كتاب Handbook of Vibration Analysis Vol 2
منتدى هندسة الإنتاج والتصميم الميكانيكى
بسم الله الرحمن الرحيم

أهلا وسهلاً بك زائرنا الكريم
نتمنى أن تقضوا معنا أفضل الأوقات
وتسعدونا بالأراء والمساهمات
إذا كنت أحد أعضائنا يرجى تسجيل الدخول
أو وإذا كانت هذة زيارتك الأولى للمنتدى فنتشرف بإنضمامك لأسرتنا
وهذا شرح لطريقة التسجيل فى المنتدى بالفيديو :
https://www.youtube.com/watch?v=aw8GR3QlY6M
وشرح لطريقة التنزيل من المنتدى بالفيديو:
https://www.youtube.com/watch?v=Lf2hNxCN1cw
https://www.youtube.com/watch?v=PRIGVoN7CPY
إذا واجهتك مشاكل فى التسجيل أو تفعيل حسابك
وإذا نسيت بيانات الدخول للمنتدى
يرجى مراسلتنا على البريد الإلكترونى التالى :

DEABS2010@YAHOO.COM



 
الرئيسيةالبوابةاليوميةس .و .جبحـثالتسجيلدخولحملة فيد واستفيدجروب المنتدى

شاطر | .
 

 كتاب Handbook of Vibration Analysis Vol 2

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
مدير المنتدى
مدير المنتدى
avatar

عدد المساهمات : 14582
التقييم : 23748
تاريخ التسجيل : 01/07/2009
العمر : 29
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

مُساهمةموضوع: كتاب Handbook of Vibration Analysis Vol 2   الأحد 03 يونيو 2012, 2:38 am

أخوانى فى الله
أحضرت لكم كتاب
The Simplified Handbook of Vibration Analysis Volume 2
Applied Vibration Analysis
Arthur R. Crawford
President, ARC Associates
Senior Vibration Analyst.
Steve Crawford
President, Crawford Communications


ويتناول الموضوعات الأتية :

Table of Contents
MACHINE
-SPECIFIC ANALYSIS: FANS . .
1.0 PRINCIPLESOF FAN OPERATION
1.1 Fan Curves
2.0 TYPESOF FANS
2.1 Centrifugal Fana
2.2 Axial Flow Fan*
3.0STRUCTURAL ASPECTS AFFECTING VIBRATION
3.1 Mounting
32Anb-FrictMa Bearings
3.3Axial Fans
4 0OPERATIONAL SOURCES OF VIBRATION
4.1 Relating Stall
5.0 VIBRATION ANALYSISOF FANS
5.1 Determine the Problem
5.2Inspect theSystem
5.3TakeStatic Data
5.4 Take Dynamic Data
Time Domain Data
Frequency Domain Data
! Forcing Function!*)
Misalignment Coupling. Bell, and Bearing
Resonance and Disk Skew
Cavitation
Mechanical Non-linearities
Oil whirl
High I
Variable Pitch Axial Flow Fans
6.0 FAN DIAGNOSIS
SUMMARY
REFERENCES
MACHINE
-SPECIFIC ANALYSIS: PUMPS
1.0 PRINCIPLES OF PUMP OPERATION
U Typesof Head
1.2 Overview of Fluid Dynamics
1.3 Bernoulli 's Equation
1.4 Viscosity and Fluid Flow
1.5The Reynold* Number
2.0 TYPESOF PUMPS
2.1 Centrifugal Pump*
Type of Impeller
Orientation of Shift
Type of Casing Split
2.2 Axial Pumps
3J> OPERATIONAL SOURCESOF VIBRATION
I Recirculation
33 Hydraulic Imbalance
3.41 i with Voiute/Diffuser
3.5 Misalignment
3.6 Imbalanced Impeller
3.7 Impeller Instability
3.8 Bent Shaft
3.9 Pipe Stresses
4.0 STRUCTURAL ASPECTS AFFECTINO VIBRATION
4.1 Anti-Friction Bearings
4.2 Sleeve Bearings
4.3 Resonance
4.4 Looseness
4.5 Misalignment
SO ANALYSIS
SUMMARY
REFERENCES
MACHINE-SPECIFIC ANALYSIS: MOTORS
1.0 MAGNETS AND ELECTRICITY
Magnetic Fields
1.2 Electricity and Magnetism
1.3Electromagnets
; Induced Current
10PRINCIPLESOF AC MOTORS
2.1 AC Motor Design and Operation
2.2Synchronous Motors
2.3 Induction Motors
3.0 PRINCIPLESOF DC MOTORS
3.1 A Simple DC Motor
3.2 Commutation
3.3Torque Variation
3.4 Design of DC Motors
3.5 Brushes
37feHV*i
3 3Types of DC Motora
4 0 ELECTRICALSOURCESOF VIBRATION
4.1 Electrical Sources of Vibration in AC Motors
4.2 Electrical Sources of Vibration in DC Motors
4.3 External Sources of Vibration
5.0 MECHANICALSOURCESOF VIBRATION
Rotor Loose cm Shaft
Thermal Growth
Uneven Air Gap
Out of Round Rotor
Stator Looseness
Rotor Bars
Shorted Lamination
Commutation
6.0 ANALYSIS
SUMMARY
REFERENCES
MACHINE-SPECIFIC ANALYSIS: COMPRESSORS
1.0 PRINCIPLES OFCOMPRESSOR OPERATION
2.0 TYPES OFCOMPRESSORS
2.1 Reciprocating Compressors
2.2 Rotating Compressors
2.2.1 Screw compressors
2.3 Centrifugal Compressors
2.4 Axial Compressors
3.0STRUCTURAL ASPECTS AFFECTING VIBRATION
3.1 Thermal Growth and Misalignment
3.2 Anti-Friction Bearings
3.3 Resonances
3.4 Looseness
4.0 OPERATIONAL SOURCESOF VIBRATION
4.1 Pulsations
4.2 Flow Characteristics
4.3 Surge
4.4 Rotary Screw Compressors
S.O VIBRATION ANALYSIS OF COMPRESSORS
5.1 Determine the Problem
5.2 Inspect theSystem
5.3 Take Static Data
5.3.1 Resonant Frequencies
5.3.2 Blade Pass Frequency
5.3.3 Rotational and Reciprocating Forces
5.3.4 Mechanical Data
5.3.5 Background Vibration
5.4 Take Dynamic Data
5.4.1 Startup Data
5.4.2 Norajl Load Data
Time domain data
Frequency Domain Data
5.4.3 Coastdown Data
5.5 Determine the Forcing Functicn(s)
Imbalance
Misalignment: Coupling and Bearing
Resonance
Cavitation
OHI whirl
High Blade Pass Frequency
Shalt Orbits
SUMMARY
REFERENCES
MACHINE-SPECIFIC ANALYSIS: ENGINES .
1.0 ENGINES
1.1 Pressure Volume (PV) Curves
Ideal Otto Cycle
Ideal Diesel Cycle
1.2Compression Ratio
2.0 VIBRATORY FORCES IN RECIPROCATING ENGINES
2.1 The Slider CrankI
Rotating :
2 2 Knock:
2.4 Torsional Vibration Forces
2.5 Crankshaft Balance
30 ANALYZING ENGINE VIBRATION
3.1 Reciprocating Loadson Bearings
3.2 Vibrations from Engine Accessories
SUMMARY
REFERENCES
MACHINE-SPECIFIC ANALYSIS: TURBINES
1.0 PRINCIPLES OF TURBINE OPERATION
2.0TURBINEVIBRATION
2.2 Rotor Bow
2.3 Misalignment
2.4 Thermal Growth and Distortion
2.5 Resonance
3.0 BALANCING STEAM TURBINES
3-1 Acceptable Methods
Making the Compromise
4.0THE STATIC COUPLE METHOD
4.1 Performing Static Couple Balancing
Locale ihe Heavy Spc*
Determine Where to Place Yow Weight
Take Vibration Readinp
Solve for Correction
Locate the Heavy Spot
Place YourWeight
Take Vibration Reading*
Solve for Correction
5.0 THE INTERMEDIATE SOLUTION METHOD
5.1 Performing Intern
Identify and CatalogI
Record the Ai
-Is Rending*
Place Trial Weight in Firat Plane
Calculate Correction
6.0GENERATOR ROTORS
SUMMARY
REFERENCES
GEARS
INTRODUCTION
1.0 GEAR THEORY
1.1Spur Gears
1.2 Helical Gears
1.3 Crotaed Helical
1.4 WormGears
15 Bevel Gears
2.0 GEAR MESHING AND VIBRATION
2.1 Load Pulses
Deflections
3.0 VIBRATIONS IN GEARING
SUMMARY
REFERENCES
POWER TRANSMISSION COMPONENTS
1.0 BELTS AND BELT DRIVES
1.1 Types of Belts
1.2 V.Belts
TO BASIC THEORY OF BELT DRIVES
2.1 A Bek in a Belt Drive
2.2 Belt Slip and Bell Creep
2.3 Drive Ratios
2.4 Belt Tension and Alignment
3.0 NOISE IN BELT DRIVES
4.0 BELT AND SHEAVE WEAR
4.1Sheave Wear
5.0 BELT DRIVE VIBRATION
5.1 Sheave Alignment
5.2 Belt Tension
5.3 Primary Belt Frequency
5.4 Belt Strand Frequency
5.5 Belt Types and Vibration Severity
6.0 CHAINS ANDCHAIN DRIVES
6.1 Types of Chains
7.0 PRINCIPLES OFCHAIN DRIVES
7.1 Drive Ratio
7.2 Number of Sprocket Teeth
7.3 CCnter-to-Ccnter Distance
7.4 Chain Slack
7.5 Chain Wear and Tension
7.6 Chordal Action
7.7 Determining Chain Length
8.0 CHAIN DRIVE VIBRATION
8.1 Tooth
-Induced Vibration
8.2 Other Sources
9.0 UNIVERSAL JOINTS
9.1 Non
-Uniform Joints
9.2 Uniform Joints
9.3 Other Classifications
10.0CARDAN UNIVERSAL JOINTS
10.1 Non
-Uniform Motion
10.2 Achieving Constant Velocity
11.0 BALL AND TRUNNION UNIVERSAL JOINT
12.0 ROLLER AND TRUNNION UNIVERSAL JOINT
13.0 SLIDING BLOCK AND TRUNNION UNIVERSAL JOINT
14.0 RUBBER COUPLINGS
15.0 VIBRATION IN UNIVERSAL JOINTS
15.1 Torsional Vibration
15.2 Inertial Vibration
15.3 Secondary Couple Vibration
15.4 Other Vibrations
16.0 FLEXIBLE COUPLINGS
16.1 Types of Couplings
16.2 Vibration Considerations
SUMMARY
BIBLIOGRAPHY
ANALOG INSTRUMENTS
SUMMARY
DIGITAL ANALYSIS
1.0 DIGITAL ANALYZERS
1.1 Frequency Analysis with Analog Analyzers
1.2 The Fourier Transform
1.3Time and Frequency Domain Displays
1.4 Aliasing
2.0SIGNAL ANALYSIS
2.1 Line Spectra
2.2Continuous Spectra
2.3Time vs. Frequency Displays
2.4 Leakage
3.0 INSTANTANEOUS SPECTRA
4.0 TRIGGERING
3.0 AVERAGING
3.1 Linear Averaging
3.2 Exponential Averaging
5.3 Peak Hold
5.4 Synchronous Averaging
5.5 Synchronous Time Averaging
6.0 CROSS CHANNEL CAPABILITIES
6.1 Coherence
6.2 Transfer Function
6.3 Cross Channel Phase
SUMMARY
MEASUREMENT AND COLLECTION TECHNIQUES
1.0 MACHINERY MAINTENANCE
1.1 Catastrophic (Hysterical) Maintenance
1.2 Preventive (Historical) Maintenance
1.3 Predictive (Histogram) Maintenance
2.0 VIBRATION DATA COLLECTION
2.1 Collect Broadband or Spectral Data?
2.2 What Frequency RangeShould Be Covered?
2.3 What Units Are Used for Machine Health Baseline?
2.4 How Much Vibration is Too Much Vibration?
2.5 What Type of Transducer Should Be Used?
2.6 How Will the Transducers Be Mounted?
2.7 How Ma
2.8 How Often Will Data Be Collected?
Arc Required?
2.9 Will Machines be Loaded or Unloaded Daring Collection?
2.10 Who Will Collect and Analyze the Data?
SUMMARY
.
EXPERIMENTAL MODAL ANALYSIS . . . .
1.0 EXPERIMENTAL MODAL ANALYSIS
1.1 Disadvantages of Experimental Modal Analysis
1.2 A Comparison with Finite Element Analysis
2.0 EXPERIMENTAL MODAL ANALYSIS THEORY
2.1 A Single Degree of Freedom System
2.1.2 Imaginary Frequency Response Curve
2.2 A Multiple Degree of Freedom System
3.0 FREQUENCY RESPONSE FUNCTIONS
3.1 Basic Frequency Response Functions
4.0 EXPERIMENTAL MODAL ANALYSIS PROCEDURES
4.1 Develop a Test Procedure
4.2 Reid Test
4.3 Modal Parameter Identification
4.4 Model Verification
5.0STRUCTURAL MODIFICATION METHODS
6.0 CASE HISTORY *!
6.1 Statement of Problem
6.2 Experimental Modal Analysis
6.3 finite Element Model
6.4 Structural Modifications
7.0 CASE HISTORY *2
7.1 Statement of Problem
7.2 Experimental Modal Analysis
8.0OPERATING DEFLECTION SHAPE ANALYSIS
8.1 Test Procedure
8.2 Curve fitting
8.3 Single-Channel Operating Deflection Shape
8.4 Case History
FINITE ELEMENT ANALYSIS
2.0 PRINCIPLES OFFINITE ELEMENT ANALYSIS
3.0STATIC ANALYSIS
4.0 DYNAMIC ANALYSIS
4.1 The Modal Superposition Method
5.0 MESH REFINEMENT
6.0 HIGHER ORDER DISPLACEMENT FUNCTIONS
6.1 Shape Functions
7.0 ASPECT RATIO AND SKEWNESS
8.0 ELEMENT TYPES
8.1 Spar Elements
8.2 Beam Element!
8.3 Thin Shell Element*
8.5 8.4 Three Two Dimensional Dimensional Sol Solid -1Element Element
8.6 Mnu Elements
8.7 Spring Elements
9.0 ANALYSIS PROCEDURES
9.2 Elements
9.3 Boundary Conditions
9.4 Dynamic Loading
9.3 Matrix Condensation
100CASE HISTORY # I
10.1 ProblemDescription
102 Finite Element Solution
11.0CASE HISTORY »2
11.1 Problem Description
11.2 Finite Element Analysis
12.0 CASE HISTORY *3
111 Problem Description
12.2 Finite Element Analysis
13.0 CONCLUSION
14.0 REFERENCES
APPENDIX B - EXAMPLE ANALYSES
ANALYSIS 41 - MULTIPLE RESONANT FREQUENCIES
ANALYSIS #2 - BEAT FREQUENCY BETWEEN SPINDLES
ANALYSIS*3 - HARMONIC GROUPS OF BELT FREQUENCY
ANALYSIS «4 - RUBBINO GIBS
ANALYSIS #5- USING COHERENCE
ANALYSIS*6- BEARING FAULT
ANALYSIS #7 - PRESSURE PULSATIONS
APPENDIX C- RESONANT FREQUENCY CALCULATIONS
Definition ofTeems
10SHAFTCASE ONE
10 SHAFT CASE TWO
3.0 SHAFT CASE THREE
4.0 SHAFT CASE FOUR
5.0 SHAFT CASE FIVE
BEAM CASE ONE
70BEAMCASETWO
8.0 BEAM CASE THREE
; Frequ for Mass
8.2 Resonant Frequency for Mass mi
8.3 The Combined Natural Frequency
9.0 BEAM CASE FOUR
10.0 BEAM CASE FIVE
11.0 ADDING SHAFT OR BEAM MASS
11.1 Adding Shaft Mass
11.2 Adding Beam Mass
Glossary of Terms
Index
List of Figures
Figure 1 • fan curves
Figure 2 - a centrifugal fan
Figure 3- center hung and cantilevered centrifugal fans
Figure 4 - backward bladed centrifugal fan
Figure S •airfoil Wade
Figure 6 - radially tipped fan
Figure 7 - forward curved blade
Figure 8 -axial flow fan
Figure9 • vibration mounts
Figure 10 - floating and fixed bearings
Figure 11 - routing stall
Figure 12 - the belt strand
Figure 13 - belt strand resonance
Figure 14- head and pressu
Figure IS - measurements of static head
Figure 16 •a Venturi tube
Figure 17 - vis
Figure 18 - a basic centrifugal pomp
Figure 19- uniform pressure on the impeller
Figure 20•unequal pressure on the impeller
Figure 21 -a twin volute pump
Figure 22 - diffusion vanes
Figure 23 - incline of axial impeller vanes
Figure 24 - floating and fixed bearings
Figure 23 •oil whirl
Figure 26 -effect of dynamic absorber on system response
Figure 27 •absorber mass and resonance spread
Figure 28 • magnetic attraction and repulsion
Figure 29 - a magnetic field
i fluid flow
Figure 30 - effect of electricity on a compass needle
Figure 31 - a bosk electromagnet
Figure 32 • induced current
Figure33- a typical motor stator
Figure 34 - three phase stator
Figure 35-a rotor with a uniform air gap
Figure 36-an induction motor rotor
Figure 37-circular current flow in the rotor
Figure 38 - motor action
Figure 39- a simple DC motor
Figure 40- torque through one-half revolution
Figure 41 - a two-segment commutator
Figure 42 - torque vs. position plot for a two-segment commutator
Figure 43 - a four-segment commutator
Figure 44 - a DC motor armature
Figure 45 - a typical commutator
Figure 46 - brush assembly on a DC motor
Figure 47 - main magnetic field
Figure 48 - magnetic Field around the armature coil
Figure 49 - the load neutral plane
Figure 50 -one slip cycle
Figure 51- halfwave rectification
Figure 52 •full wave rectification
Figure 53- head and pressure
Figure 54 - a reciprocating compressor
Figure55-a sliding vane compressor
Figure56-a two-lobed screw compressor
Figure57-a centrifugal compressor
Figure58-an axial compressor
Figure 59- fixed and floating bearings
Figure60-drive train of a rotary screw compressor
Figure61- the PV curve for an ideal otto cycle
Figure62 - the PV curve for an ideal diesel cycle
Figure 63- the slider crank mechanism
Figure 64- rotating and reciprocating mass
Figure65- reciprocating piston with no moment
Figure 66 -an unbalanced counterbalance force
Figure67 •the origin of side-to-side motion
Figure68 -a turbine/generator set with high vibration
Figure69 - purestalk imbalance
Figure 70 - pure couple imbalance
Figure71 -a turbine rotor with static imbalance
Figure 72- two gear teeth in contact
Figure73-conjugacy
Figure 74 - the Pitch Cirele
Figure 75- tracing an involute
Figure 76 •spur gears
Figure 77 - a helical gear
Figure 78 -
Figure 79 •a straight bevel gear
Figure80 - how a V-bell wedges against live sheave
Figure 81 - typical V-beh
Figure 82 - various belt types
Figure 83 - a sample belt drive
Figure 84 - belt drive ratio
gear and wormwhcel
determining bell length
Figure 87 - the belt strand
Figure 88- belt
Figure 89 - time domain plot of support resonance excited by belt
Figure90-
Figure 91 - a basic chain drive
Figure 92 - a hunting tooth sprocket
chain types
Figure 93 - allowing for chain slack
Figure 94- chordal action
Figure 95 -determining chain length
Figure 96 - the Canton joint
Figure 97- motion of a point at zero joint angle
Figure98 -1 i of a point at an angle
gene revolution
Figure 100 - polar plot of speed variations
Figure 101 - joint phasing
Figure 102 - the Ball and Trunnion joint
Figure 103 - maximum angle of bull and trunnion joint
Figure 104 - a gear coupling
Figure 105 - sampling at the Input frequency
Figure 106-sampling at twice the Input frequency
Figure 107 - 128 Hi signal sampled at 1,024 Hz
Figure 108- 1,152 Hz signal sampled at 1.024 Hz
Figure 109-locating a precise frequency
Figure 110- time domain waveform for Case I
Figure 111 *frequency spectra of Case I
Figure 112 - timedomainirefo.
Figure 113 - frequency spectra of
Figure
Figure 115- frequency spectra of Case 3
Figure 116- time domain waveform of Cose 4
Figure 117- frequency spectra of Case 4
of Case 2
i of Case 3
Figure 118 - coherence plot of cracked machine spindle
Figure 119- coherence plot or a new machine spindle
Figure 120 - Inertance plot of turbine generator
Figure 121- apparent stiffness calculated from inertance
Figure 122- imaginary portion of Figure 120
Figure 123 - impact locations on turbine generator
Figure 124 - rocking mode of turbine generator
Figure 125 - integration and double integration
Figure 126- differentiation and double differentiation
Figure 127 - a single degree of freedom vibrating system
Figure 128- magnitude of force varies with time
Figure 129 - real and imaginary components of total displacement
Figure 130- the magnification factor
Figure 131 * a typical imaginary frequency response function
Figure 132 * a multiple degree of freedom system
Figure 133 - mode slope obtained from one data point
Figure 134 •mode shapes obtained from multiple data points
Figure 135-
Figure 136•impact and response plots
Figure 137-effect of tip hardness on excited frequency band
Figure 138- a force-exponential window
Figure 139-colierence before and after repairs
Figure 140 - light and heavy modal coupling
Figure 141- frequency response curve for Case 1
Figure 142 • first and second mode shapes for Case I
Figure 143 •finite element model for Case I
Figure 144 - first mode shape of Case I
Figure 145 - side and top views of second mode shape of Case 1
Figure 146 - colierence and frequency response plots for Case 2
Figure 147 - animated modeshape of Case 2 first mode
Figure 148 - animated mode shape of Case 2 second mode
Figure 149 - setup for operating deflection shape analysis
Figure 150 - pseudo FRF for an 1.800 RPM fan
Figure 151 - coherence and frequency response plots for ODS Case I
Figure 152 - result of ODSanalysis
Figure 153- approximating beam deflection
Figure 154- two uniaxial truss elements coupled in series
Figure 155 - meshes for a steel cantilever slab
Figure 156- plotted mode.shapes from Table 11
Figure 157 •higher order displacement functions
Figure 158 -a simple uniaxial truss element
Figure 159-solid elements obtained from a parent element
Figure 160 •a spar element
Figure 161-a beam element
mode shape display resulting from aliasing
List of Tables
Table1
- engine types and reciprocating forces
Table 2
- crankshafts requiring bobweighis during balancing
Table 3- standard belt sires
Table 4 - vibration severity for various belt types
Table 3 - theeffect of resolution on the time window
Table6 - coherence as a function of the number of averages
Table7 - how resonances are displayed in rectangular transfer function plots
Table8 - categoriring levels of vibration
Table9 - comparing FEM and EMA predictions
Table 10 - natural frequency and damping estimates for Case 2
Table 11 •calculated mode shapes using modelsfrom Figure 155
Table 12 - mode shapes calculated using a quadratic displacement function
Table 13- linear vs. quadratic displacement functions
Table 14 - solution of the cantilever slab problem using several models
Table IS •calculating first stretching mode using the three displacement functions


 كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net
أتمنى أن تستفيدوا منه وأن ينال إعجابكم

رابط من موقع عالم الكتب لتنزيل كتاب The Simplified Handbook of Vibration Analysis Volume 2
رابط مباشر لتنزيل كتاب The Simplified Handbook of Vibration Analysis Volume 2

شارك معنا فى حملة فيد وإستفيد
شارك معنا فى المسابقة الهندسية الشهرية
كيفية التسجيل فى منتدى هندسة الإنتاج والتصميم الميكانيكى


*****************************************************************************************


عدل سابقا من قبل Admin في الجمعة 19 يناير 2018, 8:25 am عدل 3 مرات
الرجوع الى أعلى الصفحة اذهب الى الأسفل
Admin
مدير المنتدى
مدير المنتدى
avatar

عدد المساهمات : 14582
التقييم : 23748
تاريخ التسجيل : 01/07/2009
العمر : 29
الدولة : مصر
العمل : مدير منتدى هندسة الإنتاج والتصميم الميكانيكى
الجامعة : المنوفية

مُساهمةموضوع: رد: كتاب Handbook of Vibration Analysis Vol 2   الإثنين 01 أكتوبر 2012, 7:32 pm

تم تعديل الرابط

الرجوع الى أعلى الصفحة اذهب الى الأسفل
 

كتاب Handbook of Vibration Analysis Vol 2

استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

خدمات الموضوع
 KonuEtiketleri كلمات دليليه
كتاب Handbook of Vibration Analysis Vol 2 , كتاب Handbook of Vibration Analysis Vol 2 , كتاب Handbook of Vibration Analysis Vol 2 ,كتاب Handbook of Vibration Analysis Vol 2 ,كتاب Handbook of Vibration Analysis Vol 2 , كتاب Handbook of Vibration Analysis Vol 2
 KonuLinki رابط الموضوع
 Konu BBCode BBCode
 KonuHTML Kodu HTMLcode
إذا وجدت وصلات لاتعملفي الموضوع او أن الموضوع [ كتاب Handbook of Vibration Analysis Vol 2 ] مخالف ,, من فضلك راسل الإدارة من هنا
صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى هندسة الإنتاج والتصميم الميكانيكى :: المنتديات الهندسية :: منتدى الكتب والمحاضرات الهندسية :: منتدى الكتب والمحاضرات الهندسية الأجنبية-