كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
https://www.youtube.com/watch?v=aw8GR3QlY6M
وشرح لطريقة التنزيل من المنتدى بالفيديو:
https://www.youtube.com/watch?v=Lf2hNxCN1cw
https://www.youtube.com/watch?v=PRIGVoN7CPY
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

DEABS2010@YAHOO.COM



 
الرئيسيةالبوابةاليوميةس .و .جبحـثالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر | .
 

 كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
avatar

عدد المساهمات : 14526
التقييم : 23586
تاريخ التسجيل : 01/07/2009
العمر : 29
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

مُساهمةموضوع: كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton   الأحد 29 أكتوبر 2017, 9:38 pm

أخوانى فى الله
أحضرت لكم كتاب
Machine Design - An Integrated Approach Fourth Edition
Robert L. Norton
Worcester Polytechnic Institute
Worcester, Massachusetts


ويتناول الموضوعات الأتية :

Contents
PREFACE _ XXI
PART I FUNDAMENTALS 1
CHAPTER 1 INTRODUCTION TO DESIGN
1.1 Design . 3
Machine Design 3
Machine 4
Iteration 5
1.2 A Design Process 5
1.3 Problem Formulation and Calculation 8
Definition Stage 8
Preliminary Design Stage 8
Detailed Design Stage 9
Documentation Stage 9
1.4 The Engineering Model . 9
Estimation and First-Order Analysis 10
The Engineering Sketch 10
1.5 Computer-Aided Design and Engineering 11
Computer-Aided Design (CAD) 11
Computer-Aided Engineering (CAE) 14
Computational Accuracy 16
1.6 The Engineering Report . 16
1.7 Factors of Safety and Design Codes . 16
Factor of Safety 17
Choosing a Safety Factor 18
Design and Safety Codes 19
1.8 Statistical Considerations . 20
1.9 Units . 21
1.10 Summary . 25
1.11 References . 26
1.12 Web References 27
1.13 Bibliography 27
1.14 Problems . 28viii MACHINE DESIGN - An Integrated Approach
CHAPTER 2 MATERIALS AND PROCESSES 29
2.0 Introduction 29
2.1 Material-Property Definitions . 29
The Tensile Test 31
Ductility and Brittleness 33
The Compression Test 35
The Bending Test 35
The Torsion Test 35
Fatigue Strength and Endurance Limit 37
Impact Resistance 38
Fracture Toughness 40
Creep and Temperature Effects 40
2.2 The Statistical Nature of Material Properties 41
2.3 Homogeneity and Isotropy . 42
2.4 Hardness . 42
Heat Treatment 44
Surface (Case) Hardening 45
Heat Treating Nonferrous Materials 46
Mechanical Forming and Hardening 46
2.5 Coatings and Surface Treatments 48
Galvanic Action 49
Electroplating 50
Electroless Plating 50
Anodizing 51
Plasma-Sprayed Coatings 51
Chemical Coatings 51
2.6 General Properties of Metals 52
Cast Iron 52
Cast Steels 53
Wrought Steels 53
Steel Numbering Systems 54
Aluminum 56
Titanium 58
Magnesium 59
Copper Alloys 59
2.7 General Properties of Nonmetals 60
Polymers 60
Ceramics 62
Composites 62
2.8 Selecting Materials . 63
2.9 Summary . 64
2.10 References . 68
2.11 Web References 68
2.12 Bibliography 68
2.13 Problems . 69ix
CHAPTER 3 LOAD DETERMINATION 73
3.0 Introduction 73
3.1 Loading Classes 73
3.2 Free-Body Diagrams . 75
3.3 Load Analysis 76
Three-Dimensional Analysis 76
Two-Dimensional Analysis 77
Static Load Analysis 78
3.4 Two-Dimensional, Static Loading Case Studies 78
Case Study 1A: Bicycle Brake Lever Loading Analysis 79
Case Study 2A: Hand-Operated Crimping-Tool Loading Analysis 84
Case Study 3A: Automobile Scissors-Jack Loading Analysis 88
3.5 Three-Dimensional, Static Loading Case Study 93
Case Study 4A: Bicycle Brake Arm Loading Analysis 94
3.6 Dynamic Loading Case Study . 98
Case Study 5A: Fourbar Linkage Loading Analysis 98
3.7 Vibration Loading . 101
Natural Frequency 102
Dynamic Forces 104
Case Study 5B: Fourbar Linkage Dynamic Loading Measurement 105
3.8 Impact Loading . 106
Energy Method 107
3.9 Beam Loading . 111
Shear and Moment 111
Singularity Functions 112
Superposition 122
3.10 Summary . 123
3.11 References . 125
3.12 Web References 126
3.13 Bibliography 126
3.14 Problems . 126
CHAPTER 4 STRESS, STRAIN, AND DEFLECTION _139
4.0 Introduction 139
4.1 Stress . 139
4.2 Strain . 143
4.3 Principal Stresses 143
4.4 Plane Stress and Plane Strain 146
Plane Stress 146
Plane Strain 146
4.5 Mohr’s Circles . 146
4.6 Applied Versus Principal Stresses . 151
4.7 Axial Tension 152x MACHINE DESIGN - An Integrated Approach
4.8 Direct Shear Stress, Bearing Stress, and Tearout . 153
Direct Shear 153
Direct Bearing 154
Tearout Failure 154
4.9 Beams and Bending Stresses 154
Beams in Pure Bending 155
Shear Due to Transverse Loading 158
4.10 Deflection in Beams 162
Deflection by Singularity Functions 164
Statically Indeterminate Beams 171
4.11 Castigliano’s Method 173
Deflection by Castigliano’s Method 175
Finding Redundant Reactions with Castigliano’s Method 175
4.12 Torsion 177
4.13 Combined Stresses 183
4.14 Spring Rates 185
4.15 Stress Concentration . 186
Stress Concentration Under Static Loading 187
Stress Concentration Under Dynamic Loading 188
Determining Geometric Stress-Concentration Factors 188
Designing to Avoid Stress Concentrations 191
4.16 Axial Compression - Columns 193
Slenderness Ratio 193
Short Columns 193
Long Columns 193
End Conditions 195
Intermediate Columns 197
Eccentric Columns 200
4.17 Stresses in Cylinders . 203
Thick-Walled Cylinders 204
Thin-Walled Cylinders 205
4.18 Case Studies in Static Stress and Deflection Analysis 205
Case Study 1B: Bicycle Brake Lever Stress and Deflection Analysis 206
Case Study 2B: Crimping-Tool Stress and Deflection Analysis 209
Case Study 3B: Automobile Scissors-Jack Stress and Deflection Analysis 214
Case Study 4B: Bicycle Brake Arm Stress Analysis 217
4.19 Summary . 221
4.20 References . 227
4.21 Bibliography 228
4.22 Problems . 228
CHAPTER 5 STATIC FAILURE THEORIES _243
5.0 Introduction 243
5.1 Failure of Ductile Materials Under Static Loading 245
The von Mises-Hencky or Distortion-Energy Theory 246
The Maximum Shear-Stress Theory 252
The Maximum Normal-Stress Theory 254
Comparison of Experimental Data with Failure Theories 254xi
5.2 Failure of Brittle Materials Under Static Loading 258
Even and Uneven Materials 258
The Coulomb-Mohr Theory 259
The Modified-Mohr Theory 260
5.3 Fracture Mechanics . 265
Fracture-Mechanics Theory 266
Fracture Toughness Kc 269
5.4 Using The Static Loading Failure Theories 273
5.5 Case Studies in Static Failure Analysis . 274
Case Study 1C: Bicycle Brake Lever Failure Analysis 274
Case Study 2C: Crimping Tool Failure Analysis 277
Case Study 3C: Automobile Scissors-Jack Failure Analysis 280
Case Study 4C: Bicycle Brake Arm Factors of Safety 282
5.6 Summary . 285
5.7 References . 288
5.8 Bibliography 289
5.9 Problems . 290
CHAPTER 6 FATIGUE FAILURE THEORIES _303
6.0 Introduction 303
History of Fatigue Failure 303
6.1 Mechanism of Fatigue Failure . 306
Crack Initiation Stage 307
Crack Propagation Stage 307
Fracture 308
6.2 Fatigue-Failure Models . 309
Fatigue Regimes 309
The Stress-Life Approach 311
The Strain-Life Approach 311
The LEFM Approach 311
6.3 Machine-Design Considerations . 312
6.4 Fatigue Loads 313
Rotating Machinery Loading 313
Service Equipment Loading 314
6.5 Measuring Fatigue Failure Criteria . 315
Fully Reversed Stresses 316
Combined Mean and Alternating Stress 322
Fracture-Mechanics Criteria 323
Testing Actual Assemblies 326
6.6 Estimating Fatigue Failure Criteria 327
Estimating the Theoretical Fatigue Strength Sf’ or Endurance Limit Se’ 328
Correction Factors to the Theoretical Fatigue Strength 330
Calculating the Corrected Fatigue Strength Sf 337
Creating Estimated S-N Diagrams 337
6.7 Notches and Stress Concentrations 342
Notch Sensitivity 343
6.8 Residual Stresses 347xii MACHINE DESIGN - An Integrated Approach
6.9 Designing for High-Cycle Fatigue 352
6.10 Designing for Fully Reversed Uniaxial Stresses 352
Design Steps for Fully Reversed Stresses with Uniaxial Loading: 353
6.11 Designing for Fluctuating Uniaxial Stresses . 360
Creating the Modified-Goodman Diagram 361
Applying Stress-Concentration Effects with Fluctuating Stresses 364
Determining the Safety Factor with Fluctuating Stresses 366
Design Steps for Fluctuating Stresses 369
6.12 Designing for Multiaxial Stresses in Fatigue 376
Frequency and Phase Relationships 377
Fully Reversed Simple Multiaxial Stresses 377
Fluctuating Simple Multiaxial Stresses 378
Complex Multiaxial Stresses 379
6.13 A General Approach to High-Cycle Fatigue Design 381
6.14 A Case Study in Fatigue Design 386
Case Study 6: Redesign of a Failed Laybar for a Water-Jet Power Loom 387
6.15 Summary . 399
6.16 References . 403
6.17 Bibliography 406
6.18 Problems . 407
CHAPTER 7 SURFACE FAILURE _419
7.0 Introduction 419
7.1 Surface Geometry 421
7.2 Mating Surfaces 423
7.3 Friction 424
Effect of Roughness on Friction 425
Effect of Velocity on Friction 425
Rolling Friction 425
Effect of Lubricant on Friction 426
7.4 Adhesive Wear 426
The Adhesive-Wear Coefficient 429
7.5 Abrasive Wear . 430
Abrasive Materials 433
Abrasion-Resistant Materials 433
7.6 Corrosion Wear . 434
Corrosion Fatigue 435
Fretting Corrosion 435
7.7 Surface Fatigue 436
7.8 Spherical Contact 438
Contact Pressure and Contact Patch in Spherical Contact 438
Static Stress Distributions in Spherical Contact 440xiii
7.9 Cylindrical Contact . 444
Contact Pressure and Contact Patch in Parallel Cylindrical Contact 444
Static Stress Distributions in Parallel Cylindrical Contact 445
7.10 General Contact 448
Contact Pressure and Contact Patch in General Contact 448
Stress Distributions in General Contact 450
7.11 Dynamic Contact Stresses . 453
Effect of a Sliding Component on Contact Stresses 453
7.12 Surface Fatigue Failure Models—Dynamic Contact 461
7.13 Surface Fatigue Strength . 464
7.14 Summary . 470
Designing to Avoid Surface Failure 471
7.15 References . 474
7.16 Problems . 476
CHAPTER 8 FINITE ELEMENT ANALYSIS _481
8.0 Introduction 481
Stress and Strain Computation 482
8.1 Finite Element Method 483
8.2 Element Types . 485
Element Dimension and Degree of Freedom (DOF) 485
Element Order 486
H-Elements Versus P-Elements 487
Element Aspect Ratio 487
8.3 Meshing 487
Mesh Density 488
Mesh Refinement 488
Convergence 488
8.4 Boundary Conditions 492
8.5 Applying Loads . 502
8.6 Testing the Model . 503
8.7 Modal Analysis . 506
8.8 Case Studies 508
Case Study 1D: FEA Analysis of a Bicycle Brake Lever 509
Case Study 2D: FEA Analysis of a Crimping Tool 511
Case Study 4D: FEA Analysis of a Bicycle Brake Arm 513
Case Study 7: FEA Analysis of a Trailer Hitch 516
8.9 Summary . 518
8.10 References . 519
8.11 Bibliography 519
8.12 Web Resources 519
8.13 Problems . 520xiv MACHINE DESIGN - An Integrated Approach
PART II MACHINE DESIGN 521
CHAPTER 9 DESIGN CASE STUDIES 523
9.0 Introduction 523
9.1 Case Study 8A: Preliminary Design of a Compressor Drive Train 526
9.2 Case Study 9A: Preliminary Design of a Winch Lift . 528
9.3 Case Study 10A: Preliminary Design of a Cam Dynamic Test Fixture . 532
9.4 Summary . 537
9.5 References . 537
9.6 Design Projects . 538
CHAPTER 10 SHAFTS, KEYS, AND COUPLINGS 549
10.0 Introduction 549
10.1 Shaft Loads . 549
10.2 Attachments and Stress Concentrations . 551
10.3 Shaft Materials 553
10.4 Shaft Power . 553
10.5 Shaft Loads . 554
10.6 Shaft Stresses 554
10.7 Shaft Failure in Combined Loading . 555
10.8 Shaft Design 556
General Considerations 556
Design for Fully Reversed Bending and Steady Torsion 557
Design for Fluctuating Bending and Fluctuating Torsion 559
10.9 Shaft Deflection 566
Shafts as Beams 567
Shafts as Torsion Bars 567
10.10 Keys and Keyways 570
Parallel Keys 570
Tapered Keys 571
Woodruff Keys 572
Stresses in Keys 572
Key Materials 573
Key Design 573
Stress Concentrations in Keyways 574
10.11 Splines . 578
10.12 Interference Fits 580
Stresses in Interference Fits 580
Stress Concentration in Interference Fits 581
Fretting Corrosion 582
10.13 Flywheel Design 585
Energy Variation in a Rotating System 586
Determining the Flywheel Inertia 588
Stresses in Flywheels 590
Failure Criteria 591xv
10.14 Critical Speeds of Shafts . 593
Lateral Vibration of Shafts and Beams—Rayleigh’s Method 596
Shaft Whirl 597
Torsional Vibration 599
Two Disks on a Common Shaft 600
Multiple Disks on a Common Shaft 601
Controlling Torsional Vibrations 602
10.15 Couplings 604
Rigid Couplings 605
Compliant Couplings 606
10.16 Case Study 608
Case Study 8B: Preliminary Design of Shafts for a Compressor Drive Train 608
10.17 Summary . 612
10.18 References . 614
10.19 Problems . 615
CHAPTER 11 BEARINGS AND LUBRICATION _623
11.0 Introduction 623
11.1 Lubricants . 625
11.2 Viscosity 627
11.3 Types of Lubrication 628
Full-Film Lubrication 629
Boundary Lubrication 631
11.4 Material Combinations in Sliding Bearings 631
11.5 Hydrodynamic Lubrication Theory 632
Petroff’s Equation for No-Load Torque 633
Reynolds’ Equation for Eccentric Journal Bearings 634
Torque and Power Losses in Journal Bearings 639
11.6 Design of Hydrodynamic Bearings . 640
Design Load Factor—The Ocvirk Number 640
Design Procedures 642
11.7 Nonconforming Contacts 646
11.8 Rolling-element bearings 653
Comparison of Rolling and Sliding Bearings 654
Types of Rolling-Element Bearings 654
11.9 Failure of Rolling-Element bearings 658
11.10 Selection of Rolling-Element bearings 659
Basic Dynamic Load Rating C 659
Modified Bearing Life Rating 660
Basic Static Load Rating C0 661
Combined Radial and Thrust Loads 662
Calculation Procedures 663
11.11 Bearing Mounting Details . 665
11.12 Special Bearings 666
11.13 Case Study 668
Case Study 10B: Design of Hydrodynamic Bearings for a Cam Test Fixture 668xvi MACHINE DESIGN - An Integrated Approach
11.14 Summary . 670
11.15 References . 673
11.16 Problems . 675
CHAPTER 12 SPUR GEARS 681
12.0 Introduction 681
12.1 Gear Tooth Theory 683
The Fundamental Law of Gearing 683
The Involute Tooth Form 684
Pressure Angle 685
Gear Mesh Geometry 686
Rack and Pinion 687
Changing Center Distance 687
Backlash 689
Relative Tooth Motion 689
12.2 Gear Tooth Nomenclature . 689
12.3 Interference and Undercutting 692
Unequal-Addendum Tooth Forms 693
12.4 Contact Ratio . 694
12.5 Gear Trains 696
Simple Gear Trains 696
Compound Gear Trains 697
Reverted Compound Trains 698
Epicyclic or Planetary Gear Trains 699
12.6 Gear Manufacturing 702
Forming Gear Teeth 702
Machining 703
Roughing Processes 703
Finishing Processes 705
Gear Quality 705
12.7 Loading on Spur Gears 706
12.8 Stresses in Spur Gears . 708
Bending Stresses 709
Surface Stresses 718
12.9 Gear Materials 722
Material Strengths 723
AGMA Bending-Fatigue Strengths for Gear Materials 724
AGMA Surface-Fatigue Strengths for Gear Materials 725
12.10 Lubrication of Gearing 732
12.11 Design of Spur Gears 732
12.12 Case Study 734
Case Study 8C: Design of Spur Gears for a Compressor Drive Train 734
12.13 Summary . 738
12.14 References . 741
12.15 Problems . 742xvii
CHAPTER 13 HELICAL, BEVEL, AND WORM GEARS 747
13.0 Introduction 747
13.1 Helical Gears . 747
Helical Gear Geometry 749
Helical-Gear Forces 750
Virtual Number of Teeth 751
Contact Ratios 752
Stresses in Helical Gears 752
13.2 Bevel Gears . 760
Bevel-Gear Geometry and Nomenclature 761
Bevel-Gear Mounting 762
Forces on Bevel Gears 762
Stresses in Bevel Gears 763
13.3 Wormsets 768
Materials for Wormsets 770
Lubrication in Wormsets 770
Forces in Wormsets 770
Wormset Geometry 770
Rating Methods 771
A Design Procedure for Wormsets 773
13.4 Case Study 774
Case Study 9B: Design of a Wormset Speed Reducer for a Winch Lift 774
13.5 Summary . 777
13.6 References . 781
13.7 Problems . 782
CHAPTER 14 SPRING DESIGN _785
14.0 Introduction 785
14.1 Spring Rate 785
14.2 Spring Configurations . 788
14.3 Spring Materials 790
Spring Wire 790
Flat Spring Stock 793
14.4 Helical Compression Springs 795
Spring Lengths 796
End Details 796
Active Coils 797
Spring Index 797
Spring Deflection 797
Spring Rate 797
Stresses in Helical Compression Spring Coils 798
Helical Coil Springs of Nonround Wire 799
Residual Stresses 800
Buckling of Compression Springs 802
Compression–Spring Surge 802
Allowable Strengths for Compression Springs 803
The Torsional-Shear S-N Diagram for Spring Wire 804
The Modified-Goodman Diagram for Spring Wire 806xviii MACHINE DESIGN - An Integrated Approach
14.5 Designing Helical Compression Springs for Static Loading 808
14.6 Designing Helical Compression Springs for Fatigue Loading . 812
14.7 Helical Extension Springs 820
Active Coils in Extension Springs 821
Spring Rate of Extension Springs 821
Spring Index of Extension Springs 821
Coil Preload in Extension Springs 821
Deflection of Extension Springs 822
Coil Stresses in Extension Springs 822
End Stresses in Extension Springs 822
Surging in Extension Springs 823
Material Strengths for Extension Springs 823
Design of Helical Extension Springs 824
14.8 Helical Torsion Springs . 831
Terminology for Torsion Springs 832
Number of Coils in Torsion Springs 832
Deflection of Torsion Springs 832
Spring Rate of Torsion Springs 833
Coil Closure 833
Coil Stresses in Torsion Springs 833
Material Parameters for Torsion Springs 834
Safety Factors for Torsion Springs 835
Designing Helical Torsion Springs 836
14.9 Belleville Spring Washers . 838
Load-Deflection Function for Belleville Washers 840
Stresses in Belleville Washers 841
Static Loading of Belleville Washers 842
Dynamic Loading 842
Stacking Springs 842
Designing Belleville Springs 843
14.10 Case Studies 845
Case Study 10C: Design of a Return Spring for a Cam-Follower Arm 846
14.11 Summary . 850
14.12 References . 853
14.13 Problems . 854
CHAPTER 15 SCREWS AND FASTENERS 859
15.0 Introduction 859
15.1 Standard Thread Forms . 862
Tensile Stress Area 863
Standard Thread Dimensions 864
15.2 Power Screws 865
Square, Acme, and Buttress Threads 865
Power Screw Application 866
Power Screw Force and Torque Analysis 868
Friction Coefficients 869
Self-Locking and Back-Driving of Power Screws 870
Screw Efficiency 871
Ball Screws 872xix
15.3 Stresses in Threads . 874
Axial Stress 875
Shear Stress 875
Torsional Stress 876
15.4 Types of Screw Fasteners 876
Classification by Intended Use 877
Classification by Thread Type 877
Classification by Head Style 877
Nuts and Washers 879
15.5 Manufacturing Fasteners 880
15.6 Strengths of Standard Bolts and Machine Screws . 881
15.7 Preloaded Fasteners in Tension . 882
Preloaded Bolts Under Static Loading 885
Preloaded Bolts Under Dynamic Loading 890
15.8 Determining the Joint Stiffness Factor 895
Joints With Two Plates of the Same Material 897
Joints With Two Plates of Different Materials 898
Gasketed Joints 899
15.9 Controlling Preload . 904
The Turn-of-the-Nut Method 905
Torque-Limited Fasteners 905
Load-Indicating Washers 905
Torsional Stress Due to Torquing of Bolts 906
15.10 Fasteners in Shear . 907
Dowel Pins 908
Centroids of Fastener Groups 909
Determining Shear Loads on Fasteners 910
15.11 Case Study 912
Designing Headbolts for an Air Compressor 912
Case Study 8D: Design of the Headbolts for an Air Compressor 912
15.12 Summary . 917
15.13 References . 920
15.14 Bibliography 921
15.15 Problems . 921
CHAPTER 16 WELDMENTS _927
16.0 Introduction 927
16.1 Welding Processes 929
Types of Welding in Common Use 930
Why Should a Designer Be Concerned with the Welding Process? 931
16.2 Weld Joints and Weld Types . 931
Joint Preparation 933
Weld Specification 933
16.3 Principles of Weldment Design 934
16.4 Static Loading of Welds 93616.5 Static Strength of Welds . 936
Residual Stresses in Welds 937
Direction of Loading 937
Allowable Shear Stress for Statically Loaded Fillet and PJP Welds 937
16.6 Dynamic Loading of Welds . 940
Effect of Mean Stress on Weldment Fatigue Strength 940
Are Correction Factors Needed For Weldment Fatigue Strength? 940
Effect of Weldment Configuration on Fatigue Strength 941
Is There an Endurance Limit for Weldments? 945
Fatigue Failure in Compression Loading? 945
16.7 Treating a Weld as a Line 947
16.8 Eccentrically Loaded Weld Patterns 952
16.9 Design Considerations for Weldments in Machines . 954
16.10 Summary . 955
16.11 References . 956
16.12 Problems . 956
CHAPTER 17 CLUTCHES AND BRAKES _959
17.0 Introduction 959
17.1 Types of Brakes and Clutches . 961
17.2 Clutch/Brake Selection and Specification . 966
17.3 Clutch and Brake Materials . 968
17.4 Disk Clutches 968
Uniform Pressure 969
Uniform Wear 969
17.5 Disk Brakes . 971
17.6 Drum Brakes . 972
Short-Shoe External Drum Brakes 973
Long-Shoe External Drum Brakes 975
Long-Shoe Internal Drum Brakes 979
17.7 Summary . 979
17.8 References . 982
17.9 Bibliography 982
17.10 Problems . 983
APPENDIX A MATERIAL PROPERTIES 987
APPENDIX B BEAM TABLES 995
APPENDIX C STRESS–CONCENTRATION FACTORS 999
APPENDIX D ANSWERS TO SELECTED PROBLEMS 1007
INDEX


  كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا منه وأن ينال إعجابكم

رابط مباشر لتنزيل كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton
رابط من موقع عالم الكتب لتنزيل كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 

كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton

استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

خدمات الموضوع
 KonuEtiketleri كلمات دليليه
كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton , كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton , كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton ,كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton ,كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton , كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton
 KonuLinki رابط الموضوع
 Konu BBCode BBCode
 KonuHTML Kodu HTMLcode
إذا وجدت وصلات لاتعملفي الموضوع او أن الموضوع [ كتاب Machine Design - An Integrated Approach Fourth Edition - Robert L. Norton ] مخالف ,, من فضلك راسل الإدارة من هنا
صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-