.3 Power Density 71 3.1.4 Radiation Intensity . 72 3.1.5 Directivity 73 3.1.6 Gain . 75 3.1.7 Bandwidth 76 3.1.8 Polarization . 76 3.2 Antenna Types . 79Contents vii 3.2.1 Linear Wire Antennas 79 3.2.2 Loop Antennas . 82 3.2.3 Aperture Antennas . 86 3.2.4 Horn Antennas 94 3.2.5 Antenna Arrays . 100 3.3 Examples 111 3.3.1 Finite Length Dipole . 111 3.3.2 Circular Loop . 112 3.3.3 Rectangular Aperture 113 3.3.4 Circular Aperture . 115 3.3.5 Pyramidal Horn . 116 3.3.6 Tschebyscheff Linear Array . 116 3.3.7 Planar Array 118 3.3.8 Circular Array 119 Problems . 120 References . 122 4 The Radar Range Equation 123 4.1 Hertzian Dipole . 123 4.1.1 Radiated Power . 125 4.1.2 Radiation Intensity . 126 4.1.3 Directivity and Gain 126 4.2 Basic Radar Range Equation . 127 4.2.1 Maximum Detection Range 130 4.2.2 Noise 130 4.2.3 Losses . 131 4.2.4 Radar Reference Range and Loop Gain . 131 4.3 Search Radar Range Equation 132 4.4 Bistatic Radar Range Equation . 135 4.4.1 Maximum Detection Range 137 4.5 Examples 139 4.5.1 Hertzian Dipole . 139 4.5.2 Basic Radar Range Equation 139 4.5.3 Search Radar Range Equation . 144 4.5.4 Bistatic Radar Range Equation 146 Problems . 150 References . 151 5 Radar Receivers 153 5.1 Configurations . 153 5.2 Noise . 155 5.3 Dynamic Range . 157viii Introduction to Radar Using Python and MATLAB 5.4 Bandwidth . 159 5.5 Gain Control . 160 5.6 Filtering 162 5.7 Demodulation . 165 5.7.1 Noncoherent Detection . 166 5.7.2 Coherent Detection . 167 5.8 Analog-to-Digital Conversion 169 5.8.1 Sampling 169 5.8.2 Quantization 170 5.9 Digital Receivers 172 5.9.1 Direct Digital Downconversion 173 5.9.2 Hilbert Transform 174 5.10 Examples 176 5.10.1 Sensitivity Time Control . 176 5.10.2 Noise Figure 177 5.10.3 Receiver Filtering 177 5.10.4 Noncoherent Detection . 178 5.10.5 Coherent Detection . 179 5.10.6 Analog-to-Digital Conversion . 179 5.10.7 Analog-to-Digital Resolution 180 Problems . 182 References . 183 6 Target Detection 185 6.1 Optimal Detection . 185 6.1.1 Neyman-Pearson Lemma 187 6.1.2 Noncoherent Detection . 188 6.1.3 Coherent Detection . 190 6.2 Pulse Integration 193 6.2.1 Coherent Integration . 194 6.2.2 Noncoherent Integration . 194 6.2.3 Binary Integration 197 6.2.4 Cumulative Integration . 198 6.3 Fluctuating Target Detection . 198 6.3.1 Swerling 0 202 6.3.2 Swerling I . 204 6.3.3 Swerling II 205 6.3.4 Swerling III . 205 6.3.5 Swerling IV . 207 6.3.6 Shnidman’s Equation . 209 6.4 Constant False Alarm Rate . 212 6.4.1 Cell Averaging CFAR 213Contents ix 6.4.2 Cell Averaging Greatest of CFAR . 214 6.4.3 Censored Greatest of CFAR . 216 6.4.4 Cell Averaging Smallest of CFAR . 218 6.4.5 Ordered Statistic CFAR 218 6.4.6 Cell Averaging Statistic Hofele CFAR 219 6.5 Examples 221 6.5.1 Probability Distributions . 221 6.5.2 Detection Probability with Gaussian Noise . 221 6.5.3 Detection Probability with Rayleigh Noise . 222 6.5.4 Single Pulse signal-to-noise . 224 6.5.5 Binary Integration 224 6.5.6 Optimum Binary Integration . 225 6.5.7 Coherent Pulse Integration . 226 6.5.8 Noncoherent Pulse Integration . 227 6.5.9 Shnidman’s Approximation 228 6.5.10 Constant False Alarm Rate 229 Problems . 232 References . 233 7 Radar Cross Section 235 7.1 Definition 235 7.1.1 Angle Variation . 236 7.1.2 Frequency Variation 236 7.1.3 Polarization Variation 238 7.2 Scattering Matrix 239 7.3 Scattering Mechanisms . 242 7.4 Prediction Methods . 243 7.4.1 Analytical Techniques 243 7.4.2 Numerical Techniques . 259 7.4.3 Measurement Techniques 280 7.5 Radar Cross-Section Reduction 286 7.5.1 Shaping . 287 7.5.2 Radar Absorbing Material . 287 7.5.3 Passive Cancellation . 287 7.5.4 Active Cancellation 288 7.5.5 Electronic Countermeasures . 288 7.6 Examples 288 7.6.1 Two-Dimensional Strip 288 7.6.2 Two-Dimensional Cylinder 289 7.6.3 Two-Dimensional Cylinder Oblique Incidence . 290 7.6.4 Rectangular Plate . 290 7.6.5 Stratified Sphere 291x Introduction to Radar Using Python and MATLAB 7.6.6 Circular Cone . 292 7.6.7 Rounded Nose Cone . 294 7.6.8 Frustum . 294 7.6.9 Physical Optics . 295 7.6.10 Finite Difference Time Domain Method 298 Problems . 302 References . 303 8 Pulse Compression 309 8.1 Range Resolution . 309 8.2 Stepped Frequency Waveforms . 311 8.3 Matched Filter . 315 8.4 Stretch Processing . 320 8.5 Windowing 326 8.6 Ambiguity Function . 327 8.6.1 Single Unmodulated Pulse . 329 8.6.2 Single LFM Pulse 331 8.6.3 Generic Waveform Procedure . 333 8.7 Phase-Coded Waveforms . 335 8.7.1 Barker Codes . 336 8.7.2 Frank Codes 338 8.7.3 Pseudorandom Number Codes . 338 8.8 Examples 341 8.8.1 Stepped Frequency Waveform . 341 8.8.2 Matched Filter 342 8.8.3 Stretch Processor . 343 8.8.4 Unmodulated Pulse Ambiguity 344 8.8.5 LFM Pulse Ambiguity . 344 8.8.6 Coherent Pulse Train Ambiguity 346 8.8.7 LFM Pulse Train Ambiguity . 348 8.8.8 Barker Code Ambiguity 350 8.8.9 PRN Code Ambiguity 354 8.8.10 Frank Code Ambiguity . 356 Problems . 358 References . 359 9 Target Tracking 361 9.1 Tracking Filters 361 9.1.1 Alpha-Beta Filter . 362 9.1.2 Alpha-Beta-Gamma Filter . 366 9.1.3 Kalman Filter . 371 9.2 Multitarget Tracking 381Contents xi 9.2.1 Global Nearest Neighbor . 383 9.2.2 Joint Probabilistic Data Association . 385 9.2.3 Multiple Hypothesis Tracker 389 9.2.4 Random Finite Set 393 9.3 Measurement Model 394 9.4 Examples 396 9.4.1 Alpha-Beta Filter . 396 9.4.2 Alpha-Beta-Gamma Filter . 397 9.4.3 Kalman Filter: Constant Velocity 399 9.4.4 Kalman Filter: Constant Acceleration . 401 9.4.5 Adaptive Kalman Filter: Epsilon Method 403 9.4.6 Adaptive Kalman Filter: Sigma Method 408 Problems . 410 References . 411 10 Tomographic Synthetic Aperture Radar 413 10.1 Tomography . 413 10.1.1 History 413 10.1.2 Line Integrals and Projections . 416 10.1.3 SAR Imaging . 422 10.1.4 Three-Dimensional Tomography 424 10.2 Examples 431 10.2.1 Two-Dimensional 432 10.2.2 Three-Dimensional . 436 Problems . 440 References . 441 11 Countermeasures 443 11.1 Passive Jamming 443 11.1.1 Chaff 443 11.1.2 Passive Deception 446 11.2 Active Jamming . 447 11.2.1 Continuous Noise 447 11.2.2 Active Deception . 453 11.3 Digital Radio Frequency Memory 456 11.4 Examples 457 11.4.1 Jammer to Signal: Self-Screening . 457 11.4.2 Jammer to Signal: Escort 458 11.4.3 Crossover Range: Self-Screening . 459 11.4.4 Crossover Range: Escort 460 11.4.5 Burn-Through Range: Self-Screening 462 11.4.6 Burn-Through Range: Escort . 462xii Introduction to Radar Using Python and MATLAB 11.4.7 Moving Target Indication . 463 Problems . 464 References . 465 About the Author 46 Index Index Allan Cormack, 414 Ambiguity function, 327 Barker codes, 336 Frank codes, 338 generic waveform, 333 LFM pulse, 331 PRN codes, 338 balance property, 340 correlation property, 341 run property, 341 unmodulated pulse, 329 Analog-to-digital conversion, 169 effective number of bits, 172 quantization, 170 sampling, 169 Antenna bandwidth, 76 beamwidth, 70 directivity, 73 effective aperture, 129 gain, 75 lobes, 68 pattern, 67 pattern cuts, 68 pattern multiplication, 102 polarization, 76 polarization loss factor, 77 polarization mismatch, 77 radiation intensity, 72 radiation zones, 69 sidelobe level, 68 Antenna types aperture, 86 array, 100 Hertzian dipole, 123 horn, 94 linear wire, 79 loop, 82 Automatic gain control, 155 Brewster angle, 38 Cassini ovals, 137 Cauchy-Schwarz, 317 Christian Hulsmeyer, 1 ¨ Constant false alarm rate, 212 cell averaging, 213 cell averaging greatest of, 214 cell averaging smallest of, 218 censored greatest of, 216 ordered statistic, 218 statistic Hofele, 219 Countermeasures, 443 active jamming, 447 active deception, 453 471472 INDEX burn-through range, 451 continuous noise, 447 cross-eye, 455 crossover range, 451 ERP, 450 escort, 450 inverse gain, 455 jammer-to-signal, 450 RGPO, 453 self-screening, 450 VGPO, 454 DRFM, 456 MTI, 445 blind speed, 446 passive jamming, 443 chaff, 443 passive deception, 446 STAP, 452 Critical angle, 38 Detection, 185 coherent, 190 error function, 189 false alarm rate, 186 Neyman-Pearson, 186, 187 noncoherent, 188 Shnidman’s approximation, 209 Swerling models, 199 Diffraction, 44 Dynamic range, 157 1-dB compression point, 157 intermodulation distortion, 158 spurious free, 157 EMI scanner, 414 Equivalence principle, 86 GitHub, 6 Heinrich Hertz, 1 Image frequency, 162 Intermediate frequency, 154 James Clerk Maxwell, 1, 15 Johann Radon, 413 Low-noise amplifier, 154 Marcum’s Q function, 192 Matched filter, 315, 318 North filter, 315 signal-to-noise, 318 time-bandwidth product, 319 MATLAB, 6, 9 Maxwell’s equations, 15 Ampere’s law, 16 boundary conditions, 18 general interface, 18 PEC, 20 PMC, 20 radiation condition, 20 continuity equation, 16 Faraday’s law, 16 gauge axial, 23 Coulomb, 23 Dirac, 23 Fock-Schwinger, 23 Hamiltonian, 23 Lorenz, 23 Maximal Abelian, 23 Poincare, 23 radiation, 23 transverse, 23 Weyl, 23 Gauss’s law, 16 Lorenz condition, 22 potential scalar, 21 vector, 21 wave equation, 21 NEXRAD, 2 WSR-88D, 2, 3 Noise power, 130, 155 noise factor, 130INDEX 473 noise figure, 130 cascaded network, 155 power spectral density, 130 Ohm’s law, 27 Penrose transform, 414 Permeability, 18 Permittivity, 17 Phase-coded waveforms, 335 Plane waves, 24 atmospheric attenuation, 48 attenuation constant, 28 cloud and fog attenuation, 52 phase constant, 28 phase matching, 35 rain attenuation, 51 vegetation attenuation, 49 Poynting vector, 71 Pulse compression, 309 range resolution, 309 windowing, 326 Pulse integration, 193 binary integration, 197 coherent, 194 cumulative, 198 noncoherent, 194 Pulse repetition interval, 134 Python, 6, 7 IDE, 8 PyCharm, 8 PyDev, 8 Spyder, 8 installation, 7 Matplotlib, 7 NumPy, 7 SciPy, 7 Qt, 6, 7 Radar applications, 3 classification, 2 configurations, 4 definition, 1 frequency bands, 2 history, 1 IEEE designation, 3 waveforms, 3 Radar absorbing material, 287 Radar cross section, 127 angle variation, 236 definition, 235 frequency variation, 236 frustum, 258 polarization variation, 238 prediction analytical, 243 approximate methods, 271 measurement methods, 280 numerical methods, 259 rectangular plate, 251 reduction, 286 right circular cone, 255 rounded-nose cone, 257 scattering width, 244 stratified sphere, 253 two-dimensional cylinder, 247 two-dimensional cylinder oblique, 249 two-dimensional strip, 244 Radar range equation, 127 bistatic, 135 loop gain, 131 losses, 131 maximum detection range, 130, 137 power aperture product, 132 reference range, 131 Radar receivers, 153 bandwidth, 159 coherent detection, 167 configurations, 153 demodulation, 165 digital receivers, 172 direct digital downconversion, 173474 INDEX filtering, 162 Bessel, 163 Butterworth, 163 Chebyshev, 163 elliptic, 163 finite impulse response, 173 gain control, 160 gain normalization, 162 noncoherent detection, 166 superheterodyne, 153 Radon transform, 413 Range profile, 312 Refraction, 40 apparent elevation, 41 apparent range, 42 beam spreading, 43 ducting, 43 SAR imaging, 422 Scattering matrix, 239 back scattering alignment, 242 coordinate systems, 241 forward scattering alignment, 242 Scattering mechanisms cavaties, 243 creeping waves, 243 diffraction, 242 multibounce, 243 specular reflection, 242 surface waves, 243 Sensitivity time control, 154 Shadow region, 44 Sir Godfrey Hounsfield, 414 Skin depth, 30 Snell’s law, 35 Sommerfeld, 21 Stepped frequency, 311 dispersion, 313 effective bandwidth, 311 range resolution, 312 Stretch processing, 320 instantaneous frequency, 323 range resolution, 326 reference signal, 321 sampling, 323 Target tracking, 361 Mahalanobis distance, 383 measurement model, 394 multitarget tracking, 381 GNN, 382, 383 JPDA, 382, 385 MHT, 382, 389 RFS, 382, 393 tracking filters, 361 adaptive, 379 alpha-beta, 362 alpha-beta-gamma, 366 innovation, 363 Kalman, 371 Kalman gain, 372 measurement noise, 362 process noise, 362 residual, 363 state space model, 362 system state, 362 Telemobilosocpe, 1 Tomography, 413 ART, 419 CT, 414 filtered backprojection, 420 Fourier slice theorem, 417 MART, 420 polar reformatting, 419 SART, 420 SIRT, 419 three-dimensional, 424 linear trace, 424 planar slice, 424 Wavelength, 26 Wavenumber, 22 Windowing Blackman-Harris, 106 Hamming, 106 Hanning, 106 Kaiser, 106 #ماتلاب,#متلاب,#Matlab,
كلمة سر فك الضغط : books-world.net The Unzip Password : books-world.net أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم رابط من موقع عالم الكتب لتنزيل كتاب Introduction to Radar Using Python and MATLAB رابط مباشر لتنزيل كتاب Introduction to Radar Using Python and MATLAB
|
|