كتاب Advanced Surface Engineering Materials
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com



 
الرئيسيةالبوابةاليوميةس .و .جبحـثالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر | .
 

 كتاب Advanced Surface Engineering Materials

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 15081
التقييم : 24949
تاريخ التسجيل : 01/07/2009
العمر : 30
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

مُساهمةموضوع: كتاب Advanced Surface Engineering Materials   الجمعة 28 ديسمبر 2018, 7:42 am

أخوانى فى الله
أحضرت لكم كتاب
Advanced Surface Engineering Materials
Ashutosh Tiwari, Rui Wang, and Bingqing Wei
من سلسلة علم المواد المتقدمة
Advanced Material Series


ويتناول الموضوعات الأتية :


Contents
Preface xvii
Part 1 Functional Coatings and Adhesives
1 Bio-inspired Coatings and Adhesives 3
Saurabh Das and B. Kollbe Ahn
1.1 Introduction 4
1.2 Te Interfacial Biochemistry of a Mussel Adhesive 4
1.3 Tough Coating Proteins in the Mussel Tread 12
1.4 Mussel-inspired Coatings and Adhesives 15
1.5 Conclusions and Future Research Avenues for
Bio-inspired Adhesives and Coatings 25
References 26
2 Advancement of Surface by Applying a Seemingly
Simple Sol–gel Oxide Materials 33
Justyna Krzak, Beata Borak, Anna ?ukowiak,
Anna Donesz-Sikorska, Bartosz Babiarczuk,
Krzysztof Marycz and Anna Szczurek
2.1 Introduction 33
2.2 Are Simple Sol–gel Oxides Only Simple Materials? 35
2.2.1 Sol–gel Synthesis 36
2.2.1.1 Precursor 36
2.2.1.2 Water 39
2.2.1.3 Catalyst and pH 40
2.2.1.4 Solvents 41
2.2.1.5 Synthesis Drawbacks 42
2.2.2 Di?erences in Coating Techniques Depending
on the Substrate Form 43
2.2.2.1 Planar Substrates 43vi Contents
2.2.2.2 Particles 44
2.2.2.3 Fibers 44
2.2.3 Sol–gel Oxides: Properties and Applications 45
2.3 Hybrid Coating Materials 55
2.4 Functionalized Oxide Coatings 62
2.4.1 Volume Functionalization 63
2.4.2 Surface Functionalization 68
2.5 Coatings for Cells 70
2.6 Sol–gel Materials as Interface Materials 75
2.7 Conclusions 81
References 83
3 Femtosecond Laser Texturing of Bio-based Polymer Films
for Surface Functionalization 97
A. Daskalova
3.1 Introduction 98
3.2 Naturally Derived Biomaterials 100
3.2.1 Collagen 100
3.2.2 Gelatin 101
3.2.3 Elastin 102
3.2.4 Optical Properties of Biopolymers 102
3.3 Surface Modifcation Features 102
3.4 Mechanisms of Laser–tissue Interaction 104
3.4.1 Characteristics of Ultra-fast Laser Radiation 106
3.4.1.1 Ultra-short Pulses 107
3.4.2 Femtosecond Laser Interaction with Polymers 112
3.5 Laser-based Methods for Surface Treatment
of Biomaterials 113
3.5.1 Laser Surface Patterning 114
3.5.2 Ultra-short Laser Processing 117
3.5.3 Material and Methods 119
3.5.4 Morphology of Surface Patterns of Tin
Biopolymer Films 119
3.5.4.1 Wettability Studies 120
3.5.4.2 Morphological Analysis of Laser
Produced Porous Matrices 120
3.5.4.3 Atomic Force Microscopy and Confocal
Examination of the Laser Produced
Modifcation 125
3.5.5 Cell Cultivation on Laser-modifed Substrates 129
3.5.6 Mechanism of Cell Locomotion 133Contents vii
3.6 Conclusion 134
Acknowledgments 135
References 135
4 Engineered Electromagnetic Surfaces and Teir Applications 141
Mirko Barbuto, Filiberto Bilotti, Alessio Monti,
Davide Ramaccia and Alessandro Toscano
4.1 Introduction 142
4.2 Impedance Boundary Condition 143
4.3 Metasurfaces Based on Metallic Strips 145
4.3.1 Anisotropic Metasurfaces 145
4.3.2 Model Validation 151
4.3.3 Applications to Electromagnetic Cloaking 153
4.4 Metasurfaces Based on Circular Inclusions 155
4.4.1 Holey Metasurfaces 156
4.4.2 High-impedance Surfaces with Circular Elements 160
4.5 Metasurfaces Based on Crossed Dipoles 163
4.5.1 Crossed-aperture Metasurfaces 164
4.5.2 Full-wave Numerical Simulations 167
References 169
5 Structural and Hydroxyapatite-like Surface Functionalization
of Advanced Biomimetic Prototype Interface for RA
Endoprostheses to Enhance Osteoconduction and
Osteointegration 175
Ryszard Uklejewski, Piotr Rogala and Mariusz Winiecki
5.1 Introduction 176
5.2 Biomimetic Multi-spiked Connecting Sca?old
Prototype – Te Promising Breakthrough in
Bone-implant Advanced Interfacing in Joint
Resurfacing Endoprostheses Fixation Technique 180
5.3 Bioengineering Design of the MSC-sca?old Prototype,
Its Additive Manufacturing and Post-SLM_processing
of Bone Contacting Surfaces 183
5.3.1 Bioengineering Design and the CAD Modelling
of the Bone-RA Endoprostheses Interfacing
MSC-sca?old 183
5.3.2 Additive Manufacturing in Selective Laser
Melting Technology 192
5.3.3 Post-production Processing of Bone
Contacting Surfaces 202viii Contents
5.4 Structural Pro-osteoconduction Functionalization
of the MSC-sca?old Interfacing System for Biomimetic
Entirely Cementless RA Endoprostheses 208
5.4.1 Possibilities of A?ecting the Structural–
osteoconductive Potential of the MSC-sca?old
Interfacing System 208
5.4.2 Initial Pilot Implantation Study on Structurally
Functionalized MSC-sca?old Interfacing System 214
5.4.3 In Vitro Cytobiocompatibility (Biofunctionality)
Tests on Prototypes of the MSC-sca?old 217
5.5 Hydroxyapatite-like Functionalization of
Bone Contacting Surfaces of the MSC-sca?old to
Enhance Osteointegration 220
5.5.1 Initial Attempts to Modify Bone Contacting
Surfaces of the MSC-sca?old Prototype by the
Method of Electrochemical Cathodic Deposition
of Calcium Phosphates 220
5.5.2 Evaluation of Biointegration of the Implanted
MSC-sca?old Preprototypes with Surfaces
Modifed with Calcium Phosphates and
Unmodifed Surfaces 224
5.5.3 Research on the MSC-sca?old Prototypes
(Ca-P Surface Modifed and Non-modifed)
in Osteoblast Cell Culture 227
5.6 Conclusions 229
Acknowledgments 232
References 232
Part 2 Engineering of Nanosurfaces
6 Biosynthesis of Metal Nanoparticles and Graphene 243
Ujjal Kumar Sur
6.1 Introduction 244
6.2 Synthesis of Gold and Silver Nanoparticles Using
Microorganisms 257
6.2.1 Synthesis of Gold and Silver Nanoparticles
Using Bacteria 258
6.2.2 Synthesis of Gold and Silver Nanoparticles
Using the Fungal Systems 260
6.2.3 Synthesis of Gold and Silver Nanoparticles
Using the Actinomycete 262Contents ix
6.3 Synthesis of Gold and Silver Nanoparticles
Using Fruit Extract 263
6.4 Synthesis of Gold and Silver Nanoparticles
Using Plant Extract 265
6.5 Synthesis of Gold and Silver Nanoparticles
Using Honey 273
6.6 Synthesis of Gold and Silver Nanoparticles
Using Animal Tissue 273
6.7 Synthesis of Semiconductor Nanoparticles from
Plant, Fruit Extract and Honey 274
6.8 Biosynthesis of Other Nanoparticles 276
6.9 Biosynthesis of Graphene 279
6.10 Applications of Metal Nanoparticles and Graphene 283
6.11 Future Trends and Prospects 286
6.12 Conclusions 287
Acknowledgements 288
References 289
7 Surface Modifers for the Generation of Advanced
Nanomaterials 297
P?nar Akku? Süt, Melike Belenli, ?zlem ?en, Melis Emanet,
Mine Altunbek and Mustafa Culha
7.1 Introduction 297
7.2 Most Commonly Used NMs and Teir Possible Surface
Chemistry 298
7.3 Parameters In?uencing NP Functionalization 298
7.3.1 Nature of Attachment onto NM Surface 299
7.3.2 Molecular Density on NP Surface 299
7.3.3 Orientation of Attached Molecule on NP Surface 304
7.3.4 Separation Distance Between Modifer
and NP Surface 304
7.3.5 Reproducibility of Chemistry 304
7.4 Modifcation Strategies 304
7.4.1 Noncovalent Interactions 304
7.4.1.1 ?–? Stacking Interactions 305
7.4.1.2 Electrostatic Interactions 306
7.4.1.3 Hydrogen Bonding 307
7.4.1.4 Hydrophobic Interactions 307
7.4.2 Covalent Modifcation 308
7.4.2.1 Carbodiimide Coupling 309
7.4.2.2 Maleimide Coupling 310x Contents
7.4.2.3 Imine Formation (Glutaraldehyde–
Amine Coupling) 310
7.4.2.4 Epoxide Opening 312
7.4.2.5 Addition to Cyanates 312
7.4.2.6 Silanization 313
7.4.2.7 Click Chemistry 313
7.4.2.8 1,3-Dipolar Cycloaddition 313
7.4.2.9 Diels?Alder Reactions 314
7.4.2.10 Staudinger Ligation 315
7.4.2.11 Te Michael Addition 315
7.5 Te Potential Problems During NPs Modifcations 316
7.5.1 Over-activation of Surface Functional Groups 316
7.5.2 Dispersion During Modifcation 316
7.5.3 Purifcation 316
7.5.4 Inter NP–NP or Modifer–Modifer Cross-linking 317
7.5.5 Oxidation of NPs Surface and/or Modifer 317
7.5.6 Complex Reaction Conditions 317
7.6 Surface Modifers 317
7.6.1 Carbohydrates 317
7.6.1.1 Monosaccharide-, Disaccharide-, and
Oligosaccharide-Functionalized NPs 320
7.6.2 Polysaccharide-functionalized NPs 321
7.6.2.1 Cellulose 321
7.6.2.2 Chitosan 322
7.6.2.3 Dextran 323
7.6.2.4 Pullulan 323
7.6.2.5 Starch 324
7.6.2.6 Xantham Gum 324
7.6.3 Oligonucleotides 326
7.6.4 Peptides 329
7.6.5 Polymers 332
7.6.5.1 Biodegradability 333
7.6.5.2 Amphiphilicity 333
7.6.5.3 Ionic Strength 333
7.7 Conclusions 334
References 335Contents xi
8 Nanoassisted Functional Modulation of Enzymes:
Concept and Applications 349
Arka Mukhopadhyay and Hirak K. Patra
8.1 Introduction 349
8.2 Enzyme Modifying Nanomaterials 352
8.2.1 Carbon Nanotube 353
8.2.2 Graphene Oxide Nanomaterials 355
8.2.3 Quantom Dots 357
8.2.4 Single Enzyme Nanoparticles (SEN) 358
8.2.5 Nanoscale Enzyme Reactor (NER) 358
8.2.6 Nanofbers 360
8.2.7 Nanowires 361
8.2.8 Nanogels 361
8.2.9 Nano?owers 362
8.2.10 Magnetic Nanoparticles 362
8.3 Regulations of Enzyme Properties by
Several Nanomaterials 365
8.3.1 Regulation of Enzyme Activity and Stability
on Nanomaterial Interactions 367
8.3.2 Regulation of Enzyme Structure on
Nanomaterial Interactions 373
8.4 Conclusions 376
Abbreviations 376
References 377
9 Electrospun Fibers Based on Biopolymers 385
Alicia Mujica-Garcia, Agueda Sonseca, Marina P. Arrieta,
Maysa Yusef, Daniel L?pez, Enrique Gimenez,
José M. Kenny and Laura Peponi
9.1 Electrospinning: Background and Set-up 386
9.2 Biopolymers 393
9.3 Electrospinning of Biopolymer Nanofbers 396
9.3.1 Cellulose and Cellulose Derivatives 401
9.3.2 Chitosan 402
9.3.3 Poly(vinyl Alcohol) 403
9.3.4 Silk 405
9.3.5 Collagen 406
9.3.6 Gelatin 407
9.4 Electrospun Fibers Based on Biopolymers Blends 4089.5 Bionanocomposites Electrospun Fibers 414
9.5.1 Electrospun Biopolymeric Fibers
Reinforced with 0-D 414
9.5.2 Electrospun Biopolymeric Fibers
Reinforced with 1-D 418
9.5.2.1 Electrospun Nanocomposites Fibers
with Cellulose Nanocrystals 418
9.5.2.2 Electrospun Nanocomposite Fibers
with Carbon Nanotubes 420
9.5.2.3 Electrospun Nanocomposite Fibers
with Halloysite Nanotubes 421
9.5.3 Electrospun Biopolymeric Fibers
Reinforced with 2-D 421
9.5.3.1 Electrospun Nanocomposites Fibers
with Graphene 421
9.6 Conclusions 423
Acknowledgments 423
References 424
10 Nanostructured Materials as Biosensor Transducers:
Achievements and Future Developments 439
N.F. Starodub, K.E. Shavanova, N.F. Shpyrka,
M.M. Mel’nichenko and R.V. Viter
10.1 Introduction 440
10.2 Biosensors According to the Main Principles of
Teir Classifcation 442
10.3 Ion-selective Field E?ect Transistors-based Biosensors:
Origins and Perspective Development 446
10.3.1 Cerium Oxide IsFETs-based Biosensors 446
10.3.1.1 Technology of IsFETs Creation 447
10.3.1.2 Characterization of
Physical–chemical Properties
of IsFETs Based on the Silicon
Nitride and Cerium Oxide 447
10.3.1.3 Preparation of IsFET-based
Immune Biosensor 450
10.3.1.4 Determination of Main
Conditions of the Immune
Biosensor Analysis Fulfllment 450
10.3.1.5 IsFET-based Immune Detection
of Patulin and Salmonella 452
10.3.1.6 Conclusions 456
xii Contents10.3.2 Nanostructured IsFETs-based Biosensors 457
10.3.2.1 Conclusions 461
10.4 Optical Biosensors 461
10.4.1 Nanostructured Porous Silicon-based
Biosensors 462
10.4.1.1 Fabrication of the nSPS Layers and
Teir Optochemical Characteristics 464
10.4.1.2 Biologically Used Components 469
10.4.1.3 Devices for Registering Specifc
Signals of Biosensors 469
10.4.1.4 Te Main Algorithm of Analysis by
the Immune Biosensors 471
10.4.1.5 E?ectiveness of the nSPS Immune
Biosensor at the Diagnosis of RBL 471
10.4.1.6 Mycotoxin-level Control by the
nSPS-based Immune Biosensors 473
10.4.1.7 Comparison of the Efciency of
Mycotoxins Detection and
Biochemical Diagnosis of RBL by
Di?erent Types of Optical Immune
Biosensors 474
10.4.2 PhL of Nanomaterials for Biosensor
Applications 478
10.4.3 Graphene-based SPR Biosensors 483
10.4.4 Surface-enhanced Raman Scattering
Biosensors 486
Acknowledgments 488
References 488
Part 3 High-tech Surface, Characterisation, and
New Applications
11 Optical Emission Spectroscopy Investigation of Direct
Current Micro-plasma for Carbon Structures Growth 497
Dana-Cristina Toncu
11.1 Teoretical Background of Optical Emission
Spectroscopy in Plasma Diagnosis 498
11.2 Direct Current Micro-plasma Experimental
Investigation for Carbon Structures 500
11.3 Optical Emission Spectroscopy Results 502
11.3.1 OES for Investigating Variation in Pressure 504
Contents xiii11.3.2 OES for Investigating the Variation in
Electron Temperature 506
11.3.3 Optical Emission Temperature
Measurement from C
2 Radical 507
11.3.4 OES Investigation for Variation in
Substrate Temperature 510
11.3.5 OES Investigation during
Diamond Deposition 511
Acknowledgement 514
References 515
12 Advanced Titanium Surfaces and Its Alloys for
Orthopedic and Dental Applications Based on
Digital SEM Imaging Analysis 517
Sahar A. Fadlallah, Amira S. Ashour and Nilanjan Dey
12.1 Introduction 518
12.2 Titanium Implants Basic Concepts 521
12.2.1 Titanium Oxide as Biocompatible Coatings 522
12.2.2 Nanostructures Importance 523
12.2.3 Natural Nanostructures 524
12.2.4 Fabrication of Titania Nanostructures 526
12.2.5 Electrochemical Anodization Method 528
12.2.6 Experimental Tools for Surface
Characterization 529
12.2.7 In-vitro and In-vivo Studies 530
12.2.7.1 Stability of Titanium Implants 531
12.2.7.2 Mechanical Characterization 535
12.2.7.3 Antibacterial Activity 536
12.2.7.4 In-vivo and In-vitro
Cellular Behavior 537
12.3 Automated Nanostructures Image
Analysis-based Morphology 540
12.3.1 Nanostructures Morphology
and Properties: TiO2 540
12.3.2 Image Processing and Analysis 540
12.3.3 Nanostructures/Particles Image Analysis
in In-vitro and In-vivo Studies 545
12.3.4 Orthopedic and Dental Applications
Using Titanium Surfaces and Its Alloys
Based on Digital SEM Imaging Analysis 548
12.4 Conclusion 550
References 551
xiv ContentsContents xv
13 Deep-blue Organic Light-emitting Diodes:
From Fluorophores to Phosphors for
High-efciency Devices 561
Frédéric Dumur
13.1 Introduction 561
13.2 Fluorescent Emitters 565
13.2.1 Anthracene Derivatives 565
13.2.2 Fluorene Derivatives 578
13.2.3 Indeno?uorene and Indenopyrazine
Derivatives 582
13.2.4 Spiro-annulated Emitters 586
13.2.5 Starburst Molecules 591
13.2.6 Benzimidazole and Phenanthroimidazole
Derivatives 600
13.2.7 Styryl Derivatives 605
13.2.8 Polyaromatic Hydrocarbons 608
13.2.9 Other Structures 611
13.3 Phosphorescent Emitters 618
13.4 Future Perspectives and Ongoing Challenges 621
References 622
14 Plasma–material Interactions Problems and Dust
Creation and Re-suspension in Case of Accidents in
Nuclear Fusion Plants: A New Challenge for Reactors
like ITER and DEMO 635
A. Malizia, L.A. Poggi, J.F. Ciparisse, S. Talebzadeh,
M. Gelfusa, A. Murari and P. Gaudio
14.1 Introduction 636
14.2 Materials for Nuclear Fusion Plants 638
14.2.1 Nuclear Fusion Framework 639
14.2.1.1 Materials Containing Carbon 639
14.2.1.2 Beryllium 642
14.2.1.3 Material with High-Z Number 643
14.2.2 Other Frameworks 652
14.2.2.1 Steels (Austenitic and
Ferritic/Martensitic) 654
14.2.2.2 Other Advanced Materials 657
14.3 Radioactive Dust in Nuclear Fusion Plants:
Security Problems in Case of Re-suspension 660
14.3.1 Stardust-upgrade Facility 664
14.3.1.1 STARDUST-U Experimental and
Numerical Results 667xvi Contents
14.3.1.2 Easy Computational Fluid
Dynamic Guide Method 676
14.3.2 A New Approach to Estimate Radioactive
Source Terms Products in Future Nuclear
Fusion Plants 682
14.3.2.1 Information Gathering of the
Methodology Proposed 683
14.3.2.2 Rough Screening 683
14.3.2.3 Sensitivity Analysis 683
14.3.2.4 Uncertainty Analysis 684
14.3.2.5 Source Terms Simplifed Estimation 685
14.4 Conclusion 687
References 689
Index 70


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا من محتوى الموضوع وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Advanced Surface Engineering Materials
رابط مباشر لتنزيل كتاب Advanced Surface Engineering Materials

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 

كتاب Advanced Surface Engineering Materials

استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

خدمات الموضوع
 KonuEtiketleri كلمات دليليه
كتاب Advanced Surface Engineering Materials , كتاب Advanced Surface Engineering Materials , كتاب Advanced Surface Engineering Materials ,كتاب Advanced Surface Engineering Materials ,كتاب Advanced Surface Engineering Materials , كتاب Advanced Surface Engineering Materials
 KonuLinki رابط الموضوع
 Konu BBCode BBCode
 KonuHTML Kodu HTMLcode
إذا وجدت وصلات لاتعملفي الموضوع او أن الموضوع [ كتاب Advanced Surface Engineering Materials ] مخالف ,, من فضلك راسل الإدارة من هنا
صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-