كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
https://www.youtube.com/watch?v=aw8GR3QlY6M
وشرح لطريقة التنزيل من المنتدى بالفيديو:
https://www.youtube.com/watch?v=Lf2hNxCN1cw
https://www.youtube.com/watch?v=PRIGVoN7CPY
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

DEABS2010@YAHOO.COM



 
الرئيسيةالبوابةاليوميةس .و .جبحـثالتسجيلدخولحملة فيد واستفيدجروب المنتدى
شاطر | .

 

 كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
avatar

عدد المساهمات : 14496
التقييم : 23502
تاريخ التسجيل : 01/07/2009
العمر : 29
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

مُساهمةموضوع: كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath   الأحد 03 سبتمبر 2017, 10:31 pm

أخوانى فى الله
أحضرت لكم كتاب
Reinforced Concrete Design of Tall Building
Bungale S. Taranath


ويتناول الموضوعات الأتية :

Contents
List of Figures .xxi
List of Tables .xlvii
Foreword li
ICC Foreword lv
Preface .lvii
Acknowledgments lxi
A Special Acknowledgment lxiii
Author .lxv
Chapter 1 Design Concept 1
1.1 Characteristics of Reinforced Concrete .1
1.1.1 Confned Concrete 1
1.1.2 Ductility 4
1.1.3 Hysteresis .5
1.1.4 Redundancy 6
1.1.5 Detailing .6
1.2 Behavior of Reinforced Concrete Elements 7
1.2.1 Tension .7
1.2.2 Compression .7
1.2.3 Bending 8
1.2.3.1 Thumb Rules for Beam Design 8
1.2.4 Shear . 14
1.2.5 Sliding Shear (Shear Friction) 18
1.2.6 Punching Shear 21
1.2.7 Torsion 22
1.2.7.1 Elemental Torsion .22
1.2.7.2 Overall Building Torsion 25
1.3 External Loads 26
1.3.1 Earthquakes Loads .26
1.3.2 Wind Loads 27
1.3.2.1 Extreme Wind Conditions 29
1.3.3 Explosion Effects 31
1.3.4 Floods . 32
1.3.5 Vehicle Impact Loads . 32
1.4 Lateral Load-Resisting Systems 32
1.4.1 Shear Walls . 33
1.4.2 Coupled Shear Walls 36
1.4.3 Moment-Resistant Frames 37
1.4.4 Dual Systems 38
1.4.5 Diaphragm 38
1.4.6 Strength and Serviceability 39
1.4.7 Self-Straining Forces 40
1.4.8 Abnormal Loads .40viii Contents
1.5 Collapse Patterns .40
1.5.1 Earthquake Collapse Patterns 41
1.5.1.1 Unintended Addition of Stiffness . 41
1.5.1.2 Inadequate Beam–Column Joint Strength 42
1.5.1.3 Tension/Compression Failures 42
1.5.1.4 Wall-to-Roof Interconnection Failure 43
1.5.1.5 Local Column Failure . 43
1.5.1.6 Heavy Floor Collapse .44
1.5.1.7 Torsion Effects 44
1.5.1.8 Soft First-Story Collapse 45
1.5.1.9 Midstory Collapse . 45
1.5.1.10 Pounding . 45
1.5.1.11 P-? Effect 45
1.5.2 Collapse due to Wind Storms . 47
1.5.3 Explosion Effects 47
1.5.4 Progressive Collapse 47
1.5.4.1 Design Alternatives for Reducing Progressive
Collapse 49
1.5.4.2 Guidelines for Achieving Structural Integrity 49
1.5.5 Blast Protection of Buildings: The New SEI Standard 50
1.6 Buckling of a Tall Building under Its Own Weight .50
1.6.1 Circular Building 51
1.6.1.1 Building Characteristics . 52
1.6.2 Rectangular Building . 53
1.6.2.1 Building Characteristics . 53
1.6.3 Comments on Stability Analysis 53
Chapter 2 Gravity Systems . 55
2.1 Formwork Considerations . 55
2.1.1 Design Repetition .58
2.1.2 Dimensional Standards 58
2.1.3 Dimensional Consistency .59
2.1.4 Horizontal Design Techniques .60
2.1.5 Vertical Design Strategy 63
2.2 Floor Systems 65
2.2.1 Flat Plates .65
2.2.2 Flat Slabs 65
2.2.2.1 Column Capitals and Drop Panels 66
2.2.2.2 Comments on Two-Way Slab Systems . 67
2.2.3 Waf?e Systems . 67
2.2.4 One-Way Concrete Ribbed Slabs . 67
2.2.5 Skip Joist System 67
2.2.6 Band Beam System 68
2.2.7 Haunch Girder and Joist System 70
2.2.8 Beam and Slab System .73
2.3 Design Methods .73
2.3.1 One-Way and Two-Way Slab Subassemblies .73
2.3.2 Direct Design Method for Two-Way Systems 74
2.3.3 Equivalent Frame Method 75Contents ix
2.3.4 Yield-Line Method .77
2.3.4.1 Design Example: One-Way Simply Supported Slab . 78
2.3.4.2 Yield-Line Analysis of a Simply Supported
Square Slab . 81
2.3.4.3 Skewed Yield Lines 82
2.3.4.4 Limitations of Yield-Line Method 83
2.3.5 Deep Beams .83
2.3.6 Strut-and-Tie Method .85
2.4 One-Way Slab, T-Beams, and Two-Way Slabs: Hand Calculations 92
2.4.1 One-Way Slab; Analysis by ACI 318-05 Provisions 92
2.4.2 T-Beam Design .97
2.4.2.1 Design for Flexure 97
2.4.2.2 Design for Shear .100
2.4.3 Two-Way Slabs . 103
2.4.3.1 Two-Way Slab Design Example 106
2.5 Prestressed Concrete Systems . 108
2.5.1 Prestressing Methods . 111
2.5.2 Materials . 111
2.5.2.1 Posttensioning Steel 111
2.5.2.2 Concrete 112
2.5.3 PT Design . 113
2.5.3.1 Gravity Systems 113
2.5.3.2 Design Thumb Rules 115
2.5.3.3 Building Examples . 118
2.5.4 Cracking Problems in Posttensioned Floors 120
2.5.5 Cutting of Prestressed Tendons 121
2.5.6 Concept of Secondary Moments 123
2.5.6.1 Secondary Moment Design Examples 124
2.5.7 Strength Design for Flexure . 133
2.5.7.1 Strength Design Examples 134
2.5.8 Economics of Posttensioning . 142
2.5.9 Posttensioned Floor Systems in High-Rise Buildings . 143
2.5.9.1 Transfer Girder Example 144
2.5.10 Preliminary Design of PT Floor Systems; Hand Calculations 146
2.5.10.1 Preview . 146
2.5.10.2 Simple Span Beam 149
2.5.10.3 Continuous Spans . 152
2.5.11 Typical Posttensioning Details . 172
2.6 Foundations . 172
2.6.1 Pile Foundations . 178
2.6.2 Mat Foundations . 179
2.6.2.1 General Considerations . 179
2.6.2.2 Analysis 182
2.6.2.3 Mat for a 25-Story Building . 183
2.6.2.4 Mat for an 85-Story Building . 185
2.7 Guidelines for Thinking on Your Feet 187
2.8 Unit Quantities . 187
2.8.1 Unit Quantity of Reinforcement in Columns . 188
2.8.2 Unit Quantity of Reinforcement and Concrete in Floor
Framing Systems 197x Contents
Chapter 3 Lateral Load-Resisting Systems . 199
3.1 Flat Slab-Frame System 201
3.2 Flat Slab-Frame with Shear Walls .203
3.3 Coupled Shear Walls .204
3.4 Rigid Frame .205
3.4.1 De?ection Characteristics 207
3.4.1.1 Cantilever Bending Component 207
3.4.1.2 Shear Racking Component .207
3.5 Tube System with Widely Spaced Columns 210
3.6 Rigid Frame with Haunch Girders 210
3.7 Core-Supported Structures 212
3.8 Shear Wall–Frame Interaction 212
3.8.1 Behavior . 217
3.8.2 Building Examples . 218
3.9 Frame Tube System .224
3.9.1 Behavior .225
3.9.2 Shear Lag 225
3.9.3 Irregular Tube .229
3.10 Exterior Diagonal Tube .230
3.10.1 Example of Exterior Diagonal Tube: Onterie Center, Chicago 231
3.11 Bundled Tube . 232
3.11.1 Example of Bundled Tube: One Magnifcent Mile, Chicago . 232
3.12 Spinal Wall Systems 234
3.13 Outrigger and Belt Wall System 234
3.13.1 De?ection Calculations 238
3.13.1.1 Case 1: Outrigger Wall at the Top 238
3.13.1.2 Case 2: Outrigger Wall at Quarter Height from
the Top 239
3.13.1.3 Case 3: Outrigger Wall at Midheight 241
3.13.1.4 Case 4: Outrigger Wall at Quarter Height from
the Bottom 241
3.13.2 Optimum Location of a Single Outrigger Wall 242
3.13.3 Optimum Locations of Two Outrigger Walls .247
3.13.4 Recommendations for Optimum Locations .250
3.14 Miscellaneous Systems 251
Chapter 4 Wind Loads 253
4.1 Design Considerations . 253
4.2 Natural Wind . 255
4.2.1 Types of Wind 256
4.3 Characteristics of Wind .256
4.3.1 Variation of Wind Velocity with Height (Velocity Profle) 257
4.3.2 Wind Turbulence 258
4.3.3 Probabilistic Approach .260
4.3.4 Vortex Shedding . 261
4.3.5 Dynamic Nature of Wind .264
4.3.6 Pressures and Suctions on Exterior Surfaces .264
4.3.6.1 Scaling 264
4.3.6.2 Internal Pressures and Differential Pressures 265
4.3.6.3 Distribution of Pressures and Suctions .265
4.3.6.4 Local Cladding Loads and Overall Design Loads .266Contents xi
4.4 ASCE 7-05: Wind Load Provisions . 267
4.4.1 Analytical Procedure—Method 2, Overview 273
4.4.2 Method 2: Step-by-Step Procedure 274
4.4.2.1 Wind Speedup over Hills and Escarpments: Kzt Factor 280
4.4.2.2 Gust Effect Factor . 281
4.4.2.3 Determination of Design Wind Pressures Using
Graphs .289
4.4.2.4 Along-Wind Response 292
4.4.2.5 Worksheet for Calculation of Gust Effect Factor, Gf,
Along-Wind Displacement and Acceleration .296
4.4.2.6 Comparison of Gust Effect Factor and Along-Wind
Response .299
4.4.2.7 One More Example: Design Wind Pressures
for Enclosed Building, Method 2 301
4.5 National Building Code of Canada (NBCC 2005): Wind Load Provisions 304
4.5.1 Static Procedure .304
4.5.1.1 Specifed Wind Load 304
4.5.1.2 Exposure Factor, Cc 305
4.5.1.3 Gust Factors, C
g and Cgi 305
4.5.1.4 Pressure Coeffcient, C
p 306
4.5.2 Dynamic Procedure 306
4.5.2.1 Gust Effect Factor, C
g (Dynamic Procedure) .307
4.5.2.2 Design Example: Calculations for Gust Effect
Factor, C
g 309
4.5.2.3 Wind-Induced Building Motion . 311
4.5.2.4 Design Example 312
4.5.2.5 Comparison of Along-Wind and Across-Wind
Accelerations 314
4.5.3 Wind Load Comparison among International Codes
and Standards . 315
4.6 Wind-Tunnels . 315
4.6.1 Types of Wind-Tunnel Tests .320
4.6.1.1 Rigid Pressure Model . 321
4.6.1.2 High-Frequency Base Balance and High-Frequency
Force Balance (HFBB/HFFB Model) Model . 322
4.6.1.3 Aeroelastic Model .324
4.6.1.4 Multidegree-of-Freedom Aeroelastic Model 330
4.6.1.5 Option for Wind-Tunnel Testing . 331
4.6.1.6 Lower Limit on Wind-Tunnel Test Results . 331
4.6.2 Prediction of Acceleration and Human Comfort . 331
4.6.3 Load Combination Factors . 332
4.6.4 Pedestrian Wind Studies 332
4.6.5 Motion Perception: Human Response to Building Motions 335
4.6.6 Structural Properties Required for Wind-Tunnel
Data Analysis . 335
4.6.6.1 Natural Frequencies 336
4.6.6.2 Mode Shapes . 336
4.6.6.3 Mass Distribution . 337
4.6.6.4 Damping Ratio 337
4.6.6.5 Miscellaneous Information . 338
4.6.6.6 Example 338
4.6.7 Period Determination and Damping Values for Wind Design . 341xii Contents
Chapter 5 Seismic Design . 347
5.1 Building Behavior 349
5.1.1 In?uence of Soil .349
5.1.2 Damping . 350
5.1.3 Building Motions and De?ections 352
5.1.4 Building Drift and Separation 352
5.2 Seismic Design Concept 353
5.2.1 Structural Response . 353
5.2.2 Load Path . 353
5.2.3 Response of Elements Attached to Buildings 354
5.2.4 Adjacent Buildings . 354
5.2.5 Irregular Buildings . 355
5.2.6 Lateral Force–Resisting Systems . 356
5.2.7 Diaphragms 357
5.2.8 Ductility 358
5.2.9 Damage Control Features .360
5.2.10 Continuous Load Path 361
5.2.11 Redundancy 361
5.2.12 Confguration 362
5.2.13 Dynamic Analysis 364
5.2.13.1 Response-Spectrum Method 367
5.2.13.2 Response-Spectrum Concept . 371
5.2.13.3 Deformation Response Spectrum 372
5.2.13.4 Pseudo-Velocity Response Spectrum 373
5.2.13.5 Pseudo-Acceleration Response Spectrum . 374
5.2.13.6 Tripartite Response Spectrum: Combined
Displacement–Velocity–Acceleration (DVA) Spectrum . 374
5.2.13.7 Characteristics of Response Spectrum 379
5.3 An Overview of 2006 IBC 381
5.3.1 Occupancy Category 381
5.3.2 Overturning, Uplifting, and Sliding . 383
5.3.3 Seismic Detailing . 383
5.3.4 Live-Load Reduction in Garages .384
5.3.5 Torsional Forces .384
5.3.6 Partition Loads .384
5.4 ASCE 7-05 Seismic Provisions: An Overview 384
5.5 An Overview of Chapter 11 of ASCE 7-05, Seismic Design Criteria .386
5.5.1 Seismic Ground-Motion Values .386
5.5.1.1 Site Coeffcients, Fa and Fv .388
5.5.1.2 Site Class . 389
5.5.1.3 Design Response Spectrum . 389
5.5.2 Equivalent Lateral Force Procedure .390
5.5.2.1 Parameters S
s and Sie .396
5.5.2.2 Site-Specifc Ground Motion Analysis 397
5.5.3 Importance Factor and Occupancy Category . 398
5.5.3.1 Importance Factor, IE . 398
5.5.3.2 Occupancy Categories .399
5.5.4 Seismic Design Category .400
5.5.5 Design Requirements for SDC A Buildings 401
5.5.6 Geologic Hazards and Geotechnical Investigation 404Contents xiii
5.5.7 Base Shear for Preliminary Design 405
5.5.8 Design Response Spectrum for Selected Cities in the U.S.A. . 414
5.6 An Overview of Chapter 12 of ASCE 7-05, Seismic Design
Requirements for Building Structures . 427
5.6.1 Seismic Design Basis . 427
5.6.2 Structural System Selection . 427
5.6.3 Diaphragms 429
5.6.3.1 Irregularities . 430
5.6.4 Seismic Load Effects and Combinations . 430
5.6.5 Direction of Loading 431
5.6.6 Analysis Procedure 432
5.6.7 Modeling Criteria . 432
5.6.8 Modal Analysis 433
5.6.9 Diaphragms, Chords, and Collectors . 433
5.6.10 Structural Walls and Their Anchorage 434
5.6.11 Drift and Deformation 435
5.6.12 Foundation Design . 436
5.6.12.1 Foundation Requirements for Structures
Assigned to Seismic Design Category C 437
5.6.12.2 Foundation Requirements for Structures
Assigned to Seismic Design Categories
D, E, or F . 437
5.7 ASCE 7-05, Seismic Design: An In-Depth Discussion . 438
5.7.1 Seismic Design Basis . 439
5.7.2 Structural System Selection .440
5.7.2.1 Bearing Wall System 440
5.7.2.2 Building Frame System 441
5.7.2.3 Moment Frame System . 441
5.7.2.4 Dual System 441
5.7.3 Special Reinforced Concrete Shear Wall .442
5.7.4 Detailing Requirements .442
5.7.5 Building Irregularities 443
5.7.5.1 Plan or Horizontal Irregularity .446
5.7.5.2 Vertical Irregularity 448
5.7.6 Redundancy 448
5.7.7 Seismic Load Combinations .449
5.7.7.1 Seismic Load Effect 450
5.7.7.2 Seismic Load Effect with Overstrength . 451
5.7.7.3 Elements Supporting Discontinuous
Walls or Frames 451
5.7.8 Direction of Loading 451
5.7.9 Analysis Procedures . 452
5.7.9.1 Equivalent Lateral-Force Procedure . 455
5.7.9.2 Modal Response Spectrum Analysis 463
5.7.10 Diaphragms, Chords, and Collectors .464
5.7.10.1 Diaphragms for SDC A 465
5.7.10.2 Diaphragms for SDCs B through F 465
5.7.10.3 General Procedure for Diaphragm Design .465
5.7.11 Catalog of Seismic Design Requirements 473
5.7.11.1 Buildings in SDC A 473
5.7.11.2 Buildings in SDC B 474xiv Contents
5.7.11.3 Buildings in SDC C 475
5.7.11.4 Buildings in SDC D 476
5.7.11.5 Buildings in SDC E 478
5.7.11.6 Buildings in SDC F . 478
5.8 Seismic Design Example: Dynamic Analysis Procedure (Response
Spectrum Analysis) Using Hand Calculations 478
5.9 Anatomy of Computer Response Spectrum Analyses (In Other Words,
What Goes on in the Black Box) .487
5.10 Dynamic Response Concept 497
5.10.1 Difference between Static and Dynamic Analyses 500
5.10.2 Dynamic Effects due to Wind Loads .503
5.10.3 Seismic Periods 504
5.11 Dynamic Analysis Theory 505
5.11.1 Single-Degree-of-Freedom Systems 505
5.11.2 Multi-Degree-of-Freedom Systems 508
5.11.3 Modal Superposition Method . 511
5.11.4 Normal Coordinates . 511
5.11.5 Orthogonality . 512
5.12 Summary . 518
Chapter 6 Seismic Design Examples and Details . 523
6.1 Seismic Design Recap . 523
6.2 Design Techniques to Promote Ductile Behavior . 526
6.3 Integrity Reinforcement 529
6.4 Review of Strength Design 530
6.4.1 Load Combinations 532
6.4.2 Earthquake Load E . 532
6.4.2.1 Load Combination for Verifying Building Drift 534
6.4.3 Capacity Reduction Factors, ? 534
6.5 Intermediate Moment-Resisting Frames . 535
6.5.1 General Requirements: Frame Beams . 535
6.5.2 Flexural and Transverse Reinforcement: Frame Beams 535
6.5.3 Transverse Reinforcement: Frame Columns 537
6.5.4 Detailing Requirements for Two-Way Slab Systems without
Beams . 538
6.6 Special Moment-Resisting Frames 539
6.6.1 General Requirements: Frame Beams . 539
6.6.2 Flexural Reinforcement: Frame Beams .540
6.6.3 Transverse Reinforcement: Frame Beams . 541
6.6.4 General Requirements: Frame Columns 541
6.6.5 Flexural Reinforcement: Frame Columns 541
6.6.6 Transverse Reinforcement: Frame Columns 544
6.6.7 Transverse Reinforcement: Joints 546
6.6.8 Shear Strength of Joint .546
6.6.9 Development of Bars in Tension 548
6.7 Shear Walls 548
6.7.1 Minimum Web Reinforcement: Design for Shear .548
6.7.2 Boundary Elements 549
6.7.3 Coupling Beams . 550
6.8 Frame Members Not Designed to Resist Earthquake Forces 551Contents xv
6.9 Diaphragms . 552
6.9.1 Minimum Thickness and Reinforcement . 552
6.9.2 Shear Strength 552
6.9.3 Boundary Elements 553
6.10 Foundations . 553
6.10.1 Footings, Mats, and Piles . 553
6.10.2 Grade Beams and Slabs-on-Grade . 554
6.10.3 Piles, Piers, and Caissons . 554
6.11 Design Examples . 554
6.11.1 Frame Beam Example: Ordinary Reinforced Concrete
Moment Frame . 555
6.11.2 Frame Column Example: Ordinary Reinforced Concrete
Moment Frame . 557
6.11.3 Frame Beam Example: Intermediate Reinforced Concrete
Moment Frame . 559
6.11.4 Frame Column Example: Intermediate Reinforced Concrete
Moment Frame . 561
6.11.5 Shear Wall Example: Seismic Design Category A, B, or C . 563
6.11.6 Frame Beam Example: Special Reinforced Concrete
Moment Frame .565
6.11.7 Frame Column Example: Special Reinforced Concrete
Moment Frame . 570
6.11.8 Beam–Column Joint Example: Special Reinforced
Concrete Frame 574
6.11.9 Special Reinforced Concrete Shear Wall . 577
6.11.9.1 Preliminary Size Determination . 579
6.11.9.2 Shear Design . 579
6.11.9.3 Shear Friction (Sliding Shear) 580
6.11.9.4 Longitudinal Reinforcement . 581
6.11.9.5 Web Reinforcement 581
6.11.9.6 Boundary Elements 583
6.11.10 Special Reinforced Concrete Coupled Shear Walls . 587
6.11.10.1 Coupling Beams . 588
6.11.10.2 Wall Piers . 593
6.12 Typical Details .599
6.13 ACI 318-08 Update 600
6.13.1 Outline of Major Changes 600
6.13.2 Summary of Chapter 21, ACI 318-08 .605
6.13.3 Analysis and Proportioning of Structural Members 605
6.13.4 Reinforcement in Special Moment Frames and Special
Structural Walls 605
6.13.5 Mechanical Splices in Special Moment Frames and Special
Structural Walls 606
6.13.6 Welded Splices in Special Moment Frames and Special
Structural Walls 606
6.13.7 Ordinary Moment Frames, SDC B 606
6.13.8 Intermediate Moment Frames 606
6.13.9 Two-Way Slabs without Beams 607
6.13.10 Flexural Members (Beams) of Special Moment Frames .607
6.13.11 Transverse Reinforcement 608
6.13.12 Shear Strength Requirements .609xvi Contents
6.13.13 Special Moment Frame Members Subjected to Bending
and Axial Loads .609
6.13.14 Shear Strength Requirements for Columns 611
6.13.15 Joints of Special Moment Frames 611
6.13.16 Special Structural Walls and Coupling Beams 611
6.13.17 Shear Wall Design for Flexure and Axial Loads . 612
6.13.18 Boundary Elements of Special Structural Walls 613
6.13.19 Coupling Beams . 613
Chapter 7 Seismic Rehabilitation of Existing Buildings 617
7.1 Code-Sponsored Design 619
7.2 Alternate Design Philosophy . 619
7.3 Code Provisions for Seismic Upgrade . 621
7.4 Building Deformations 622
7.5 Common Defciencies and Upgrade Methods . 623
7.5.1 Diaphragms 624
7.5.1.1 Cast-in-Place Concrete Diaphragms .624
7.5.1.2 Precast Concrete Diaphragms 627
7.5.2 Shear Walls . 627
7.5.2.1 Increasing Wall Thickness . 627
7.5.2.2 Increasing Shear Strength of Wall 628
7.5.2.3 Inflling between Columns . 628
7.5.2.4 Addition of Boundary Elements . 628
7.5.2.5 Addition of Confnement Jackets 629
7.5.2.6 Repair of Cracked Coupling Beams . 629
7.5.2.7 Adding New Walls 629
7.5.2.8 Precast Concrete Shear Walls . 629
7.5.3 Inflling of Moment Frames . 629
7.5.4 Reinforced Concrete Moment Frames .630
7.5.5 Open Storefront 631
7.5.6 Clerestory . 631
7.5.7 Shallow Foundations 632
7.5.8 Rehabilitation Measures for Deep Foundations . 632
7.5.9 Nonstructural Elements 633
7.5.9.1 Nonload-Bearing Walls 633
7.5.9.2 Precast Concrete Cladding . 633
7.5.9.3 Stone or Masonry Veneers 634
7.5.9.4 Building Ornamentation .634
7.5.9.5 Acoustical Ceiling 634
7.6 Seismic Rehabilitation of Existing Buildings, ASCE/SEI 41-06 634
7.6.1 Overview of Performance Levels . 641
7.6.2 Permitted Design Methods .642
7.6.3 Systematic Rehabilitation .643
7.6.3.1 Determination of Seismic Ground Motions .644
7.6.3.2 Determination of As-Built Conditions .644
7.6.3.3 Primary and Secondary Components .645
7.6.3.4 Setting Up Analytical Model and Determination of
Design Forces .645
7.6.3.5 Ultimate Load Combinations: Combined Gravity and
Seismic Demand .647Contents xvii
7.6.3.6 Component Capacity Calculations, QCE and QCL .648
7.6.3.7 Capacity versus Demand Comparisons 649
7.6.3.8 Development of Seismic Strengthening Strategies . 651
7.6.4 ASCE/SEI 41-06: Design Example 661
7.6.4.1 Dual System: Moment Frames and Shear Walls 661
7.6.5 Summary of ASCE/SEI 41-06 .666
7.7 Fiber-Reinforced Polymer Systems for Strengthening of Concrete
Buildings 667
7.7.1 Mechanical Properties and Behavior .667
7.7.2 Design Philosophy 668
7.7.3 Flexural Design 668
7.8 Seismic Strengthening Details 668
7.8.1 Common Strategies for Seismic Strengthening .669
Chapter 8 Tall Buildings .685
8.1 Historical Background .688
8.2 Review of High-Rise Architecture 692
8.3 Functional Requirements .694
8.4 Defnition of Tall Buildings .695
8.5 Lateral Load Design Philosophy .695
8.6 Concept of Premium for Height 696
8.7 Relative Structural Cost .697
8.8 Factors for Reduction in the Weight of Structural Frame .697
8.9 Development of High-Rise Architecture .699
8.9.1 Architect–Engineer Collaboration .704
8.9.2 Sky Scraper Pluralism 704
8.9.3 Structural Size 705
8.10 Structural Scheme Options 705
8.10.1 Space Effciency of High-Rise Building Columns . 716
8.10.2 Structural Cost and Plan Density Comparison 717
8.11 Summary of Building Technology 718
8.12 Structural Concepts . 719
8.13 Bending and Shear Rigidity Index 720
8.14 Case Studies .724
8.14.1 Empire State Building, New York, City, New York .724
8.14.2 South Walker Tower, Chicago, Illinois 724
8.14.3 Miglin-Beitler Tower, Chicago, Illinois .726
8.14.4 Trump Tower, Chicago, Illinois . 730
8.14.4.1 Vital Statistics 731
8.14.5 Jin Mao Tower, Shanghai, China . 731
8.14.6 Petronas Towers, Malaysia .734
8.14.7 Central Plaza, Hong Kong 736
8.14.8 Singapore Treasury Building . 739
8.14.9 City Spire, New York City 740
8.14.10 NCNB Tower, North Carolina 740
8.14.11 Museum Tower, Los Angeles, California . 743
8.14.12 MGM City Center, Vdara Tower, Las Vegas, Nevada 744
8.14.13 Citybank Plaza, Hong Kong . 746
8.14.14 Trump Tower, New York 746xviii Contents
8.14.15 Two Prudential Plaza, Chicago, Illinois . 747
8.14.16 Cent Trust Tower, Miami, Florida 749
8.14.17 Metropolitan Tower, New York City 751
8.14.18 Carnegie Hall Tower, New York City 752
8.14.19 Hopewell Center, Hong Kong 753
8.14.20 Cobalt Condominiums, Minneapolis, Minnesota 754
8.14.21 The Cosmopolitan Resort & Casino, Las Vegas, Nevada 757
8.14.22 Elysian Hotel and Private Residences, Chicago, Illinois . 759
8.14.22.1 Foundations 759
8.14.22.2 Floor Systems .760
8.14.22.3 Gravity System . 761
8.14.22.4 Lateral System . 761
8.14.22.5 Tuned Liquid Damper 761
8.14.23 Shangri-La New York (610 Lexington Avenue),
New York 762
8.14.24 Millennium Tower, 301 Mission Street,
San Francisco, California . 768
8.14.25 Al Bateen Towers, Dubai, UAE . 773
8.14.25.1 Wind Loads 777
8.14.25.2 Seismic Loads 778
8.14.26 SRZ Tower, Dubai, UAE 778
8.14.26.1 Wind Loads 779
8.14.26.2 Seismic Loads 782
8.14.26.3 Computer Model 782
8.14.26.4 Building Behavior 783
8.14.26.5 Wind . 783
8.14.27 The Four Seasons Hotel and Tower, Miami, Florida . 783
8.14.28 Burj Dubai 786
8.15 Future of Tall Buildings 791
Chapter 9 Special Topics . 793
9.1 Damping Devices for Reducing Motion Perception . 793
9.1.1 Passive Viscoelastic Dampers 793
9.1.2 Tuned Mass Damper 795
9.1.2.1 Citicorp Tower, New York .796
9.1.2.2 John Hancock Tower, Boston, Massachusetts . 798
9.1.2.3 Design Considerations for TMD .799
9.1.3 Sloshing Water Damper .799
9.1.4 Tuned Liquid Column Damper 799
9.1.4.1 Wall Center, Vancouver, British Columbia 800
9.1.4.2 Highcliff Apartment Building, Hong Kong .800
9.1.5 Simple Pendulum Damper .800
9.1.5.1 Taipei Financial Center 802
9.1.6 Nested Pendulum Damper .803
9.2 Seismic Isolation .804
9.2.1 Salient Features .806
9.2.2 Mechanical Properties of Seismic Isolation Systems 808
9.2.3 Elastomeric Isolators .808
9.2.4 Sliding Isolators . 810
9.2.5 Seismically Isolated Structures: ASCE 7-05 Design Provisions . 810Contents xix
9.2.5.1 Equivalent Lateral Force Procedure 813
9.2.5.2 Lateral Displacements . 813
9.2.5.3 Minimum Lateral Forces for the Design of Isolation
System and Structural Elements at or below
Isolation System 816
9.2.5.4 Minimum Lateral Forces for the Design of Structural
Elements above Isolation System . 816
9.2.5.5 Drift Limits 817
9.2.5.6 Illustrative Example: Static Procedure 817
9.3 Passive Energy Dissipation . 829
9.4 Preliminary Analysis Techniques 830
9.4.1 Portal Method 833
9.4.2 Cantilever Method .834
9.4.3 Lateral Stiffness of Frames 837
9.4.4 Framed Tube Structures .845
9.5 Torsion .846
9.5.1 Preview .846
9.5.2 Concept of Warping Behavior . 857
9.5.3 Sectorial Coordinate ?¢ . 861
9.5.4 Shear Center .863
9.5.4.1 Evaluation of Product Integrals .865
9.5.5 Principal Sectorial Coordinate ?s Diagram .865
9.5.5.1 Sectorial Moment of Inertia I
? 865
9.5.6 Torsion Constant J .865
9.5.7 Calculation of Sectorial Properties: Worked Example 866
9.5.8 General Theory of Warping Torsion 867
9.5.8.1 Warping Torsion Equations for Shear Wall Structures 870
9.5.9 Torsion Analysis of Shear Wall Building: Worked Example . 871
9.5.10 Warping Torsion Constants for Open Sections 881
9.5.11 Stiffness Method Using Warping-Column Model .883
9.6 Performance-Based Design .885
9.6.1 Design Ideology .885
9.6.2 Performance-Based Engineering .886
9.6.3 Linear Response History Procedure 887
9.6.4 Nonlinear Response History Procedure 887
9.6.5 Member Strength .888
9.6.6 Design Review .888
9.6.7 New Building Forms 889
9.7 Wind De?ections .890
9.8 2009 International Building Code (2009 IBC) Updates 892
9.8.1 An Overview of Structural Revisions 892
9.8.1.1 Earthquake Loads 892
9.8.1.2 Wind Loads 892
9.8.1.3 Structural Integrity 893
9.8.1.4 Other Updates in Chapter 16 .893
9.8.1.5 Chapter 18: Soils and Foundations 893
9.8.1.6 Chapter 19: Concrete .893
9.8.2 Detail Discussion of Structural Revisions .893
9.8.2.1 Section 1604.8.2: Walls .893
9.8.2.2 Section 1604.8.3: Decks 894
9.8.2.3 Section 1605.1.1: Stability 894xx Contents
9.8.2.4 Sections 1607.3 and 1607.4: Uniformly Distributed
Live Loads and Concentrated Live Loads 894
9.8.2.5 Section 1607.7.3: Vehicle Barrier Systems .894
9.8.2.6 Section 1607.9.1.1: One-Way Slabs .894
9.8.2.7 Section 1609.1.1.2: Wind Tunnel Test Limitations .894
9.8.2.8 Section 1613.7: ASCE 7-05, Section 11.7.5:
Anchorage of Walls .897
9.8.2.9 Section 1607.11.2.2: Special Purpose Roofs 897
9.8.2.10 Section 1613: Earthquake Loads 897
9.8.2.11 Minimum Distance for Building Separation .898
9.8.2.12 Section 1613.6.7: Minimum Distance for Building
Separation .899
9.8.2.13 Section 1614: Structural Integrity .899
9.8.3 Chapter 17: Structural Tests and Special Inspections 900
9.8.3.1 Section 1704.1: General 900
9.8.3.2 Section 1704.4: Concrete Construction .900
9.8.3.3 Section 1704.10: Helical Pile Foundations .900
9.8.3.4 Section 1706: Special Inspections for Wind
Requirements 900
9.8.4 Chapter 18: Soils and Foundations 900
9.8.4.1 Section 1803: Geotechnical Investigations .900
9.8.4.2 Section 1807.2.3: Safety Factor .900
9.8.4.3 Section 1808.3.1: Seismic Overturning 901
9.8.4.4 Sections 1810.3.1.5 and 1810.3.5.3.3: Helical Piles . 901
9.8.5 Chapter 19: Concrete . 901
9.8.5.1 Section 1908.1: General 901
9.8.5.2 Section 1908.1.9: ACI 318, Section D.3.3 . 901
9.8.5.3 Sections 1909.6.1 and 1909.6.3: Basement Walls and
Openings in Walls 901
9.8.6 Anticipated Revisions in 2012 IBC . 901
References .903
Index 907xxi


  كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا منه وأن ينال إعجابكم

رابط تنزيل كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 

كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath

استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

خدمات الموضوع
 KonuEtiketleri كلمات دليليه
كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath , كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath , كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath ,كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath ,كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath , كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath
 KonuLinki رابط الموضوع
 Konu BBCode BBCode
 KonuHTML Kodu HTMLcode
إذا وجدت وصلات لاتعملفي الموضوع او أن الموضوع [ كتاب Reinforced Concrete Design of Tall Building - Bungale S. Taranath ] مخالف ,, من فضلك راسل الإدارة من هنا
صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى كتب ومحاضرات الأقسام الهندسية المختلفة-