كتاب Principles of Welding
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
http://www.eng2010.yoo7.com/t5785-topic
وشرح لطريقة التنزيل من المنتدى بالفيديو:
http://www.eng2010.yoo7.com/t2065-topic
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

Deabs2010@yahoo.com



 
الرئيسيةالبوابةاليوميةس .و .جبحـثالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر

 

 كتاب Principles of Welding

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 15149
التقييم : 25077
تاريخ التسجيل : 01/07/2009
العمر : 30
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Principles of Welding  Empty
مُساهمةموضوع: كتاب Principles of Welding    كتاب Principles of Welding  Emptyالأربعاء 19 يونيو 2013, 5:08 pm

أخوانى فى الله
أحضرت لكم كتاب
Principles of Welding
Processes, Physics, Chemistry, and Metallurgy
ROBERT W. MESSLER, Jr.
Materials Science and Engineering Department
RensselaerPolytechnic Institute Troy

كتاب Principles of Welding  P_w10
ويتناول الموضوعات الأتية :


CONTENTS
PREFACE xix
I THEPROCESSANDPROCESSESOFWELDING
1 INTRODUCTION TO THE PROCESS OF WELDING
1.1 What Is Welding? / 3
1.2 The Evolution of Welding as a Process / 6
1.3 The Nature of an Ideal Weld: Achieving Continuity / 7
1.4 Impediments to Making Ideal Welds in the Real World / 10
1.5 What It Takes to Make a Real Weld / 12
1.6 Advantages and Disadvantages of Welding / 14
1.7 Summary / 15
References and Suggested Reading / 15
2 CLASSIFYING WELDING PROCESSES
Why Classify Processes? / 17
Mechanisms for Obtaining Material Continuity / 18
The Roles of Temperature and Pressure / 21
Alternative Bases for Classification / 23
2.4.1 Fusion Versus Nonfusion / 23
2.4.2 Pressure Versus Nonpressure / 25
2.4.3 Energy Source for Welding  
2.4.4 Interface Relationships and Classification by Energy
Transfer Processes / 27
2.4.5 Other Bases for Classification and Subclassification / 28
2.5 Allied Processes / 35
2.6 The AWS Classification Scheme / 37
2.7 Summary / 39
References and Suggested Reading / 39
3 FUSIONWELDING PROCESSES 40
3.1 General Description of Fusion Welding Processes / 40
3.2 Chemical Fusion Welding Processes / 41
3.2.1 Oxyfuel Gas Welding / 41
3.2.2 Aluminothermic Welding / 46
3.3 Electric Arc Welding Processes / 49
3.3.1 Nonconsumable Electrode Arc Welding Processes / 50
3.3.1.1 Gas-Tungsten Arc Welding / 51
3.3.1.2 Plasma Arc Welding / 55
3.3.1.3 Magnetically Impelled Arc Butt Welding 1'57
3.3.2 Consumable Electrode Arc Welding Processes / 60
3.3.2.1 Gas-Metal Arc Welding / 60
3.3.2.2 Shielded-Metal Arc Welding / 64
3.3.2.3 Flux-Cored Arc Welding / 66
3.3.2.4 Submerged Arc Welding / 68
3.3.2.5 Electrogas Welding / 69
3.3.2.6 Electroslag Welding / 70
3.4 Resistance Welding Processes / 71
3.4.1 Resistance Spot, Resistance Seam, and Projection
Welding / 71
3.4.2 Flash, Upset, and Percussion Welding / 74
3.5 High-Intensity Radiant Energy or High-Density Beam
Welding Processes / 77
3.5.1 High-Energy-Density (Laser and Electron) Beam
Welding Processes / 80
3.5.2 Focused IR and Imaged Arc Welding / 86
3.5.3 Microwave Welding / 88
References and Suggested Reading / 93
3.6 Summary / 92CONTENTS Vii
4 NONFUSION WELDING PROCESSES 94
4.1 General Description of Nonfusion Welding Processes / 94
4.2 Pressure (Nonfusion) Welding Processes / 97
4.2.1 Cold Welding Processes / 98
4.2.2 Hot Pressure Welding / 99
4.2.2.1
4.2.2.2 Forge Welding / 101
Pressure Gas Welding / 100
4.2.3 Roll Welding / 102
4.2.4 Explosion Welding / 103
4.3 Friction Welding Processes / 105
4.3.1 Radial and Orbital Welding / 107
4.3.2 Direct-Drive Versus Inertia-Drive (Friction)
Welding / 107
4.3.3 Angular and Linear Reciprocating (Friction)
Welding / 108
4.3.4 Ultrasonic (Friction) Welding / 109
4.3.5 Friction Stir Welding / 112
4.3.6 Friction Surfacing / 113
4.4 Diffusion Joining Processes / 113
4.4.1 Diffusion Welding / 114
4.4.1.1 Conventional Diffusion Welding / 118
4.4.1.2 Deformation Diffusion Welding / 118
4.4.1.3 Resistance Diffusion Welding / 118
4.4.1.4 Continuous Seam Diffusion Welding / 118
4.4.2 Diffusion Brazing / 119
4.4.3 Combined Forming and Diffusion Welding / 119
4.5 Solid-state Deposition Welding Processes / 120
4.6 Inspection and Repair of Nonfusion Welds / 120
4.7 Summary / 123
References and Suggested Reading / 123
IJ THE PHYSICSOF WELDING
5 ENERGY FOR WELDING
5.1 Introduction to the Physics of Welding / 127
5.2 Sources of Energy for Welding
Source Energy, Transferred Power, Energy Density,
and Energy Distribution / 128
5.3.1 Energy Available at a Source (Energy Level
or Capacity / 128
5.3.2 Transferred Power / 130
5.3.3 Source Intensity or Energy Density / 130
5.3.4 Energy Distribution / 131
Energy Input to a Weld / 132
Causes of Loss During Energy Transfer From Source
to Work / 134
Transfer Efficiency of Processes / 134
Effects of Deposited Energy: Good and Bad / 138
5.7.1 Desirable Melting, Fluxing, or Softening / 139
5.7.2 Adverse Effects of Heat in and Around the Weld / 141
Effects of Energy Density and Distribution / 142
Summary / 144
References and Suggested Reading / 146
6 THE FLOW OF HEAT IN WELDS  
General Description of the Flow of Heat in Welds / 147
Weld Joint Configurations / 148
6.2.1 Types of Weld Joints / 148
6.2.2 General Weld Design Guidelines / 152
6.2.3 Size of a Weld and Amount of Welding / 154
The Welding Thermal Cycle / 154
The Generalized Equation of Heat Flow / 158
Analysis of Heat Flow During Welding / 161
6.5.1 Rosenthal's Simplified Approach / 162
6.5.2 Modifications to Rosenthal's Solutions / 165
6.5.3 Dimensionless Weld Depth Versus Dimensionless
Operating Parameter / 167
Effect of Welding Parameters on Heat Distribution / 168
Prediction of Weld Zones and Weld Cooling Rates / 172
6.7.1 Zones in Fusion-Welded Materials / 172
6.7.2 Simplified Equations for Approximating Welding
Conditions / 173
6.7.2.1 Peak Temperatures / 174
6.7.2.2 Width of the Heat-Affected Zone / 174
6.7.2.3 Solidification Rate / 174
6.7.2.4 Cooling Rates / 175
6.8 Weld Simulation and Simulators / 176
6.9 Summary / 178
References and Suggested Reading / 178
7 THERMALLY INDUCED DISTORTION AND RESIDUAL
STRESSES DURING WELDING 181
7.1 Origin of Thermal Stresses / 181
7.2 Distortion Versus Residual Stresses / 183
7.2.1 Causes of Residual Stresses in Weldments / 185
7.2.1.1 Residual Stresses From Mismatch / 186
7.2.1.2 Residual Stresses From Nonuniform,
Nonelastic Strains / 189
7.2.2 Causes of Distortion in Weldments / 190
7.3 Typical Residual Stresses in Weldments / 191
7.4 Effects of Distortion / 194
7.5 Effects of Residual Stresses / 196
7.6 Measurement of Residual Stresses in Weldments / 197
7.6.1 Stress-Relaxation Techniques / 199
7.6.1.1 A Sectioning Technique Using Electric-Resistance
Strain Gauges / 199
7.6.1.2 The Rosenthal-Norton Section Technique / 201
7.6.1.3 The Mathar-Soete Hole Drilling Technique / 202
7.6.1.4 The Gunnert Drilling Technique / 202
7.6.2 The X-ray Diffraction Technique / 204
7.7 Residual Stress Reduction and Distortion Control / 206
7.7.1 The Interplay Between Residual Stresses and
Distortion / 206
7.7.2 Prevention Versus Remediation / 206
7.7.3 Controlling or Removing Residual Stresses / 207
7.7.4 Controlling or Removing Distortion / 208
7.8 Numerical Methods for Estimating Residual Stresses / 210
7.9 Summary / 211
References and Suggested Reading / 214
8 THE PHYSICS OF WELDING ENERGY OR POWER
SOURCES
8.1 Electricity for Welding / 216
8.2 The Physics of an Electric Arc and Arc Welding / 223
8.2.1 The Physics of an Electric Arc / 223
216X CONTENTS
8.2.1.1 The Welding Arc / 224
8.2.1.2 The Arc Plasma / 224
8.2.1.3 Arc Temperature / 224
8.2.1.4 Arc Radiation / 226
8.2.1.5 Arc Electrical Features / 226
8.2.1.6 Effect of Magnetic Fields on Arcs / 228
8.2.2 Volt-Ampere Characteristics for Welding / 231
8.2.2.1 Constant-Current Power Sources / 232
8.2.2.2 Constant-Voltage Power Sources / 232
8.2.2.3 Combined Characteristic Sources / 234
8.3 The Physics of a Plasma / 234
8.4 The Physics of Resistance (or Joule) Heating and
Resistance Welding / 237
8.4.1 Joule Heating / 237
8.4.2 The Resistance Welding Cycle / 239
8.4.3 Resistance Welding Power Supplies / 239
8.5 The Physics of Electron Beams / 243
8.5.1 Electron-Beam Generation / 245
8.5.2 Electron-Beam Control / 248
8.5.3 Role of Vacuum in EB Welding / 252
8.5.4 Electron-Beam-Material Interactions / 253
8.6 The Physics of Laser Beams / 256
8.6.1 Laser Light / 256
8.6.2 Laser Generation / 256
8.6.2.1 Nd:YAG Lasers / 258
8.6.2.2 CO, Lasers / 259
8.6.3 Laser-Beam Control / 259
8.6.4 Laser-Beam-Material Interactions / 260
8.6.5 Benefits of Laser-Beam and Electron-Beam Welding / 263
8.7 The Physics of a Combustion Flame / 265
8.7.1 Fuel Gas Combustion or Heat of Combustion / 265
8.7.2 Flame Temperature / 265
8.7.3 Flame Propagation Rate or Combustion Velocity / 266
8.7.4 Combustion Intensity / 266
8.8 The Physics of Converting Mechanical Work to Heat / 266
8.9 Summary / 268
References and Suggested Reading J 269CONTENTS Xi
9 MOLTEN METAL TRANSFER IN CONSUMABLE
ELECTRODE ARC WELDING  
Forces Contributing to Molten Metal Transfer in Welding / 270
9.1.1 Gas Pressure Generation at Flux-Coated or Flux-Cored
Electrode Tips / 271
9.1.2 Electrostatic Attraction / 272
9.1.3 Gravity / 272
9.1.4 Electromagnetic Pinch Effect / 272
9.1.5 Explosive Evaporation / 272
9.1.6 Electromagnetic Pressure / 273
9.1.7 Plasma Friction / 273
9.1.8 Surface Tension / 273
Free-Flight Transfer Modes / 274
9.2.1 Globular Transfer / 275
9.2.2 Spray Transfer / 276
Bridging of Short-circuiting Transfer Modes / 278
Pulsed-Arc or Pulsed-Current Transfer / 279
Slag-ProtectedTransfer / 280
Variations of Major Transfer Modes / 281
Effect of Welding Process Parameters and Shielding Gas
on Transfer Mode / 282
9.7.1 Effects on Transition Current / 282
9.7.2 ShieldingGas Effects / 285
9.7.3 Process Effects / 287
9.7.4 Operating Mode or Polarity Effects / 288
Summary / 289
References and Suggested Reading / 289
10 WELD POOL CONVECTION, OSCILLATION,
AND EVAPORATION
10.1 Origin of Convection / 291
10.1.1 Generalities on Convection in Weld Pools / 292
10.1.2 Buoyancy or Gravity Force / 294
10.1.3 Surface Gradient Force or Marangoni
Convection / 295
10.1.4 Electromotive Force or Lorentz Force / 296
10.1.5 Impinging or Friction Force / 297
10.1.6 Modeling Convection and Combined Force
Effects J 298
291XI1 CONTENTS
10.2 Effects of Convection / 298
10.2.1 Effect of Convection on Penetration / 300
10.2.2 Effect of Convection on Macrosegregation / 301
10.2.3 Effect of Convection of Porosity / 304
10.3 Enhancing Convection / 305
10.4 Weld Pool Oscillation / 306
10.5 Weld Pool Evaporation and Its Effects / 307
10.6 Summary / 310
References and Suggested Reading / 310
111 THE CHEMISTRY OF WELDING
11 MOLTEN METAL AND WELD POOL REACTIONS
11.1 Gas-Metal Reactions / 316
11.1.1 Gas Dissolution and Solubility in Molten
Metal / 317
11.1.2 Solid Solution Hardening and Phase
Stabilization / 323
11.1.3 Porosity Formation / 326
11.1.4 Embrittlement Reactions / 327
11.1.5 Hydrogen Effects / 328
11.1.5.1 Hydrogen Embrittlement / 329
11.1.5.2 Hydrogen Porosity / 331
11.1.5.3 Hydrogen Cracking / 332
11.2 Molten Metal Shielding / 333
11.2.1 Shielding Gases / 333
11.2.2 Slags / 335
11.2.3 Vacuum / 335
11.2.4
11.3 Slag-Metal Reactions / 337
11.3.1 DeoxidizingDenitriding (or Killing) Versus
Protection / 337
11.3.2 Flux-Protected Welding Processes / 339
11.3.3 Shielding Capacities of Different Processes / 340
11.3.4 Slag Formation / 341
11.3.5 Slag-Metal Chemical Reactions / 342
11.3.6 Flux Types / 342
Self-Protection and Self-FluxingAction
Common Covered- and Cored-Electrode Flux
Systems / 344
11.3.7.1 Shielded Metal Arc Welding Electrode
Coatings / 344
11.3.7.2 Flux-Cored Arc Weldipg Fluxes / 344
11.3.7.3 Submerged Arc Welding Fluxes / 344
Basicity Index / 344
Thermodynamic Model for Welding Slag- Metal
Reactions / 348
11.4 Summary / 354
References and Suggested Reading / 356
12 WELD CHEMICAL HETEROGENEITY
12.1 Weld (Pool) Dilution / 360
12.2 Microsegregation and Banding in the Weld Metal / 363
12.3 Unmixed and Partially Mixed Zones / 365
12.4 Impurities in the Weld Metal / 366
12.5 Macrosegregation in Dissimilar Welds / 368
12.6 Summary / 370
References and Suggested Reading / 370
IV THE METALLURGY OF WELDING
13 WELD FUSION ZONE SOLIDIFICATION
13.1 Equilibrium Versus Nonequilibrium / 378
13.2 Solidification of a Pure Crystalline Material / 381
13.2.1 Criteria for Equilibrium at T, and Constant
Pressure / 381
13.2.2 Pure Material Growth Modes / 382
13.2.3 Homogeneous Versus Heterogeneous
Nucleation / 384
13.2.3.1 Homogeneous Nucleation / 384
13.2.3.2 Super- or Undercooling / 388
13.2.3.3 Effect of Radius of Curvature on
Supercooling / 388
13.2.3.4 Heterogeneous Nucleation / 389
13.2.4 Epitaxial and Competitive Growth / 392
13.2.5 Effect of Weld Pool Shape on Structure / 3
375XlV CONTENTS
13.2.6 Competing Rates of Melting and Solidification / 399
13.2.7 Effect of Nonequilibrium on Pure Material
Solidification / 402
13.3 Equilibrium Solidification of an Alloy / 402
13.3.1 Prerequisites for the Solidification of Alloys / 403
13.3.2 Equilibrium Solidification of a Hypothetical
Binary Alloy (Case 1) / 403
13.4 Nonequilibrium Solidification of Alloys / 406
13.4.1 Boundary Conditions for Solidification of Alloys / 406
13.4.2 Equilibrium Maintained Throughout the System at all
Times: Microscopic Equilibrium (Case 1) / 407
13.4.3 Complete Liquid Mixing/No Diffusion in the Solid
(Case 2) / 408
13.4.3.1 Expression for the Composition of Solid at
the Advancing Solid-Liquid Interface / 410
13.4.3.2 Calculation of the Average Composition of
the Solid for Case 2 / 411
13.4.4 No Liquid Mixing/No Diffusion in the Solid
(Case 3) / 413
13.4.4.1 Trace of Average Composition in the Solid
for Case 3 / 420
13.4.4.2 Expression for the Initial Transient in the
Composition of the Solid Formed / 420
13.4.4.3 Some Limitations of the Classic Models / 421
13.4.5 Other Effects of Rapid Solidification / 422
13.4.5.1 Nonequilibrium Solute Partitioning / 422
13.4.5.2 Nonequilibrium Phases / 422
13.5 Consequences of Nonequilibrium Solidification / 423
13.5.1 Interdendritic Microsegregation / 423
13.5.2 Solidus Suppression / 425
13.5.3 Substructure Formation / 426
13.5.3.1 Constitutional Supercooling / 426
13.5.3.2 Effect of Cooling Rate on Substructure / 430
13.5.3.3 Interface Stability / 432
13.5.3.4 Nucleation of New Grains Within the Fusion
Zone / 438
13.5.3.5 Controlling Substructure / 438
13.5.4 Centerline Segregation / 443
13.6 Fusion Zone Hot Cracking / 443
13.6.1 Mechanism of Hot Cracking / 444CONTENTS XV
13.6.2 Remediation of Hot Cracking / 447
13.6.2.1 Control of Weld Metal Composition / 447
13.6.2.2 Control of Solidification Structure / 448
13.6.2.3 Use of Favorable Welding Conditions / 448
13.7 Summary / 449
References and Suggested Reading / 450
14 EUTECTIC, PERITECTIC,AND POSTSOLIDIFICATION
FUSIONZONE TRANSFORMATIONS 454
14.1 Eutectic Reactions or Solidification of Two-Phase
Alloys / 455
14.1.1 Solidification at the Eutectic Composition / 455
14.1.2 Solidification of Two-Phase Alloys at Noneutectic
Compositions / 460
14.1.3 Morphology of Eutectic Phases / 462
Equilibrium Conditions (Case 1) / 463
14.2.1.1 Alloys Below the Solubility Limit of the
Solid Phase in the Peritectic / 463
14.2.1.2 Alloys Between the Solubility Limit and
the Peritectic Composition / 466
14.2.1.3 Alloys With the Peritectic Composition / 467
14.2.1.4 Alloys Beyond the Peritectic Composition,
but Within the L + S Range / 468
14.2.1.5 Alloys Past the L + S Range of a Peritectic
in the Liquid Field / 469
14.2.2.1 No Diffusion in the Solid/Complete Mixing
in the Liquid (Case 2) / 470
14.2.2.2 No Diffusion in the Solid/No Mixing,
Only Diffusion in the Liquid (Case 3) / 472
14.2 Peritectic Reactions / 462
14.2.1
14.2.2 Nonequilibrium Conditions / 469
14.3 Transformations in Ferrite + Austenite or Duplex Stainless
Steels / 472
14.4 Kinetics of Solid-state Phase Transformations:
Nonequilibrium Versus Equilibrium / 480
14.5 Austenite Decomposition Transformations / 489
14.5.1 Equilibrium Decomposition to Ferrite + Pearlite
(The Eutectiod Reaction
14.5.2 Nonequilibrium Decomposition to Other Ferrite
Morphologies (Very Slow to Moderately Slow
Cooling Rates) / 493
(Faster Cooler Rates) / 494
(Very Fast Cooling Rates) / 495
14.5.3 Nonequilibrium Transformation to Bainite
14.5.4 Nonequilibrium Transformation to Martensite
14.6 Sigma and Chi Phase Formation / 498
14.7 Grain Boundary Migration / 499
14.8 Summary / 499
References and Suggested Reading / 499
15 THE PARTIALLY MELTEDZONE
Origin and Location of the Partially Melted Zone / 501
Constitutional Liquation / 505
Defects Arising in the PMZ / 508
15.3.1 Conventional Hot Cracking and Liquation Cracking
in the PMZ / 508
15.3.2 Loss of Ductility in the PMZ / 509
15.3.3 Hydrogen-Induced Cracking in the PMZ / 510
Remediation of Defects in the PMZ / 511
Summary / 512
References and Suggested Reading / 513
16 THE WELD HEAT-AFFECTEDZONE
16.1 Heat-Affected Zones in Welds / 514
16.2 The HAZ in Work-Hardened or Cold-Worked Metals
and Alloys / 515
16.2.1 The Physical Metallurgy of Cold
Work/Recovery/Recrystallization/GrainGrowth / 515
16.2.2 Cold Worked Metals and Alloys in Engineering / 520
16.2.3 Avoiding or Recovering Property Losses in
Work-Hardened Metals or Alloys / 523
16.2.4 Development of a Worked Zone in Pressure-Welded
Materials / 525
16.3 The HAZ in a Solid-Solution-Strengthened Metal or of an
Alloy / 526
16.3.1 The Physical Metallurgy of Solid-Solution
Strengthening or Alloying / 526
501
51416.3.2 Major Engineering Alloys Consisting of Single-Phase
Solid Solutions / 529
16.3.3 Maintaining Properties in Single-Phase
Solid-Solution-StrengthenedAlloys / 529
16.4 The HAZ in Precipitation-Hardened or Age-Hardenable
Alloys / 529
16.4.1 The Physical Metallurgy of Precipitation- or
Age-HardenableAlloys / 529
16.4.2 Important Precipitation-Hardenable Alloys in
Engineering / 536
16.4.3 Avoiding or Recovering Property Losses in
Age-Hardenable Alloys / 536
16.5 The HAZ in Transformation-Hardenable Alloys / 543
16.5.1 The Physical Metallurgy of Transformation-Hardenable
Alloys / 543
16.5.2 Some Important Engineering Alloys Exhibiting
Transformation Hardening / 545
16.5.3 Welding Behavior of Carbon and Alloy Steels / 545
16.5.3.1 Behavior of Carbon Steels / 545
16.5.3.2 Behavior of Alloy Steels / 547
16.6 The HAZ in Corrosion-Resistant Stainless Steels / 550
16.6.1 The Physical Metallurgy of Stainless Steels / 550
16.6.2 Major Stainless Steels Used in Engineering / 553
16.6.3 Sensitization of Austenitic Stainless Steels by
Welding / 553
16.6.4 Welding of Ferritic and Martensitic Stainless Steels / 561
16.7 The HAZ in Dispersion-Strengthenedor Reinforced Alloys / 564
16.8 HAZ Defects and Their Remediation / 566
16.8.1 Liquation Cracking / 567
16.8.2 Reheat or Strain-Age Cracking / 570
16.8.3 Quench Cracking and Hydrogen Cold Cracking / 571
16.8.4 Weld Decay, Knife-Line Attack, and Stress Corrosion
Cracking / 571
16.8.5 Lamellar Tearing / 573
References and Suggested Reading / 574
16.9 Summary / 574
17 WELDABILITY AND WELD TESTING
17.1 Weldability Testing / 578
17.2 Direct Weldability or Actual Welding Tests / 578
577XVili CONTENTS
17.2.1 Fusion and Partially Melted Zone Hot-Cracking
Tests  
Finger Test / 582
Houldcroft and Battelle Hot-Crack
Susceptibility Tests / 582
Lehigh Restraint Test / 583
Variable-Restraint (or Varestraint) Test / 583
Murex Hot-Cracking Test / 584
Root-Pass Crack Test / 584
Keyhole-Slotted-PlateTest / 585
Navy Circular-Fillet-Weldability(NCFW)
Test / 586
Circular-Groove Cracking and
Segmented-GrooveTests / 586
Circular-Patch Test / 588
Restrained-PatchTest / 588
SigmajigTest / 588
17.2.2 Heat-Affected Zone General Cold-Cracking
Weldability Tests / 589
17.2.3 Hydrogen Cracking Testing / 592
17.2.3.1 Implant Test / 595
17.2.3.2 RPI Augmented Strain Cracking Test / 596
17.2.3.3 Controlled-Thermal-Severity(CTS) Test / 596
17.2.3.4 Lehigh Slot Weldability Test / 598
17.2.3.5 Wedge Test / 598
17.2.3.6 Tekken Test / 598
17.2.3.7 Gapped-Bead-on-Plateor G-BOP Test / 598
17.2.4 Reheat or Strain-Age Cracking Test / 601
17.2.4.1 Compact Tension Test / 601
17.2.4.2 Vinckier Test / 601
17.2.4.3 Spiral Notch Test / 603
17.2.5 Lamellar Tearing Tests / 603
17.2.5.1 Lehigh Cantilever Lamellar Tearing Test / 603
17.2.5.2 Tensile Lamellar Tearing Test / 604
17.3 Indirect Weldability Tests or Tests of Simulated Welds / 606
17.4 Weld Pool Shape Tests / 606
17.5 Weld Testing / 607
17.5.1 Transverse- and Longitudinal-WeldTensile Tests / 608
17.5.2 All-Weld-Metal Tensile Tests / 609CONTENTS XlX
17.5.3 Bend Ductility Tests / 609
17.5.4 Impact Tests / 610
17.5.5 Other Mechanical Tests / 610
17.5.6 Corrosion Tests / 615
17.5.6.1 General Corrosion and Its Testing / 615
17.5.6.2 Crevice Corrosion and Its Testing / 617
17.5.6.3 Pitting Corrosion and Its Testing / 617
17.5.6.4 Intergranular Corrosion and Its Testing / 617
17.5.6.5 Stress Corrosion and Its Testing / 621
17.6 Summary / 621
References and Suggested Reading / 622
CLOSING THOUGHTS
APPENDICES
INDEX


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا منه وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب Principles of Welding
رابط مباشر لتنزيل كتاب Principles of Welding



عدل سابقا من قبل Admin في الأحد 09 سبتمبر 2018, 12:18 am عدل 1 مرات
الرجوع الى أعلى الصفحة اذهب الى الأسفل
هادي الصخري
مهندس تحت الاختبار
مهندس تحت الاختبار
هادي الصخري

عدد المساهمات : 12
التقييم : 12
تاريخ التسجيل : 24/12/2010
العمر : 49
الدولة : العراق
العمل : مهندس

كتاب Principles of Welding  Empty
مُساهمةموضوع: رد: كتاب Principles of Welding    كتاب Principles of Welding  Emptyالأربعاء 19 يونيو 2013, 6:08 pm

شكرا جزيلا وبارك الله فيك 

الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
Admin

عدد المساهمات : 15149
التقييم : 25077
تاريخ التسجيل : 01/07/2009
العمر : 30
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

كتاب Principles of Welding  Empty
مُساهمةموضوع: رد: كتاب Principles of Welding    كتاب Principles of Welding  Emptyالخميس 20 يونيو 2013, 2:10 am

@هادي الصخري كتب:
شكرا جزيلا وبارك الله فيك


لا شكر على واجب وبارك الله فينا وفيك

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
كتاب Principles of Welding
الرجوع الى أعلى الصفحة 
صفحة 2 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-
انتقل الى: